Temperature behavior of the 4K-class Joule Thomson cooler during the cool-down phase for space science missions

In space science missions that uses cryogen-free mechanical cooler systems for a low temperature telescope and the focal plane assembly, a cooling power from room temperature to cryogenic temperature is almost always critical for cooldown, and estimating the cooling time after launch is important be...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cryogenics (Guildford) Ročník 138; s. 103795
Hlavní autoři: Shinozaki, Keisuke, Suzuki, Toyoaki, Yamasaki, Noriko Y., Sekimoto, Yutaro, Dotani, Tadayasu, Yoshihara, Keisuke, Sugita, Hiroyuki, Tsunematsu, Shoji, Kanao, Kenichi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.03.2024
Témata:
ISSN:0011-2275, 1879-2235
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In space science missions that uses cryogen-free mechanical cooler systems for a low temperature telescope and the focal plane assembly, a cooling power from room temperature to cryogenic temperature is almost always critical for cooldown, and estimating the cooling time after launch is important because of the limited cooling power of mechanical coolers. This paper reports the experimental results of the 4K-class Joule Thomson cooler (4K-JT) during the cooldown phase, from 300 K to 20 K, and from precooling (about 20 K) to operating temperature with different precooling temperature and different heat loads. These results enable us to confirm the feasibility of the cryogenics design and to consider the realistic driving parameters during cooldown for future missions, such as LiteBIRD. •The experimental results of the space-qualified 4K-JT during the cooldown phase are reported.•The cooling time from 300 K to 20 K with the orifice is 8.5 times longer than that with the bypass line.•The 4K-JT could cool from 20 K to 5 K with the heat input of 8 mW even with reduced driving power.•The precooling temperature must be fitted for estimating the cooling capability with two heater measurements.
AbstractList In space science missions that uses cryogen-free mechanical cooler systems for a low temperature telescope and the focal plane assembly, a cooling power from room temperature to cryogenic temperature is almost always critical for cooldown, and estimating the cooling time after launch is important because of the limited cooling power of mechanical coolers. This paper reports the experimental results of the 4K-class Joule Thomson cooler (4K-JT) during the cooldown phase, from 300 K to 20 K, and from precooling (about 20 K) to operating temperature with different precooling temperature and different heat loads. These results enable us to confirm the feasibility of the cryogenics design and to consider the realistic driving parameters during cooldown for future missions, such as LiteBIRD. •The experimental results of the space-qualified 4K-JT during the cooldown phase are reported.•The cooling time from 300 K to 20 K with the orifice is 8.5 times longer than that with the bypass line.•The 4K-JT could cool from 20 K to 5 K with the heat input of 8 mW even with reduced driving power.•The precooling temperature must be fitted for estimating the cooling capability with two heater measurements.
ArticleNumber 103795
Author Dotani, Tadayasu
Tsunematsu, Shoji
Shinozaki, Keisuke
Yamasaki, Noriko Y.
Yoshihara, Keisuke
Sekimoto, Yutaro
Suzuki, Toyoaki
Kanao, Kenichi
Sugita, Hiroyuki
Author_xml – sequence: 1
  givenname: Keisuke
  orcidid: 0000-0002-9613-2387
  surname: Shinozaki
  fullname: Shinozaki, Keisuke
  email: shinozaki.keisuke@jaxa.jp
  organization: Research and Development Directorate, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan
– sequence: 2
  givenname: Toyoaki
  surname: Suzuki
  fullname: Suzuki, Toyoaki
  organization: Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan
– sequence: 3
  givenname: Noriko Y.
  surname: Yamasaki
  fullname: Yamasaki, Noriko Y.
