Feasibility of automated pancreas segmentation based on dynamic MRI

MRI-guided radiotherapy is particularly attractive for abdominal targets with low CT contrast. To fully utilize this modality for pancreas tracking, automated segmentation tools are needed. A hybrid gradient, region growth and shape constraint (hGReS) method to segment two-dimensional (2D) upper abd...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:British journal of radiology Ročník 87; číslo 1044; s. 20140248
Hlavní autori: Gou, S, Wu, J, Liu, F, Lee, P, Rapacchi, S, Hu, P, Sheng, K
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England The British Institute of Radiology 01.12.2014
Predmet:
ISSN:0007-1285, 1748-880X, 1748-880X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract MRI-guided radiotherapy is particularly attractive for abdominal targets with low CT contrast. To fully utilize this modality for pancreas tracking, automated segmentation tools are needed. A hybrid gradient, region growth and shape constraint (hGReS) method to segment two-dimensional (2D) upper abdominal dynamic MRI (dMRI) is developed for this purpose. 2D coronal dynamic MR images of two healthy volunteers were acquired with a frame rate of 5 frames per second. The regions of interest (ROIs) included the liver, pancreas and stomach. The first frame was used as the source where the centres of the ROIs were manually annotated. These centre locations were propagated to the next dMRI frame. Four-neighborhood region transfer growth was performed from these initial seeds before refinement using shape constraints. RESULTS from hGReS and two other automated segmentation methods using integrated edge detection and region growth (IER) and level set, respectively, were compared with manual contours using Dice's index (DI). For the first patient, the hGReS resulted in the organ segmentation accuracy as a measure by the DI (0.77) for the pancreas, superior to the level set method (0.72) and IER (0.71). The hGReS was shown to be reproducible on the second subject, achieving a DI of 0.82, 0.92 and 0.93 for the pancreas, stomach and liver, respectively. Motion trajectories derived from the hGReS were highly correlated to respiratory motion. We have shown the feasibility of automated segmentation of the pancreas anatomy on dMRI. Using the hybrid method improves segmentation robustness of low-contrast images.
AbstractList MRI-guided radiotherapy is particularly attractive for abdominal targets with low CT contrast. To fully utilize this modality for pancreas tracking, automated segmentation tools are needed. A hybrid gradient, region growth and shape constraint (hGReS) method to segment two-dimensional (2D) upper abdominal dynamic MRI (dMRI) is developed for this purpose.OBJECTIVEMRI-guided radiotherapy is particularly attractive for abdominal targets with low CT contrast. To fully utilize this modality for pancreas tracking, automated segmentation tools are needed. A hybrid gradient, region growth and shape constraint (hGReS) method to segment two-dimensional (2D) upper abdominal dynamic MRI (dMRI) is developed for this purpose.2D coronal dynamic MR images of two healthy volunteers were acquired with a frame rate of 5 frames per second. The regions of interest (ROIs) included the liver, pancreas and stomach. The first frame was used as the source where the centres of the ROIs were manually annotated. These centre locations were propagated to the next dMRI frame. Four-neighborhood region transfer growth was performed from these initial seeds before refinement using shape constraints. RESULTS from hGReS and two other automated segmentation methods using integrated edge detection and region growth (IER) and level set, respectively, were compared with manual contours using Dice's index (DI).METHODS2D coronal dynamic MR images of two healthy volunteers were acquired with a frame rate of 5 frames per second. The regions of interest (ROIs) included the liver, pancreas and stomach. The first frame was used as the source where the centres of the ROIs were manually annotated. These centre locations were propagated to the next dMRI frame. Four-neighborhood region transfer growth was performed from these initial seeds before refinement using shape constraints. RESULTS from hGReS and two other automated segmentation methods using integrated edge detection and region growth (IER) and level set, respectively, were compared with manual contours using Dice's index (DI).For the first patient, the hGReS resulted in the organ segmentation accuracy as a measure by the DI (0.77) for the pancreas, superior to the level set method (0.72) and IER (0.71). The hGReS was shown to be reproducible on the second subject, achieving a DI of 0.82, 0.92 and 0.93 for the pancreas, stomach and liver, respectively. Motion trajectories derived from the hGReS were highly correlated to respiratory motion.RESULTSFor the first patient, the hGReS resulted in the organ segmentation accuracy as a measure by the DI (0.77) for the pancreas, superior to the level set method (0.72) and IER (0.71). The hGReS was shown to be reproducible on the second subject, achieving a DI of 0.82, 0.92 and 0.93 for the pancreas, stomach and liver, respectively. Motion trajectories derived from the hGReS were highly correlated to respiratory motion.We have shown the feasibility of automated segmentation of the pancreas anatomy on dMRI.CONCLUSIONWe have shown the feasibility of automated segmentation of the pancreas anatomy on dMRI.Using the hybrid method improves segmentation robustness of low-contrast images.ADVANCES IN KNOWLEDGEUsing the hybrid method improves segmentation robustness of low-contrast images.
