Software Effort Estimation Using Modified Fuzzy C Means Clustering and Hybrid ABC-MCS Optimization in Neural Network

In a software development process, effective cost estimation is the most challenging activity. Software effort estimation is a crucial part of cost estimation. Management cautiously considers the efforts and benefits of software before committing the required resources to that project or order for a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent systems Vol. 29; no. 1; pp. 251 - 263
Main Authors: Azath, Hussain, Mohanapriya, Marimuthu, Rajalakshmi, Somasundaram
Format: Journal Article
Language:English
Published: Berlin De Gruyter 01.01.2020
Walter de Gruyter GmbH
Subjects:
ISSN:0334-1860, 2191-026X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In a software development process, effective cost estimation is the most challenging activity. Software effort estimation is a crucial part of cost estimation. Management cautiously considers the efforts and benefits of software before committing the required resources to that project or order for a contract. Unfortunately, it is difficult to measure such preliminary estimation, as it has only little information about the project at an early stage. In this paper, a new approach is proposed; this is based on reasoning by the soft computing approach to calculate the effort estimation of the software. In this approach, rules are generated based on the input dataset. These rules are then clustered for better estimation. In our proposed method, we use modified fuzzy C means for clustering the dataset. Once the clustering is done, various rules are obtained and these rules are given as the input to the neural network. Here, we modify the neural network by incorporating optimization algorithms. The optimization algorithms employed here are the artificial bee colony (ABC), modified cuckoo search (MCS), and hybrid ABC-MCS algorithms. Hence, we obtain three optimized sets of rules that are used for the effort estimation process. The performance of our proposed method is investigated using parameters such as the mean absolute relative error and mean magnitude of relative error.
AbstractList In a software development process, effective cost estimation is the most challenging activity. Software effort estimation is a crucial part of cost estimation. Management cautiously considers the efforts and benefits of software before committing the required resources to that project or order for a contract. Unfortunately, it is difficult to measure such preliminary estimation, as it has only little information about the project at an early stage. In this paper, a new approach is proposed; this is based on reasoning by the soft computing approach to calculate the effort estimation of the software. In this approach, rules are generated based on the input dataset. These rules are then clustered for better estimation. In our proposed method, we use modified fuzzy C means for clustering the dataset. Once the clustering is done, various rules are obtained and these rules are given as the input to the neural network. Here, we modify the neural network by incorporating optimization algorithms. The optimization algorithms employed here are the artificial bee colony (ABC), modified cuckoo search (MCS), and hybrid ABC-MCS algorithms. Hence, we obtain three optimized sets of rules that are used for the effort estimation process. The performance of our proposed method is investigated using parameters such as the mean absolute relative error and mean magnitude of relative error.
Author Mohanapriya, Marimuthu
Rajalakshmi, Somasundaram
