Software Effort Estimation Using Modified Fuzzy C Means Clustering and Hybrid ABC-MCS Optimization in Neural Network
In a software development process, effective cost estimation is the most challenging activity. Software effort estimation is a crucial part of cost estimation. Management cautiously considers the efforts and benefits of software before committing the required resources to that project or order for a...
Saved in:
| Published in: | Journal of intelligent systems Vol. 29; no. 1; pp. 251 - 263 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin
De Gruyter
01.01.2020
Walter de Gruyter GmbH |
| Subjects: | |
| ISSN: | 0334-1860, 2191-026X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In a software development process, effective cost estimation is the most challenging activity. Software effort estimation is a crucial part of cost estimation. Management cautiously considers the efforts and benefits of software before committing the required resources to that project or order for a contract. Unfortunately, it is difficult to measure such preliminary estimation, as it has only little information about the project at an early stage. In this paper, a new approach is proposed; this is based on reasoning by the soft computing approach to calculate the effort estimation of the software. In this approach, rules are generated based on the input dataset. These rules are then clustered for better estimation. In our proposed method, we use modified fuzzy C means for clustering the dataset. Once the clustering is done, various rules are obtained and these rules are given as the input to the neural network. Here, we modify the neural network by incorporating optimization algorithms. The optimization algorithms employed here are the artificial bee colony (ABC), modified cuckoo search (MCS), and hybrid ABC-MCS algorithms. Hence, we obtain three optimized sets of rules that are used for the effort estimation process. The performance of our proposed method is investigated using parameters such as the mean absolute relative error and mean magnitude of relative error. |
|---|---|
| AbstractList | In a software development process, effective cost estimation is the most challenging activity. Software effort estimation is a crucial part of cost estimation. Management cautiously considers the efforts and benefits of software before committing the required resources to that project or order for a contract. Unfortunately, it is difficult to measure such preliminary estimation, as it has only little information about the project at an early stage. In this paper, a new approach is proposed; this is based on reasoning by the soft computing approach to calculate the effort estimation of the software. In this approach, rules are generated based on the input dataset. These rules are then clustered for better estimation. In our proposed method, we use modified fuzzy C means for clustering the dataset. Once the clustering is done, various rules are obtained and these rules are given as the input to the neural network. Here, we modify the neural network by incorporating optimization algorithms. The optimization algorithms employed here are the artificial bee colony (ABC), modified cuckoo search (MCS), and hybrid ABC-MCS algorithms. Hence, we obtain three optimized sets of rules that are used for the effort estimation process. The performance of our proposed method is investigated using parameters such as the mean absolute relative error and mean magnitude of relative error. |
| Author | Mohanapriya, Marimuthu Rajalakshmi, Somasundaram Azath, Hussain |