MRI-guided radiotherapy is particularly attractive for abdominal targets with low CT contrast. To fully utilize this modality for pancreas tracking, automated segmentation tools are needed. A hybrid gradient, region growth and shape constraint (hGReS) method to segment two-dimensional (2D) upper abdominal dynamic MRI (dMRI) is developed for this purpose. 2D coronal dynamic MR images of two healthy volunteers were acquired with a frame rate of 5 frames per second. The regions of interest (ROIs) included the liver, pancreas and stomach. The first frame was used as the source where the centres of the ROIs were manually annotated. These centre locations were propagated to the next dMRI frame. Four-neighborhood region transfer growth was performed from these initial seeds before refinement using shape constraints. RESULTS from hGReS and two other automated segmentation methods using integrated edge detection and region growth (IER) and level set, respectively, were compared with manual contours using Dice's index (DI). For the first patient, the hGReS resulted in the organ segmentation accuracy as a measure by the DI (0.77) for the pancreas, superior to the level set method (0.72) and IER (0.71). The hGReS was shown to be reproducible on the second subject, achieving a DI of 0.82, 0.92 and 0.93 for the pancreas, stomach and liver, respectively. Motion trajectories derived from the hGReS were highly correlated to respiratory motion. We have shown the feasibility of automated segmentation of the pancreas anatomy on dMRI. Using the hybrid method improves segmentation robustness of low-contrast images.
Author Hu, P
Rapacchi, S
Wu, J
Liu, F
Gou, S
Lee, P
Sheng, K
Author_xml – sequence: 1
  givenname: S
  surname: Gou
  fullname: Gou, S
– sequence: 2
  givenname: J
  surname: Wu
  fullname: Wu, J
– sequence: 3
  givenname: F
  surname: Liu
  fullname: Liu, F
– sequence: 4
  givenname: P
  surname: Lee
  fullname: Lee, P
– sequence: 5
  givenname: S
  surname: Rapacchi
  fullname: Rapacchi, S
– sequence: 6
  givenname: P
  surname: Hu
  fullname: Hu, P
– sequence: 7
  givenname: K
  surname: Sheng
  fullname: Sheng, K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25270713$$D View this record in MEDLINE/PubMed
BookMark eNptUU1LAzEUDFKxH3rzLHv04NZ8bTd7EaRYLVQEUfAW3ibZmrK7qZtdof_elLai4unlMfNmwswQ9WpXG4TOCR4TmmTX-aoZU0w4plwcoQFJuYiFwG89NMAYpzGhIumjofer7Zpk-AT1aUJTnBI2QNOZAW9zW9p2E7kigq51FbRGR2uoVRPAyJtlZeoWWuvqKAcfsPDQmxoqq6LH5_kpOi6g9OZsP0fodXb3Mn2IF0_38-ntIlZM8DbO1cQIKLTAhFKhDUtIVuSTVHCd44SxggJkWgvDeaY05HiSZJQranABGRjMRuhmp7vu8spoFT7VQCnXja2g2UgHVv5Gavsul-5TcsoZJSwIXO4FGvfRGd_KynplyhJq4zovyWQbC2dJFqgXP72-TQ7JBQLdEVTjvG9MIZXdZRSsbSkJltt6ZKhHHuoJR1d_jg66_9K_AEfpklc
CitedBy_id crossref_primary_10_1038_s41598_020_61759_9
crossref_primary_10_1016_j_ijrobp_2017_04_023
crossref_primary_10_1016_j_compmedimag_2019_04_004
crossref_primary_10_1177_2058460119834690
crossref_primary_10_1002_mp_15534
crossref_primary_10_1259_bjr_20180267
crossref_primary_10_1016_j_phro_2018_12_003
crossref_primary_10_1088_1361_6560_aaebcf
Cites_doi 10.1016/j.ijrobp.2005.07.002
10.1088/0031-9155/57/5/1349
10.1118/1.3457329
10.1097/COC.0b013e31821f876a
10.1088/0031-9155/53/4/006
10.1016/j.radonc.2005.01.008
10.1053/j.semradonc.2003.10.006
10.1002/jmri.23813
10.1016/j.ijrobp.2011.12.073
