Perfecting antigen prediction

Advances in genomics and precision measurement have continued to demonstrate the importance of the immune system across many disease types. At the heart of many emerging approaches to leverage these insights for precision immunotherapies is the computational antigen prediction problem. We propose a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of experimental medicine Ročník 219; číslo 9
Hlavní autoři: Hoyos, David, Greenbaum, Benjamin D
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 05.09.2022
Témata:
ISSN:1540-9538, 1540-9538
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Advances in genomics and precision measurement have continued to demonstrate the importance of the immune system across many disease types. At the heart of many emerging approaches to leverage these insights for precision immunotherapies is the computational antigen prediction problem. We propose a threefold approach to improving antigen predictions: further defining the geometry of the antigen landscape, incorporating the coupling of antigen recognition to other cellular processes, and diversifying the training sets used for models that predict immunogenicity.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1540-9538
1540-9538
DOI:10.1084/jem.20220846