  organization: Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan
– sequence: 4
  givenname: Yutaro
  surname: Sekimoto
  fullname: Sekimoto, Yutaro
  organization: Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan
– sequence: 5
  givenname: Tadayasu
  surname: Dotani
  fullname: Dotani, Tadayasu
  organization: Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan
– sequence: 6
  givenname: Keisuke
  surname: Yoshihara
  fullname: Yoshihara, Keisuke
  organization: Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan
– sequence: 7
  givenname: Hiroyuki
  surname: Sugita
  fullname: Sugita, Hiroyuki
  organization: Space Exploration Innovation Hub Center, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan
– sequence: 8
  givenname: Shoji
  surname: Tsunematsu
  fullname: Tsunematsu, Shoji
  organization: Sumitomo Heavy Industries, Ltd., Development section, Industrial Equipment Division, Niihama works, 5-2 Soubiraki-cho, Niihama, Ehime, 792-8588, Japan
– sequence: 9
  givenname: Kenichi
  surname: Kanao
  fullname: Kanao, Kenichi
  organization: Sumitomo Heavy Industries, Ltd., Development section, Industrial Equipment Division, Niihama works, 5-2 Soubiraki-cho, Niihama, Ehime, 792-8588, Japan
BookMark eNqNkMtqwzAQRUVJoUnaf9APOJXk96bQhr4D3XgvZHkUK9iSkZyU_H3lJlDopl3NcJk5zJwFmhlrACFMyYoSmt3uVtId7RaMln7FCEtCHOdleoHmtMjLiLE4naE5IZSGPk-v0ML7HSEkYRmbI1tBP4AT494BrqEVB20dtgqPLeDkPZKd8B6_2X0HuGpt763B0toOHG72Tpvt9-CURI39NHhohQesAsMPQgL2UoMJtdfea2v8NbpUovNwc65LVD09VuuXaPPx_Lq-30QyLpIxkmnOUpLEtCxACWgYBaKUoHGS1KXK05DSgkGsMiEgIwRqUqq0AQp1mckyXqK7E1Y6670DxaUexRguGJ3QHaeET_b4jv_Y45M9frIXAMUvwOB0L9zxP6sPp1UI_x00OH6W0GgHcuSN1X9DvgDSX5WO
CitedBy_id crossref_primary_10_1016_j_cryogenics_2024_103886
crossref_primary_10_1016_j_csite_2025_106908
Cites_doi 10.1016/j.nima.2005.12.196
10.1016/j.cryogenics.2015.10.017
10.1016/j.cryogenics.2020.103094
10.1051/0004-6361/201116486
10.1088/1742-6596/155/1/012008
10.1016/j.cryogenics.2018.02.003
10.1016/j.cryogenics.2017.10.018
10.1016/j.cryogenics.2015.10.012
10.1016/j.cryogenics.2021.103306
10.1016/j.cryogenics.2004.02.012
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cryogenics.2024.103795
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2235
ExternalDocumentID 10_1016_j_cryogenics_2024_103795
S0011227524000158
GroupedDBID --K
--M
-DZ
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABMYL
ABNEU
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
T9H
TAE
TN5
UHS
UQL
VOH
WH7
WUQ
ZMT
ZXP
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c384t-c5725043198efaed21e0ffa1344b9f758ef182e3f6aae600eb09f5de1eb96c93
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001179104200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0011-2275
IngestDate Tue Nov 18 22:52:15 EST 2025
Sat Nov 29 07:31:36 EST 2025
Sat Mar 16 16:12:56 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Joule Thomson
GREX-PLUS
Mechanical cooler
Cryogenics
LiteBIRD
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-c5725043198efaed21e0ffa1344b9f758ef182e3f6aae600eb09f5de1eb96c93
ORCID 0000-0002-9613-2387
ParticipantIDs crossref_citationtrail_10_1016_j_cryogenics_2024_103795
crossref_primary_10_1016_j_cryogenics_2024_103795
elsevier_sciencedirect_doi_10_1016_j_cryogenics_2024_103795
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationTitle Cryogenics (Guildford)
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Narasaki, Tsunematsu, Kanao, Murakami, Nakagawa, Mitsuda (br0090) 2006; 559