10.1118/1.3121425
10.1016/j.ijrobp.2007.06.062
10.1016/j.clon.2009.07.015
10.1016/j.ijrobp.2003.11.004
10.1109/TSMC.1979.4310076
10.1016/j.neuroimage.2012.01.076
10.1109/34.368173
10.1016/j.ijrobp.2012.09.014
10.1088/0031-9155/58/7/2235
10.1118/1.2900108
10.1016/j.ijrobp.2010.05.006
10.1038/sj.bjc.6605420
10.1006/jcph.2000.6636
10.1109/34.49050
10.1155/2012/713073
10.1016/S0165-1684(97)00061-3
10.1016/j.ijrobp.2011.08.026
10.1016/j.radonc.2007.06.008
10.1109/TMI.2013.2265805
10.1088/0031-9155/51/3/010
10.4240/wjgs.v4.i5.104
10.1073/pnas.93.4.1591
10.1016/j.ijrobp.2007.11.042
10.1118/1.2982245
10.1016/j.ijrobp.2011.09.008
10.1109/TIP.2010.2096950
10.1016/j.ijrobp.2007.07.2322
10.1088/0031-9155/55/18/009
10.1109/TIP.2010.2041414
10.1002/cncr.21747
ContentType Journal Article
Copyright 2014 The Authors. Published by the British Institute of Radiology 2014 The British Institute of Radiology
Copyright_xml – notice: 2014 The Authors. Published by the British Institute of Radiology 2014 The British Institute of Radiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1259/bjr.20140248
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate S Gou et al
EISSN 1748-880X
ExternalDocumentID PMC4243213
25270713
10_1259_bjr_20140248
Genre Journal Article
Comparative Study
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R21CA161670
GroupedDBID ---
.55
.GJ
0R~
169
18M
1CY
1KJ
1OC
23N
2WC
33P
34G
36B
39C
4.4
53G
5GY
5RE
5WD
6J9
AANLZ
AASGY
AAUAY
AAWTL
AAXRX
AAYXX
ABCUV
ABDFA
ABEFU
ABEJV
ABGNP
ABJNI
ABNHQ
ABQNK
ABSZQ
ABXGK
ABXVV
ACAHQ
ACCZN
ACGFO
ACGOF
ACVCV
ACXBN
ACZBC
ADBBV
ADBTR
ADIPN
ADMGS
ADNBA
ADOZA
ADVOB
ADXAS
AEGXH
AENEX
AEUYR
AFFNX
AFFQV
AGMDO
AHGBF
AHMMS
AI.
AIACR
AIAGR
AIURR
AJAOE
AJBYB
AJDVS
AJNCP
ALMA_UNASSIGNED_HOLDINGS
AMYDB
AOIJS
AVNTJ
BAWUL
BCRHZ
BFHJK
C1A
C45
CITATION
CS3
DCZOG
DIK
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMB
EMOBN
F5P
GX1
H13
HYE
IH2
J5H
K-O
KBYEO
KOP
L7B
LATKE
LEEKS
LYRES
MXFUL
MXMAN
MXSTM
N4W
NU-
OCZFY
OJZSN
OK1
OVD
OWPYF
P0W
P2P
RJQFR
ROX
SJN
SUPJJ
SV3
TEORI
TR2
TUS
TWZ
TXR
VH1
W8F
WIN
WOQ
X7M
ZGI
ZXP
ZZTAW
AGORE
ALUQN
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c384t-bc6e8afd801228de3519fb6784db0533f2aa9dd8e449cdab065924c2e0fa9ae03
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345423600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0007-1285
1748-880X
IngestDate Tue Nov 04 01:56:31 EST 2025
Sun Nov 09 09:40:14 EST 2025
Mon Jul 21 06:01:12 EDT 2025
Sat Nov 29 06:21:40 EST 2025
Tue Nov 18 20:49:40 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1044
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-bc6e8afd801228de3519fb6784db0533f2aa9dd8e449cdab065924c2e0fa9ae03
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4243213
PMID 25270713
PQID 1627074359
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4243213
proquest_miscellaneous_1627074359
pubmed_primary_25270713
crossref_citationtrail_10_1259_bjr_20140248
crossref_primary_10_1259_bjr_20140248
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle British journal of radiology
PublicationTitleAlternate Br J Radiol
PublicationYear 2014
Publisher The British Institute of Radiology
Publisher_xml – name: The British Institute of Radiology
References b10
b32
b31
b12
b34
b11
b33
b14
b36
b13
b35
b16
b38
b15
b37
b18
b17
b39
b19
b1
b3