| Author_xml | – sequence: 1 givenname: Hussain surname: Azath fullname: Azath, Hussain email: writetoazath@yahoo.com organization: Assistant Professor, CSE, KGiSL Institute of Technology, Coimbatore, India – sequence: 2 givenname: Marimuthu surname: Mohanapriya fullname: Mohanapriya, Marimuthu organization: Associate Professor/Department of CSE, CIT, Coimbatore, India – sequence: 3 givenname: Somasundaram surname: Rajalakshmi fullname: Rajalakshmi, Somasundaram organization: Professor & Head, Department of CSE, Cheran College of Engineering, Karur, India |
| BookMark | eNp1kcFvFCEUxompiWvt2SuJ57HwGBjm4KFOtrZJ1x5qE2-EAWbDOg4rMNns_vWyHaMnuTxCvu_3eO97iy6mMDmE3lPykXLKr3c-HVMFhDYVoUBfoRXQllYExPcLtCKM1RWVgrxBVyntSDl1S7nkK5SfwpAPOjq8HoYQM16n7H_q7MOEn5OftngTrB-8s_h2Pp2OuMMbp6eEu3FO2cWzQk8W3x376C2--dxVm-4JP-4LxZ8Wjp_wVzdHPZaSDyH-eIdeD3pM7upPvUTPt-tv3V318Pjlvrt5qAyTda6MBHCu7jkYAa0z7QC9qR1QzRpa66ZveNtIKRreMy6FaZ3WTd2DFgw0tIJdovuFa4PeqX0sg8WjCtqrl4cQt0rH7M3oFLfEQK2l1MTW0DBprHSgqTWDtELQwvqwsPYx_JpdymoX5jiV7ytgjJRugvKiul5UJoaUohv-dqVEnZNSL0mpc1LqnFRxfFocBz2WfVq3jfOxXP7h_-OElgKn7DfOipzn |
| Cites_doi | 10.1049/iet-sen.2013.0165 10.1109/SOLI.2013.6611406 10.1016/j.amc.2009.03.090 10.1145/2597716.2597725 10.1109/CICSyN.2012.39 10.4249/scholarpedia.6915 10.1109/ICGEC.2012.68 10.1016/j.infsof.2010.05.009 10.1109/APSEC.2009.57 10.1109/SERA.2011.45 10.1109/TSE.2012.88 10.1049/iet-sen.2009.0051 10.1049/iet-sen.2014.0254 10.1109/TSE.2011.55 10.1049/iet-sen.2014.0122 10.1049/iet-sen.2011.0210 10.1109/ICGSEW.2015.19 10.1109/INNOVATIONS.2006.301942 |
| ContentType | Journal Article |
| Copyright | 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION JQ2 DOA |
| DOI | 10.1515/jisys-2017-0121 |
| DatabaseName | CrossRef ProQuest Computer Science Collection Directory of Open Access Journals (OA) |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2191-026X |
| EndPage | 263 |
| ExternalDocumentID | oai_doaj_org_article_5d0c24a88a0d42738cd8e2a1dcf8d661 10_1515_jisys_2017_0121 10_1515_jisys_2017_0121291251 |
| GroupedDBID | 0R~ 0~D 4.4 7WY AAFPC AAFWJ AAGVJ AAPJK AAQCX AASOL AASQH AAWFC AAXCG ABAOT ABAQN ABFKT ABIQR ABSOE ABUVI ABXMZ ABYKJ ACEFL ACGFS ACZBO ADGQD ADGYE ADJVZ ADMLS ADOZN AEJTT AEQDQ AERZL AEXIE AFBAA AFBDD AFCXV AFPKN AFQUK AHGBP AHGSO AIERV AJATJ AKXKS ALMA_UNASSIGNED_HOLDINGS ARCSS BAKPI BBCWN BCIFA CFGNV EBS GROUPED_DOAJ HZ~ IY9 M0C O9- OK1 P2P QD8 RDG SA. AAYXX CITATION JQ2 AAONY ABRQL ACMKP ACXLN AEKEB AFGNR AIKXB AMAVY AZMOX BLHJL SLJYH |
| ID | FETCH-LOGICAL-c384t-c822ee4b52c629ec9f2bc4e21a3714a7b759788675b3586c9eaa74b2a632a2963 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000504634100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0334-1860 |
| IngestDate | Fri Oct 03 12:34:00 EDT 2025 Mon Jun 30 03:11:34 EDT 2025 Sat Nov 29 04:22:18 EST 2025 Sat Nov 29 01:31:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This work is licensed under the Creative Commons Attribution 4.0 Public License. http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c384t-c822ee4b52c629ec9f2bc4e21a3714a7b759788675b3586c9eaa74b2a632a2963 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/5d0c24a88a0d42738cd8e2a1dcf8d661 |
| PQID | 2330963615 |
| PQPubID | 2031329 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5d0c24a88a0d42738cd8e2a1dcf8d661 proquest_journals_2330963615 crossref_primary_10_1515_jisys_2017_0121 walterdegruyter_journals_10_1515_jisys_2017_0121291251 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin |
| PublicationPlace_xml | – name: Berlin |
| PublicationTitle | Journal of intelligent systems |
| PublicationYear | 2020 |
| Publisher | De Gruyter Walter de Gruyter GmbH |
| Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