DiPirro, Johnson, Shirron (br0040) 2009; 155
Narasaki, Tsunematsu, Ootsuka, Watanabe, Matsumoto, Murakami (br0130) 2004; 44
Yoshida, Miyaoka, Kanao, Tsunematsu, Otsuka, Hoshika (br0030) 2018; 91
(br0120) 2022
Sugita, Sato, Nakagawa, Murakami, Kaneda, Enya (br0140) 2008
Shinozaki, Sato, Sawada, Sugita, Nakagawa, Tokoku (br0160) 2020; 109
Kanao, Yoshida, Miyaoka, Tsunematsu, Ootsuka, Hoshika (br0110) 2017; 88
Ross (br0050) 2015
Yoshida, Miyaoka, Kanao, Tsunematsu, Otsuka, Hoshika (br0100) 2016; 74
Sato, Tanaka, Sugita, Shinozaki, Sawada, Yamasaki (br0150) 2021; 116
Penanen, Banks, Breda, Moore, Naylor, Petach (br0080) 2022
Ross (br0070) 2022
Kanao, Narasaki, Tsunematsu, Ootsuka, Okabayashi (br0020) 2017
(br0060) 2011; 536
Sato, Sawada, Shinozaki, Sugita, Mitsuda, Yamasaki (br0010) 2016; 74
Ross (10.1016/j.cryogenics.2024.103795_br0050) 2015
Sato (10.1016/j.cryogenics.2024.103795_br0010) 2016; 74
Yoshida (10.1016/j.cryogenics.2024.103795_br0030) 2018; 91
(10.1016/j.cryogenics.2024.103795_br0060) 2011; 536
Kanao (10.1016/j.cryogenics.2024.103795_br0020) 2017
DiPirro (10.1016/j.cryogenics.2024.103795_br0040) 2009; 155
Narasaki (10.1016/j.cryogenics.2024.103795_br0130) 2004; 44
Sugita (10.1016/j.cryogenics.2024.103795_br0140) 2008
Narasaki (10.1016/j.cryogenics.2024.103795_br0090) 2006; 559
Yoshida (10.1016/j.cryogenics.2024.103795_br0100) 2016; 74
(10.1016/j.cryogenics.2024.103795_br0120) 2022
Ross (10.1016/j.cryogenics.2024.103795_br0070) 2022
Kanao (10.1016/j.cryogenics.2024.103795_br0110) 2017; 88
Shinozaki (10.1016/j.cryogenics.2024.103795_br0160) 2020; 109
Penanen (10.1016/j.cryogenics.2024.103795_br0080) 2022
Sato (10.1016/j.cryogenics.2024.103795_br0150) 2021; 116
References_xml – year: 2008
  ident: br0140
  article-title: Cryogenic system for the infrared space telescope SPICA
  publication-title: Proc. SPIE, 7010, space telescopes and instrumentation 2008: optical, infrared, and millimeter, vol. 701030
– volume: 74
  start-page: 47
  year: 2016
  end-page: 54
  ident: br0010
  article-title: Development of 1K-class Joule-Thomson cryocooler for next-generation astronomical mission
  publication-title: Cryogenics
– start-page: 21
  year: 2022
  end-page: 33
  ident: br0080
  article-title: Mid-infrared instrument cryocooler on James webb space telescope: cooldown, commissioning, and initial performance
  publication-title: Cryocoolers, vol. 22
– volume: 116
  year: 2021
  ident: br0150
  article-title: Lifetime test of the 4K Joule-Thomson cryocooler
  publication-title: Cryogenics
– year: 2017
  ident: br0020
  article-title: Overview of Sumitomo coolers and Dewars for space use
  publication-title: Proc. SPIE, 9821, tri-technology device refrigeration, vol. 98210C
– volume: 536
  start-page: A2
  year: 2011
  ident: br0060
  article-title: Planck early results. II. The thermal performance of Planck
  publication-title: A & A
– volume: 88
  start-page: 143
  year: 2017
  end-page: 146
  ident: br0110
  article-title: Cryogen free cooling of ASTRO-H SXS Helium Dewar from 300 K to 4 K
  publication-title: Cryogenics
– year: 2022
  ident: br0120
  article-title: Probing cosmic inflation with the LiteBIRD cosmic microwave background polarization survey
  publication-title: Prog Theor Exp Phys
– volume: 155
  year: 2009
  ident: br0040
  article-title: Cryogenic technology for CMB-Pol
  publication-title: Technology development for a CMB probe of inflation
– start-page: 1
  year: 2022
  end-page: 20
