Perfecting antigen prediction
Advances in genomics and precision measurement have continued to demonstrate the importance of the immune system across many disease types. At the heart of many emerging approaches to leverage these insights for precision immunotherapies is the computational antigen prediction problem. We propose a...
Saved in:
| Published in: | The Journal of experimental medicine Vol. 219; no. 9 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
05.09.2022
|
| Subjects: | |
| ISSN: | 1540-9538, 1540-9538 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Advances in genomics and precision measurement have continued to demonstrate the importance of the immune system across many disease types. At the heart of many emerging approaches to leverage these insights for precision immunotherapies is the computational antigen prediction problem. We propose a threefold approach to improving antigen predictions: further defining the geometry of the antigen landscape, incorporating the coupling of antigen recognition to other cellular processes, and diversifying the training sets used for models that predict immunogenicity. |
|---|---|
| AbstractList | Advances in genomics and precision measurement have continued to demonstrate the importance of the immune system across many disease types. At the heart of many emerging approaches to leverage these insights for precision immunotherapies is the computational antigen prediction problem. We propose a threefold approach to improving antigen predictions: further defining the geometry of the antigen landscape, incorporating the coupling of antigen recognition to other cellular processes, and diversifying the training sets used for models that predict immunogenicity.Advances in genomics and precision measurement have continued to demonstrate the importance of the immune system across many disease types. At the heart of many emerging approaches to leverage these insights for precision immunotherapies is the computational antigen prediction problem. We propose a threefold approach to improving antigen predictions: further defining the geometry of the antigen landscape, incorporating the coupling of antigen recognition to other cellular processes, and diversifying the training sets used for models that predict immunogenicity. Advances in genomics and precision measurement have continued to demonstrate the importance of the immune system across many disease types. At the heart of many emerging approaches to leverage these insights for precision immunotherapies is the computational antigen prediction problem. We propose a threefold approach to improving antigen predictions: further defining the geometry of the antigen landscape, incorporating the coupling of antigen recognition to other cellular processes, and diversifying the training sets used for models that predict immunogenicity. |
| Author | Hoyos, David Greenbaum, Benjamin D |
| Author_xml | – sequence: 1 givenname: David surname: Hoyos fullname: Hoyos, David organization: Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY – sequence: 2 givenname: Benjamin D orcidid: 0000-0001-6153-8793 surname: Greenbaum fullname: Greenbaum, Benjamin D organization: Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35972475$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj81LxDAUxIOsuB9686rs0UvX5OWlSY-yrB-woAc9lzR9Wbq0aW3ag_-9FVfwNMPwY4ZZslloAzF2LfhGcIP3R2o2wAEmn56xhVDIk0xJM_vn52wZ45FzgajSCzaXKtOAWi3YzRv1ntxQhcPahqE6UFh3PZXVFLXhkp17W0e6OumKfTzu3rfPyf716WX7sE-cNDgkrnSlBks-LUEpVAjWcZNxnWZWFmS09uimTdTkjAPvnbBeCul1oZwggBW7--3t-vZzpDjkTRUd1bUN1I4xB80h0ymaH_T2hI5FQ2Xe9VVj-6_87xJ8A9U0TgI |
| CitedBy_id | crossref_primary_10_1016_j_intimp_2024_112811 crossref_primary_10_1021_acsinfecdis_4c01053 crossref_primary_10_3389_fimmu_2023_1238586 |
| ContentType | Journal Article |
| Copyright | 2022 Hoyos and Greenbaum. |
| Copyright_xml | – notice: 2022 Hoyos and Greenbaum. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1084/jem.20220846 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1540-9538 |
| ExternalDocumentID | 35972475 |
| Genre | Journal Article |
| GroupedDBID | --- -~X 18M 29K 2WC 36B 4.4 53G 5GY 5RE 5VS ABOCM ABZEH ACGFO ACNCT ACPRK ADBBV AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C45 CGR CS3 CUY CVF D-I DIK DU5 E3Z EBS ECM EIF EMB F5P F9R GX1 H13 HYE IH2 KQ8 L7B N9A NPM O5R O5S OK1 P2P P6G R.V RHI SJN TR2 TRP UHB W8F WOQ 7X8 |
| ID | FETCH-LOGICAL-c384t-cdcd72aef6d2554542ac0890769a3be877f4c35947ec8c2ffc1af313f7b5c1e22 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000861562400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1540-9538 |
| IngestDate | Fri Sep 05 13:13:16 EDT 2025 Thu Apr 03 07:02:35 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | 2022 Hoyos and Greenbaum. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c384t-cdcd72aef6d2554542ac0890769a3be877f4c35947ec8c2ffc1af313f7b5c1e22 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-6153-8793 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9386507 |
| PMID | 35972475 |
| PQID | 2702976482 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2702976482 pubmed_primary_35972475 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-05 |
| PublicationDateYYYYMMDD | 2022-09-05 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | The Journal of experimental medicine |
| PublicationTitleAlternate | J Exp Med |
| PublicationYear | 2022 |
| SSID | ssj0014456 |
| Score | 2.4257107 |
| Snippet | Advances in genomics and precision measurement have continued to demonstrate the importance of the immune system across many disease types. At the heart of... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| SubjectTerms | Antigens Genomics Immunotherapy |
| Title | Perfecting antigen prediction |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35972475 https://www.proquest.com/docview/2702976482 |
| Volume | 219 |
| WOSCitedRecordID | wos000861562400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB7Uinjx_ahaWcFraDebbLInEbF4aelBobclm0xED9un_n4n25SeBMHLElhCknkkk3yTfAD3LvOKon7FnJYFE6aoWIUpMl_llvZixhonGrIJNRzq8bgYxQO3RUyrXM-JzUTtJjackXfDvSlaOoXmD9MZC6xRAV2NFBrb0MoolAlWrcYbFEGIhr01DeB_QZ4dE997WnQ_MVxD55zK-e_BZbPI9A__270jOIjhZfK4sodj2ML6BPYGEUA_hc4I5032Vf2ekEzDU5zJdB5-BwWdwVv_-fXphUWGBGYzLZbMOusUN-hzR1sDIQU3tqdJxnlhsgq1Ul7YTBZCodWWe29T40lSXlXSpsj5OezUkxovISHPNYWTGjWiSDnVFSgDypaZQPnXa8PdeuAlWWCAFUyNk69FuRl6Gy5W0iunq6cySmpbcaHk1R9qX8N-0EiTwCVvoOXJ_7ADu_Z7-bGY3zaqpe9wNPgBnpCtIg |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perfecting+antigen+prediction&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Hoyos%2C+David&rft.au=Greenbaum%2C+Benjamin+D&rft.date=2022-09-05&rft.eissn=1540-9538&rft.volume=219&rft.issue=9&rft_id=info:doi/10.1084%2Fjem.20220846&rft_id=info%3Apmid%2F35972475&rft_id=info%3Apmid%2F35972475&rft.externalDocID=35972475 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1540-9538&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1540-9538&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1540-9538&client=summon |