| References | Popovic, J.; Bojic, D.; Korolija, N. (j_jisys-2017-0121_ref_015) 2015; 9 Seo, Y.-S.; Yoon, K.-A.; Bae, D.-H. (j_jisys-2017-0121_ref_018) 2009 Karaboga, D.; Akay, B. (j_jisys-2017-0121_ref_009) 2009; 214 Azzeh, M.; Nassif, A. B. (j_jisys-2017-0121_ref_003) 2015; 9 Bardsiri, V. K.; Jawawi, D. N. A.; Hashim, S. Z. M.; Khatibi, E. (j_jisys-2017-0121_ref_004) 2012; 6 Wijayasiriwardhane, T.; Lai, R.; Kang, K. C. (j_jisys-2017-0121_ref_019) 2011; 5 Dan, Z. (j_jisys-2017-0121_ref_005) 2013 Karaboga, D.; Ozturk, C. (j_jisys-2017-0121_ref_010) 2010; 5 Lee, W.-T.; Lee, J.; Hsu, K.-H.; Kuo, J. Y. (j_jisys-2017-0121_ref_012) 2012 Attarzadeh, I.; Mehranzadeh, A.; Barati, A. (j_jisys-2017-0121_ref_002) 2012 Kocaguneli, E.; Menzies, T.; Keung, J.; Cok, D.; Madachy, R. (j_jisys-2017-0121_ref_011) 2013; 39 Satapathy, S. M.; Kumar, M.; Rath, S. K. (j_jisys-2017-0121_ref_016) 2014; 39 Satapathy, S. M.; Acharya, B. P.; Rath, S. K. (j_jisys-2017-0121_ref_017) 2016; 10 Abdukalykov, R.; Hussain, I.; Kassab, M.; Ormandjieva, O. (j_jisys-2017-0121_ref_001) 2011 Malathi, S.; Sridhar, S. (j_jisys-2017-0121_ref_013) 2012; 10 Hamdan, K.; El Khatib, H.; Moses, J.; Smith, P. (j_jisys-2017-0121_ref_008) 2006 Dejaeger, K.; Verbeke, W.; Martens, D.; Baesens, B. (j_jisys-2017-0121_ref_006) 2012; 38 Oliveira, A. L. I.; Braga, P. L.; Lima, R. M. F.; Cornelio, M. L. (j_jisys-2017-0121_ref_014) 2010; 52 El Bajta, M. (j_jisys-2017-0121_ref_007) 2015 2023040101203085044_j_jisys-2017-0121_ref_001 2023040101203085044_j_jisys-2017-0121_ref_012 2023040101203085044_j_jisys-2017-0121_ref_011 2023040101203085044_j_jisys-2017-0121_ref_010 2023040101203085044_j_jisys-2017-0121_ref_009 2023040101203085044_j_jisys-2017-0121_ref_008 2023040101203085044_j_jisys-2017-0121_ref_019 2023040101203085044_j_jisys-2017-0121_ref_007 2023040101203085044_j_jisys-2017-0121_ref_018 2023040101203085044_j_jisys-2017-0121_ref_006 2023040101203085044_j_jisys-2017-0121_ref_017 2023040101203085044_j_jisys-2017-0121_ref_005 2023040101203085044_j_jisys-2017-0121_ref_016 2023040101203085044_j_jisys-2017-0121_ref_004 2023040101203085044_j_jisys-2017-0121_ref_015 2023040101203085044_j_jisys-2017-0121_ref_003 2023040101203085044_j_jisys-2017-0121_ref_014 2023040101203085044_j_jisys-2017-0121_ref_002 2023040101203085044_j_jisys-2017-0121_ref_013 |
| References_xml | – volume: 38 start-page: 375 year: 2012 end-page: 397 ident: j_jisys-2017-0121_ref_006 article-title: Data mining techniques for software effort estimation: a comparative study publication-title: IEEE Trans. Softw. Eng. – volume: 10 start-page: 10 year: 2016 end-page: 17 ident: j_jisys-2017-0121_ref_017 article-title: Early stage software effort estimation using random forest technique based on use case points publication-title: IET Softw. – year: 2009 ident: j_jisys-2017-0121_ref_018 article-title: Improving the accuracy of software effort estimation based on multiple least square regression models by estimation error-based data partitioning publication-title: Proc. 16th Asia-Pacific Software Engineering Conference – year: 2012 ident: j_jisys-2017-0121_ref_012 article-title: Applying software effort estimation model based on work breakdown structure publication-title: Proc. 6th International Conference on Genetic and Evolutionary Computing – volume: 214 start-page: 108 year: 2009 end-page: 132 ident: j_jisys-2017-0121_ref_009 article-title: A comparative study of artificial bee colony algorithm publication-title: J. Appl. Math. Comput. – volume: 39 start-page: 1 year: 2014 end-page: 6 ident: j_jisys-2017-0121_ref_016 article-title: Class point approach for software