  ident: br0070
  article-title: Conceptual design and development history of the MIRI cryocooler system on JWST
  publication-title: Cryocoolers, vol. 22
– volume: 559
  start-page: 644
  year: 2006
  end-page: 647
  ident: br0090
  article-title: Mechanical coolers operating below 4.5 K for space application
  publication-title: Nucl Instrum Methods Phys Res, Sect A
– year: 2015
  ident: br0050
  article-title: Cryocoolers for space applications
  publication-title: 2015 cryogenic engineering conference, cryocooler short course
– volume: 44
  start-page: 375
  year: 2004
  end-page: 381
  ident: br0130
  article-title: Development of 1K-class mechanical cooler for SPICA
  publication-title: Cryogenics
– volume: 74
  start-page: 10
  year: 2016
  end-page: 16
  ident: br0100
  article-title: Flight model performance test results of a helium dewar for the soft X-ray spectrometer onboard ASTRO-H
  publication-title: Cryogenics
– volume: 91
  start-page: 27
  year: 2018
  end-page: 35
  ident: br0030
  article-title: In-orbit performance of a helium dewar for the soft X-ray spectrometer onboard ASTRO-H
  publication-title: Cryogenics
– volume: 109
  year: 2020
  ident: br0160
  article-title: Cooling capability of JT coolers during the cool-down phase for space science missions
  publication-title: Cryogenics
– volume: 559
  start-page: 644
  year: 2006
  ident: 10.1016/j.cryogenics.2024.103795_br0090
  article-title: Mechanical coolers operating below 4.5 K for space application
  publication-title: Nucl Instrum Methods Phys Res, Sect A
  doi: 10.1016/j.nima.2005.12.196
– volume: 74
  start-page: 47
  year: 2016
  ident: 10.1016/j.cryogenics.2024.103795_br0010
  article-title: Development of 1K-class Joule-Thomson cryocooler for next-generation astronomical mission
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2015.10.017
– year: 2022
  ident: 10.1016/j.cryogenics.2024.103795_br0120
  article-title: Probing cosmic inflation with the LiteBIRD cosmic microwave background polarization survey
  publication-title: Prog Theor Exp Phys
– volume: 109
  year: 2020
  ident: 10.1016/j.cryogenics.2024.103795_br0160
  article-title: Cooling capability of JT coolers during the cool-down phase for space science missions
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2020.103094
– start-page: 21
  year: 2022
  ident: 10.1016/j.cryogenics.2024.103795_br0080
  article-title: Mid-infrared instrument cryocooler on James webb space telescope: cooldown, commissioning, and initial performance
– year: 2017
  ident: 10.1016/j.cryogenics.2024.103795_br0020
  article-title: Overview of Sumitomo coolers and Dewars for space use
– volume: 536
  start-page: A2
  year: 2011
  ident: 10.1016/j.cryogenics.2024.103795_br0060
  article-title: Planck early results. II. The thermal performance of Planck
  publication-title: A & A
  doi: 10.1051/0004-6361/201116486
– volume: 155
  year: 2009
  ident: 10.1016/j.cryogenics.2024.103795_br0040
  article-title: Cryogenic technology for CMB-Pol
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/155/1/012008
– volume: 91
  start-page: 27
  year: 2018
  ident: 10.1016/j.cryogenics.2024.103795_br0030
  article-title: In-orbit performance of a helium dewar for the soft X-ray spectrometer onboard ASTRO-H
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2018.02.003
– volume: 88
  start-page: 143
  year: 2017
  ident: 10.1016/j.cryogenics.2024.103795_br0110
  article-title: Cryogen free cooling of ASTRO-H SXS Helium Dewar from 300 K to 4 K