Azath, Hussain
Author_xml – sequence: 1
  givenname: Hussain
  surname: Azath
  fullname: Azath, Hussain
  email: writetoazath@yahoo.com
  organization: Assistant Professor, CSE, KGiSL Institute of Technology, Coimbatore, India
– sequence: 2
  givenname: Marimuthu
  surname: Mohanapriya
  fullname: Mohanapriya, Marimuthu
  organization: Associate Professor/Department of CSE, CIT, Coimbatore, India
– sequence: 3
  givenname: Somasundaram
  surname: Rajalakshmi
  fullname: Rajalakshmi, Somasundaram
  organization: Professor & Head, Department of CSE, Cheran College of Engineering, Karur, India
BookMark eNp1kcFvFCEUxompiWvt2SuJ57HwGBjm4KFOtrZJ1x5qE2-EAWbDOg4rMNns_vWyHaMnuTxCvu_3eO97iy6mMDmE3lPykXLKr3c-HVMFhDYVoUBfoRXQllYExPcLtCKM1RWVgrxBVyntSDl1S7nkK5SfwpAPOjq8HoYQM16n7H_q7MOEn5OftngTrB-8s_h2Pp2OuMMbp6eEu3FO2cWzQk8W3x376C2--dxVm-4JP-4LxZ8Wjp_wVzdHPZaSDyH-eIdeD3pM7upPvUTPt-tv3V318Pjlvrt5qAyTda6MBHCu7jkYAa0z7QC9qR1QzRpa66ZveNtIKRreMy6FaZ3WTd2DFgw0tIJdovuFa4PeqX0sg8WjCtqrl4cQt0rH7M3oFLfEQK2l1MTW0DBprHSgqTWDtELQwvqwsPYx_JpdymoX5jiV7ytgjJRugvKiul5UJoaUohv-dqVEnZNSL0mpc1LqnFRxfFocBz2WfVq3jfOxXP7h_-OElgKn7DfOipzn
Cites_doi 10.1049/iet-sen.2013.0165
10.1109/SOLI.2013.6611406
10.1016/j.amc.2009.03.090
10.1145/2597716.2597725
10.1109/CICSyN.2012.39
10.4249/scholarpedia.6915
10.1109/ICGEC.2012.68
10.1016/j.infsof.2010.05.009
10.1109/APSEC.2009.57
10.1109/SERA.2011.45
10.1109/TSE.2012.88
10.1049/iet-sen.2009.0051
10.1049/iet-sen.2014.0254
10.1109/TSE.2011.55
10.1049/iet-sen.2014.0122
10.1049/iet-sen.2011.0210
10.1109/ICGSEW.2015.19
10.1109/INNOVATIONS.2006.301942
ContentType Journal Article
Copyright 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
JQ2
DOA
DOI 10.1515/jisys-2017-0121
DatabaseName CrossRef
ProQuest Computer Science Collection
Directory of Open Access Journals (OA)
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2191-026X
EndPage 263
ExternalDocumentID oai_doaj_org_article_5d0c24a88a0d42738cd8e2a1dcf8d661
10_1515_jisys_2017_0121
10_1515_jisys_2017_0121291251
GroupedDBID 0R~
0~D
4.4
7WY
AAFPC
AAFWJ
AAGVJ
AAPJK
AAQCX
AASOL
AASQH
AAWFC
AAXCG
ABAOT
ABAQN
ABFKT
ABIQR
ABSOE
ABUVI
ABXMZ
ABYKJ
ACEFL
ACGFS
ACZBO
ADGQD
ADGYE
ADJVZ
ADMLS
ADOZN
AEJTT
AEQDQ
AERZL
AEXIE
AFBAA
AFBDD
AFCXV
AFPKN
AFQUK
AHGBP
AHGSO
AIERV
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BAKPI
BBCWN
BCIFA
CFGNV
EBS
GROUPED_DOAJ
HZ~
IY9
M0C
O9-
OK1
P2P
QD8
RDG
SA.
AAYXX
CITATION
JQ2
AAONY
ABRQL
ACMKP
ACXLN
AEKEB
AFGNR
AIKXB
AMAVY
AZMOX
BLHJL
SLJYH
ID FETCH-LOGICAL-c384t-c822ee4b52c629ec9f2bc4e21a3714a7b759788675b3586c9eaa74b2a632a2963
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000504634100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0334-1860
IngestDate Fri Oct 03 12:34:00 EDT 2025
Mon Jun 30 03:11:34 EDT 2025
Sat Nov 29 04:22:18 EST 2025
Sat Nov 29 01:31:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 Public License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c384t-c822ee4b52c629ec9f2bc4e21a3714a7b759788675b3586c9eaa74b2a632a2963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/5d0c24a88a0d42738cd8e2a1dcf8d661
PQID 2330963615
PQPubID 2031329
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_5d0c24a88a0d42738cd8e2a1dcf8d661
proquest_journals_2330963615
crossref_primary_10_1515_jisys_2017_0121
walterdegruyter_journals_10_1515_jisys_2017_0121291251
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Journal of intelligent systems
PublicationYear 2020
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References Popovic, J.; Bojic, D.; Korolija, N. (j_jisys-2017-0121_ref_015) 2015; 9
Seo, Y.-S.; Yoon, K.-A.; Bae, D.-H. (j_jisys-2017-0121_ref_018) 2009