effort estimation using soft computing techniques publication-title: ACM SIGSOFT Softw. Eng. – volume: 9 start-page: 1 year: 2015 end-page: 8 ident: j_jisys-2017-0121_ref_015 article-title: Analysis of task effort estimation accuracy based on use case point size publication-title: IET Softw. – year: 2013 ident: j_jisys-2017-0121_ref_005 article-title: Improving the accuracy in software effort estimation using artificial neural network model based on particle swarm optimization publication-title: Proc. IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI) – year: 2012 ident: j_jisys-2017-0121_ref_002 article-title: Proposing an enhanced artificial neural network prediction model to improve the accuracy in software effort estimation publication-title: Proc. 4th International Conference on Computational Intelligence, Communication Systems and Networks – year: 2015 ident: j_jisys-2017-0121_ref_007 article-title: Analogy-based software development effort estimation in global software development publication-title: Proc. IEEE 10th International Conference on Global Software Engineering Workshops – year: 2006 ident: j_jisys-2017-0121_ref_008 article-title: A software cost ontology system for assisting estimation of software project effort for use with case-based reasoning publication-title: Innov. Inf. Technol. – volume: 5 start-page: 1899 year: 2010 end-page: 1902 ident: j_jisys-2017-0121_ref_010 article-title: Fuzzy clustering with artificial bee colony algorithm publication-title: J. Sci. Res. Essays – volume: 52 start-page: 1155 year: 2010 end-page: 1166 ident: j_jisys-2017-0121_ref_014 article-title: GA-based method for feature selection and parameters optimization for machine learning regression applied to software effort estimation publication-title: Inf. Softw. Technol. – volume: 10 year: 2012 ident: j_jisys-2017-0121_ref_013 article-title: Estimation of effort in software cost analysis for heterogenous dataset using fuzzy analogy publication-title: Int. J. Comput. Sci. Inf. Security – volume: 9 start-page: 39 year: 2015 end-page: 50 ident: j_jisys-2017-0121_ref_003 article-title: Analogy-based effort estimation: a new method to discover set of analogies from dataset characteristics publication-title: IET Softw. – volume: 6 start-page: 461 year: 2012 end-page: 473 ident: j_jisys-2017-0121_ref_004 article-title: Increasing the accuracy of software development effort estimation using projects clustering publication-title: IET Softw. – year: 2011 ident: j_jisys-2017-0121_ref_001 article-title: Quantifying the impact of different non-functional requirements and problem domains on software effort estimation publication-title: Proc. 9th International Conference on Software Engineering Research, Management and Applications – volume: 5 start-page: 216 year: 2011 end-page: 228 ident: j_jisys-2017-0121_ref_019 article-title: Effort estimation of component-based software development – a survey publication-title: IET Softw. – volume: 39 start-page: 1040 year: 2013 end-page: 1053 ident: j_jisys-2017-0121_ref_011 article-title: Active learning and effort estimation: finding the essential content of software effort estimation data publication-title: IEEE Trans. Softw. Eng. – ident: 2023040101203085044_j_jisys-2017-0121_ref_003 doi: 10.1049/iet-sen.2013.0165 – ident: 2023040101203085044_j_jisys-2017-0121_ref_005 doi: 10.1109/SOLI.2013.6611406 – ident: 2023040101203085044_j_jisys-2017-0121_ref_009 doi: 10.1016/j.amc.2009.03.090 – ident: 2023040101203085044_j_jisys-2017-0121_ref_016 doi: 10.1145/2597716.2597725 – ident: 2023040101203085044_j_jisys-2017-0121_ref_002 doi: 10.1109/CICSyN.2012.39 – ident: 2023040101203085044_j_jisys-2017-0121_ref_010 doi: 10.4249/scholarpedia.6915 – ident: 2023040101203085044_j_jisys-2017-0121_ref_012 doi: 10.1109/ICGEC.2012.68 – ident: 2023040101203085044_j_jisys-2017-0121_ref_014 doi: 10.1016/j.infsof.2010.05.009 – ident: 2023040101203085044_j_jisys-2017-0121_ref_018 doi: 10.1109/APSEC.2009.57 – ident: 2023040101203085044_j_jisys-2017-0121_ref_001 doi: 10.1109/SERA.2011.45 – ident: 2023040101203085044_j_jisys-2017-0121_ref_011 doi: 10.1109/TSE.2012.88 – ident: 2023040101203085044_j_jisys-2017-0121_ref_019 doi: 10.1049/iet-sen.2009.0051 – ident: 2023040101203085044_j_jisys-2017-0121_ref_015 doi: 10.1049/iet-sen.2014.0254 – ident: 2023040101203085044_j_jisys-2017-0121_ref_006 doi: 10.1109/TSE.2011.55 – ident: 2023040101203085044_j_jisys-2017-0121_ref_013 – ident: 2023040101203085044_j_jisys-2017-0121_ref_017 doi: 10.1049/iet-sen.2014.0122 – ident: 2023040101203085044_j_jisys-2017-0121_ref_004 doi: 10.1049/iet-sen.2011.0210 – ident: 2023040101203085044_j_jisys-2017-0121_ref_007 doi: 10.1109/ICGSEW.2015.19 – ident: 2023040101203085044_j_jisys-2017-0121_ref_008 doi: 10.1109/INNOVATIONS.2006.301942 |
| SSID | ssj0000491585 |
| Score | 2.1930768 |
| Snippet | In a software development process, effective cost estimation is the most challenging activity. Software effort estimation is a crucial part of cost estimation.... |
| SourceID | doaj proquest crossref walterdegruyter |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 251 |
| SubjectTerms | Clustering Cost estimation Datasets Estimation fuzzy Fuzzy logic neural network Neural networks Optimization Optimization algorithms Search algorithms Soft computing Software development Swarm intelligence |
| Title | Software Effort Estimation Using Modified Fuzzy C Means Clustering and Hybrid ABC-MCS Optimization in Neural Network |
| URI | https://www.degruyter.com/doi/10.1515/jisys-2017-0121 https://www.proquest.com/docview/2330963615 https://doaj.org/article/5d0c24a88a0d42738cd8e2a1dcf8d661 |
| Volume | 29 |
| WOSCitedRecordID | wos000504634100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2191-026X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000491585 issn: 0334-1860 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4Q4sCFN2K8lAMHLhVtkrbpEapNXDaQBhK3ynkUDUFBWwcavx4n7WAgIS5cq6i1Yjv-3NifCTlJQEVKogMyK-NAAHo6hCoL0tIaXZoYeKL9sIl0MJB3d9n1wqgvVxPW0AM3G3cWm1AzAVJCaITrI9FGWgYRvkmapEl8wjRbSKYeGtwbxX4eZ8i5CCKZhC2vD8bvs4fRZDZB-4hc1SWLvoUkz9z_DW6uvfmLa2Pvx9NZPb8o9fGnt0HWWuBIzxuBN8mSrbbI-nwoA219dJvUQzxY32BsabdEQFrTLjpx059IfX0A7T-bUYnIk_am7-8zmtO-xXhF88epI01wK6Ay9HLmerno-UUe9PMhvcKj5ant2aSjijpSDxRn0FSR75DbXvcmvwza0QqB5lLUgUZcYK1QMdMJy6zOSqa0sCwCx-AHqUox0ZCow1jxWCY6swCpUAwSzoCh0-6S5eq5snuEGmFYCVLI0oTCOMSpDEsVaIvIp9RZh5zOd7d4aRg0Cpd5oCIKr4jCKaJwiuiQC7f7n8sc9bV_gAZRtAZR_GUQHXI4113R-iN-gnPM1TjCtw5Jfujza9UvYrHMocD9_xDugKwyl7D7fziHZLkeT-0RWdGv9WgyPvY2_AHypvZj |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Software+Effort+Estimation+Using+Modified+Fuzzy+C+Means+Clustering+and+Hybrid+ABC-MCS+Optimization+in+Neural+Network&rft.jtitle=Journal+of+intelligent+systems&rft.au=Azath+Hussain&rft.au=Mohanapriya+Marimuthu&rft.au=Rajalakshmi+Somasundaram&rft.date=2020-01-01&rft.pub=De+Gruyter&rft.issn=0334-1860&rft.eissn=2191-026X&rft.volume=29&rft.issue=1&rft.spage=251&rft.epage=263&rft_id=info:doi/10.1515%2Fjisys-2017-0121&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5d0c24a88a0d42738cd8e2a1dcf8d661 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0334-1860&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0334-1860&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0334-1860&client=summon |