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2017.10.018
– year: 2008
  ident: 10.1016/j.cryogenics.2024.103795_br0140
  article-title: Cryogenic system for the infrared space telescope SPICA
– volume: 74
  start-page: 10
  year: 2016
  ident: 10.1016/j.cryogenics.2024.103795_br0100
  article-title: Flight model performance test results of a helium dewar for the soft X-ray spectrometer onboard ASTRO-H
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2015.10.012
– year: 2015
  ident: 10.1016/j.cryogenics.2024.103795_br0050
  article-title: Cryocoolers for space applications
– start-page: 1
  year: 2022
  ident: 10.1016/j.cryogenics.2024.103795_br0070
  article-title: Conceptual design and development history of the MIRI cryocooler system on JWST
– volume: 116
  year: 2021
  ident: 10.1016/j.cryogenics.2024.103795_br0150
  article-title: Lifetime test of the 4K Joule-Thomson cryocooler
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2021.103306
– volume: 44
  start-page: 375
  year: 2004
  ident: 10.1016/j.cryogenics.2024.103795_br0130
  article-title: Development of 1K-class mechanical cooler for SPICA
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2004.02.012
SSID ssj0004262
Score 2.360847
Snippet In space science missions that uses cryogen-free mechanical cooler systems for a low temperature telescope and the focal plane assembly, a cooling power from...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103795
SubjectTerms Cryogenics
GREX-PLUS
Joule Thomson
LiteBIRD
Mechanical cooler
Title Temperature behavior of the 4K-class Joule Thomson cooler during the cool-down phase for space science missions
URI https://dx.doi.org/10.1016/j.cryogenics.2024.103795
Volume 138
WOSCitedRecordID wos001179104200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2235
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004262
  issn: 0011-2275
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF7cpIf2UPqk6Ys99BbWWLJsSeQUSkrbgCnEB-ckVqtZ4tjVGtkKSf5R_mVnn3LbQNJCL8JIO6uV5vNodpj5hpCPlcC9f5lxBlkaM0RIxbJSApNlGlcDHXMac9NsIp1Mstks_97r3fhamItlWtfZ5WW--q-qxnOobF06-xfqDpPiCfyNSscjqh2P91M8oCdsmZJDEb7PBEiOmdDusg79LcFkB-kOhEKppe4UbksW9UB9hlW4Q99fneF3ziQjou3RfLTOGCA-1iHW56kOmiuF69LEzzr6oDtu29z5EG04OZvX6prbXtnHMF-3i4Csk_a6tRem6krhmGCR-A--djIT1cwXav-0H6RgoeFmIr6n7YY3ajuQESddJpc3zlHE4tg2UgnG2XK_OPOqixptT84_LL8NQpz3RXjSvr5JvxP5lWz7t49gSE30WW_nRTdToWcq7EwPyC4uMUcDunv49Wj2rSvCjceWmt49hUsbs8mEt6_qdl9oy7-ZPiVP3MaEHlpAPSM9qJ-Tx1t0lS-I2oIW9dCiSlJEDPXQogZa1EGLWmhRCy0zMECLGmhRRAg10KIOWtRD6yWZfj6afvrCXMMOJoZZsmFilBpGvCjPQHKo4ggGUvJomCRlLnFnChK3szCUY84BPW0oB7kcVRBBmY9FPnxFdmpVw2tCgaeguRRFrPkM05Jn6DbJUZlE2aDiVblHUv_mCuHI7HVPlWVxl_72SBQkV5bQ5R4yB145hXsV1uEsEH13Sr_5hzu-JY-6v8g7srNpWnhPHoqLzXzdfHDQ-wlSlLqB
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+behavior+of+the+4K-class+Joule+Thomson+cooler+during+the+cool-down+phase+for+space+science+missions&rft.jtitle=Cryogenics+%28Guildford%29&rft.au=Shinozaki%2C+Keisuke&rft.au=Suzuki%2C+Toyoaki&rft.au=Yamasaki%2C+Noriko+Y.&rft.au=Sekimoto%2C+Yutaro&rft.date=2024-03-01&rft.issn=0011-2275&rft.volume=138&rft.spage=103795&rft_id=info:doi/10.1016%2Fj.cryogenics.2024.103795&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cryogenics_2024_103795
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0011-2275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0011-2275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0011-2275&client=summon