Karaboga, D.; Akay, B. (j_jisys-2017-0121_ref_009) 2009; 214
Azzeh, M.; Nassif, A. B. (j_jisys-2017-0121_ref_003) 2015; 9
Bardsiri, V. K.; Jawawi, D. N. A.; Hashim, S. Z. M.; Khatibi, E. (j_jisys-2017-0121_ref_004) 2012; 6
Wijayasiriwardhane, T.; Lai, R.; Kang, K. C. (j_jisys-2017-0121_ref_019) 2011; 5
Dan, Z. (j_jisys-2017-0121_ref_005) 2013
Karaboga, D.; Ozturk, C. (j_jisys-2017-0121_ref_010) 2010; 5
Lee, W.-T.; Lee, J.; Hsu, K.-H.; Kuo, J. Y. (j_jisys-2017-0121_ref_012) 2012
Attarzadeh, I.; Mehranzadeh, A.; Barati, A. (j_jisys-2017-0121_ref_002) 2012
Kocaguneli, E.; Menzies, T.; Keung, J.; Cok, D.; Madachy, R. (j_jisys-2017-0121_ref_011) 2013; 39
Satapathy, S. M.; Kumar, M.; Rath, S. K. (j_jisys-2017-0121_ref_016) 2014; 39
Satapathy, S. M.; Acharya, B. P.; Rath, S. K. (j_jisys-2017-0121_ref_017) 2016; 10
Abdukalykov, R.; Hussain, I.; Kassab, M.; Ormandjieva, O. (j_jisys-2017-0121_ref_001) 2011
Malathi, S.; Sridhar, S. (j_jisys-2017-0121_ref_013) 2012; 10
Hamdan, K.; El Khatib, H.; Moses, J.; Smith, P. (j_jisys-2017-0121_ref_008) 2006
Dejaeger, K.; Verbeke, W.; Martens, D.; Baesens, B. (j_jisys-2017-0121_ref_006) 2012; 38
Oliveira, A. L. I.; Braga, P. L.; Lima, R. M. F.; Cornelio, M. L. (j_jisys-2017-0121_ref_014) 2010; 52
El Bajta, M. (j_jisys-2017-0121_ref_007) 2015
2023040101203085044_j_jisys-2017-0121_ref_001
2023040101203085044_j_jisys-2017-0121_ref_012
2023040101203085044_j_jisys-2017-0121_ref_011
2023040101203085044_j_jisys-2017-0121_ref_010
2023040101203085044_j_jisys-2017-0121_ref_009
2023040101203085044_j_jisys-2017-0121_ref_008
2023040101203085044_j_jisys-2017-0121_ref_019
2023040101203085044_j_jisys-2017-0121_ref_007
2023040101203085044_j_jisys-2017-0121_ref_018
2023040101203085044_j_jisys-2017-0121_ref_006
2023040101203085044_j_jisys-2017-0121_ref_017
2023040101203085044_j_jisys-2017-0121_ref_005
2023040101203085044_j_jisys-2017-0121_ref_016
2023040101203085044_j_jisys-2017-0121_ref_004
2023040101203085044_j_jisys-2017-0121_ref_015
2023040101203085044_j_jisys-2017-0121_ref_003
2023040101203085044_j_jisys-2017-0121_ref_014
2023040101203085044_j_jisys-2017-0121_ref_002
2023040101203085044_j_jisys-2017-0121_ref_013
References_xml – volume: 38
  start-page: 375
  year: 2012
  end-page: 397
  ident: j_jisys-2017-0121_ref_006
  article-title: Data mining techniques for software effort estimation: a comparative study
  publication-title: IEEE Trans. Softw. Eng.
– volume: 10
  start-page: 10
  year: 2016
  end-page: 17
  ident: j_jisys-2017-0121_ref_017
  article-title: Early stage software effort estimation using random forest technique based on use case points
  publication-title: IET Softw.
– year: 2009
  ident: j_jisys-2017-0121_ref_018
  article-title: Improving the accuracy of software effort estimation based on multiple least square regression models by estimation error-based data partitioning
  publication-title: Proc. 16th Asia-Pacific Software Engineering Conference
– year: 2012
  ident: j_jisys-2017-0121_ref_012
  article-title: Applying software effort estimation model based on work breakdown structure
  publication-title: Proc. 6th International Conference on Genetic and Evolutionary Computing
– volume: 214
  start-page: 108
  year: 2009
  end-page: 132
  ident: j_jisys-2017-0121_ref_009
  article-title: A comparative study of artificial bee colony algorithm
  publication-title: J. Appl. Math. Comput.
– volume: 39
  start-page: 1
  year: 2014
  end-page: 6
  ident: j_jisys-2017-0121_ref_016
  article-title: Class point approach for software effort estimation using soft computing techniques
  publication-title: ACM SIGSOFT Softw. Eng.
– volume: 9
  start-page: 1
  year: 2015
  end-page: 8
  ident: j_jisys-2017-0121_ref_015
  article-title: Analysis of task effort estimation accuracy based on use case point size
  publication-title: IET Softw.
– year: 2013
  ident: j_jisys-2017-0121_ref_005
  article-title: Improving the accuracy in software effort estimation using artificial neural network model based on particle swarm optimization
  publication-title: Proc. IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI)
– year: 2012
  ident: j_jisys-2017-0121_ref_002
  article-title: Proposing an enhanced artificial neural network prediction model to improve the accuracy in software effort estimation
  publication-title: Proc. 4th International Conference on Computational Intelligence, Communication Systems and Networks
– year: 2015
  ident: j_jisys-2017-0121_ref_007
  article-title: Analogy-based software development effort estimation in global software development
  publication-title: Proc. IEEE 10th International Conference on Global Software Engineering Workshops
– year: 2006
  ident: j_jisys-2017-0121_ref_008
  article-title: A software cost ontology system for assisting estimation of software project effort for use with case-based reasoning
  publication-title: Innov. Inf. Technol.
– volume: 5
  start-page: 1899
  year: 2010
  end-page: 1902
  ident: j_jisys-2017-0121_ref_010
  article-title: Fuzzy clustering with artificial bee colony algorithm
  publication-title: J. Sci. Res. Essays
– volume: 52
  start-page: 1155
  year: 2010
  end-page: 1166
  ident: j_jisys-2017-0121_ref_014
  article-title: GA-based method for feature selection and parameters optimization for machine learning regression applied to software effort estimation
  publication-title: Inf. Softw. Technol.
– volume: 10
  year: 2012
  ident: j_jisys-2017-0121_ref_013
  article-title: Estimation of effort in software cost analysis for heterogenous dataset using fuzzy analogy
  publication-title: Int. J. Comput. Sci. Inf. Security
– volume: 9
  start-page: 39
  year: 2015
  end-page: 50
  ident: j_jisys-2017-0121_ref_003
  article-title: Analogy-based effort estimation: a new method to discover set of analogies from dataset characteristics
  publication-title: IET Softw.
– volume: 6
  start-page: 461
  year: 2012
  end-page: 473
  ident: j_jisys-2017-0121_ref_004
  article-title: Increasing the accuracy of software development effort estimation using projects clustering
  publication-title: IET Softw.
– year: 2011
  ident: j_jisys-2017-0121_ref_001
  article-title: Quantifying the impact of different non-functional requirements and problem domains on software effort estimation
  publication-title: Proc. 9th International Conference on Software Engineering Research, Management and Applications
– volume: 5
  start-page: 216
  year: 2011
  end-page: 228
  ident: j_jisys-2017-0121_ref_019
  article-title: Effort estimation of component-based software development – a survey
  publication-title: IET Softw.
– volume: 39
  start-page: 1040
  year: 2013
  end-page: 1053
  ident: j_jisys-2017-0121_ref_011
  article-title: Active learning and effort estimation: finding the essential content of software effort estimation data
  publication-title: IEEE Trans. Softw. Eng.
– ident: 2023040101203085044_j_jisys-2017-0121_ref_003
  doi: 10.1049/iet-sen.2013.0165
– ident: 2023040101203085044_j_jisys-2017-0121_ref_005
  doi: 10.1109/SOLI.2013.6611406
– ident: 2023040101203085044_j_jisys-2017-0121_ref_009
  doi: 10.1016/j.amc.2009.03.090
– ident: 2023040101203085044_j_jisys-2017-0121_ref_016
  doi: 10.1145/2597716.2597725
– ident: 2023040101203085044_j_jisys-2017-0121_ref_002
  doi: 10.1109/CICSyN.2012.39
– ident: 2023040101203085044_j_jisys-2017-0121_ref_010
  doi: 10.4249/scholarpedia.6915
– ident: 2023040101203085044_j_jisys-2017-0121_ref_012
  doi: 10.1109/ICGEC.2012.68
– ident: 2023040101203085044_j_jisys-2017-0121_ref_014
  doi: 10.1016/j.infsof.2010.05.009
– ident: 2023040101203085044_j_jisys-2017-0121_ref_018
  doi: 10.1109/APSEC.2009.57
– ident: 2023040101203085044_j_jisys-2017-0121_ref_001
  doi: 10.1109/SERA.2011.45
– ident: 2023040101203085044_j_jisys-2017-0121_ref_011
  doi: 10.1109/TSE.2012.88
– ident: 2023040101203085044_j_jisys-2017-0121_ref_019
  doi: 10.1049/iet-sen.2009.0051
– ident: 2023040101203085044_j_jisys-2017-0121_ref_015
  doi: 10.1049/iet-sen.2014.0254
– ident: 2023040101203085044_j_jisys-2017-0121_ref_006
  doi: 10.1109/TSE.2011.55
– ident: 2023040101203085044_j_jisys-2017-0121_ref_013
– ident: 2023040101203085044_j_jisys-2017-0121_ref_017
  doi: 10.1049/iet-sen.2014.0122
– ident: 2023040101203085044_j_jisys-2017-0121_ref_004
  doi: 10.1049/iet-sen.2011.0210
– ident: 2023040101203085044_j_jisys-2017-0121_ref_007
  doi: 10.1109/ICGSEW.2015.19
– ident: 2023040101203085044_j_jisys-2017-0121_ref_008
  doi: 10.1109/INNOVATIONS.2006.301942
SSID ssj0000491585
Score 2.1930768
Snippet In a software development process, effective cost estimation is the most challenging activity. Software effort estimation is a crucial part of cost estimation....
SourceID doaj
proquest
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 251
SubjectTerms Clustering
Cost estimation
Datasets
Estimation
fuzzy
Fuzzy logic
neural network
Neural networks
Optimization
Optimization algorithms
Search algorithms
Soft computing
Software development
Swarm intelligence
Title Software Effort Estimation Using Modified Fuzzy C Means Clustering and Hybrid ABC-MCS Optimization in Neural Network
URI https://www.degruyter.com/doi/10.1515/jisys-2017-0121
https://www.proquest.com/docview/2330963615
https://doaj.org/article/5d0c24a88a0d42738cd8e2a1dcf8d661
Volume 29
WOSCitedRecordID wos000504634100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2191-026X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000491585
  issn: 0334-1860
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4Q4sCFN2K8lAMHLhVtkrbpEapNXDaQBhK3ynkUDUFBWwcavx4n7WAgIS5cq6i1Yjv-3NifCTlJQEVKogMyK-NAAHo6hCoL0tIaXZoYeKL9sIl0MJB3d9n1wqgvVxPW0AM3G3cWm1AzAVJCaITrI9FGWgYRvkmapEl8wjRbSKYeGtwbxX4eZ8i5CCKZhC2vD8bvs4fRZDZB-4hc1SWLvoUkz9z_DW6uvfmLa2Pvx9NZPb8o9fGnt0HWWuBIzxuBN8mSrbbI-nwoA219dJvUQzxY32BsabdEQFrTLjpx059IfX0A7T-bUYnIk_am7-8zmtO-xXhF88epI01wK6Ay9HLmerno-UUe9PMhvcKj5ant2aSjijpSDxRn0FSR75DbXvcmvwza0QqB5lLUgUZcYK1QMdMJy6zOSqa0sCwCx-AHqUox0ZCow1jxWCY6swCpUAwSzoCh0-6S5eq5snuEGmFYCVLI0oTCOMSpDEsVaIvIp9RZh5zOd7d4aRg0Cpd5oCIKr4jCKaJwiuiQC7f7n8sc9bV_gAZRtAZR_GUQHXI4113R-iN-gnPM1TjCtw5Jfujza9UvYrHMocD9_xDugKwyl7D7fziHZLkeT-0RWdGv9WgyPvY2_AHypvZj
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Software+Effort+Estimation+Using+Modified+Fuzzy+C+Means+Clustering+and+Hybrid+ABC-MCS+Optimization+in+Neural+Network&rft.jtitle=Journal+of+intelligent+systems&rft.au=Azath+Hussain&rft.au=Mohanapriya+Marimuthu&rft.au=Rajalakshmi+Somasundaram&rft.date=2020-01-01&rft.pub=De+Gruyter&rft.issn=0334-1860&rft.eissn=2191-026X&rft.volume=29&rft.issue=1&rft.spage=251&rft.epage=263&rft_id=info:doi/10.1515%2Fjisys-2017-0121&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5d0c24a88a0d42738cd8e2a1dcf8d661
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0334-1860&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0334-1860&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0334-1860&client=summon