b4
b5
Krechler T (b2) 2011; 150
b6
b7
b8
b9
b41
b40
b21
b20
b22
b25
b24
b27
b26
b29
b28
b30
14752736 - Semin Radiat Oncol. 2004 Jan;14(1):81-90
23744670 - IEEE Trans Med Imaging. 2013 Sep;32(9):1723-30
20879555 - Med Phys. 2010 Aug;37(8):3927-34
17692979 - Radiother Oncol. 2007 Sep;84(3):279-82
18263948 - Phys Med Biol. 2008 Feb 21;53(4):909-23
23475278 - Phys Med Biol. 2013 Apr 7;58(7):2235-45
18313530 - Int J Radiat Oncol Biol Phys. 2008 Mar 15;70(4):1229-38
11607632 - Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1591-5
15001240 - Int J Radiat Oncol Biol Phys. 2004 Mar 15;58(4):1017-21
22292339 - Cas Lek Cesk. 2011;150(11):587-93
17889270 - Int J Radiat Oncol Biol Phys. 2007 Nov 1;69(3):895-902
17889271 - Int J Radiat Oncol Biol Phys. 2007 Nov 1;69(3):903-9
20801742 - IEEE Trans Image Process. 2010 Dec;19(12):3243-54
23150822 - Pulm Med. 2012;2012:713073
22655124 - World J Gastrointest Surg. 2012 May 27;4(5):104-13
19610310 - Med Phys. 2009 Jun;36(6):2215-21
22349351 - Phys Med Biol. 2012 Mar 7;57(5):1349-58
16424585 - Phys Med Biol. 2006 Feb 7;51(3):617-36
21659830 - Am J Clin Oncol. 2012 Dec;35(6):537-42
16086906 - Radiother Oncol. 2005 May;75(2):149-56
18561647 - Med Phys. 2008 May;35(5):1718-33
22436785 - Int J Radiat Oncol Biol Phys. 2012 Jul 1;83(3):e423-9
16168826 - Int J Radiat Oncol Biol Phys. 2005 Oct 1;63(2):320-3
19733469 - Clin Oncol (R Coll Radiol). 2009 Nov;21(9):713-9
19904268 - Br J Cancer. 2009 Dec 1;101(11):1853-9
23102840 - Int J Radiat Oncol Biol Phys. 2013 Mar 15;85(4):999-1005
21549517 - Int J Radiat Oncol Biol Phys. 2011 Sep 1;81(1):181-8
22172900 - Int J Radiat Oncol Biol Phys. 2012 Jul 1;83(3):909-15
19070231 - Med Phys. 2008 Nov;35(11):4974-81
23011805 - J Magn Reson Imaging. 2013 Feb;37(2):423-30
16475150 - Cancer. 2006 Mar 15;106(6):1347-52
22284684 - Int J Radiat Oncol Biol Phys. 2012 Jul 1;83(3):916-20
20736500 - Phys Med Biol. 2010 Sep 21;55(18):5401-15
22293133 - Neuroimage. 2012 Apr 2;60(2):1025-35
References_xml – ident: b3
  doi: 10.1016/j.ijrobp.2005.07.002
– ident: b20
  doi: 10.1088/0031-9155/57/5/1349
– ident: b15
  doi: 10.1118/1.3457329
– ident: b7
  doi: 10.1097/COC.0b013e31821f876a
– ident: b21
  doi: 10.1088/0031-9155/53/4/006
– ident: b33
  doi: 10.1016/j.radonc.2005.01.008
– ident: b35
  doi: 10.1053/j.semradonc.2003.10.006
– ident: b40
  doi: 10.1002/jmri.23813
– ident: b10
  doi: 10.1016/j.ijrobp.2011.12.073
– ident: b34
  doi: 10.1118/1.3121425
– ident: b12
  doi: 10.1016/j.ijrobp.2007.06.062
– ident: b11
  doi: 10.1016/j.clon.2009.07.015
– ident: b4
  doi: 10.1016/j.ijrobp.2003.11.004
– ident: b26
  doi: 10.1109/TSMC.1979.4310076
– ident: b41
  doi: 10.1016/j.neuroimage.2012.01.076
– volume: 150
  start-page: 587
  year: 2011
  ident: b2
  publication-title: Cas Lek Cesk
– ident: b29
  doi: 10.1109/34.368173
– ident: b14
  doi: 10.1016/j.ijrobp.2012.09.014
– ident: b19
  doi: 10.1088/0031-9155/58/7/2235
– ident: b37
  doi: 10.1118/1.2900108
– ident: b5
  doi: 10.1016/j.ijrobp.2010.05.006
– ident: b13
  doi: 10.1038/sj.bjc.6605420
– ident: b27
  doi: 10.1006/jcph.2000.6636
– ident: b24
  doi: 10.1109/34.49050
– ident: b8
  doi: 10.1155/2012/713073
– ident: b22
  doi: 10.1016/S0165-1684(97)00061-3
– ident: b6
  doi: 10.1016/j.ijrobp.2011.08.026
– ident: b18
  doi: 10.1016/j.radonc.2007.06.008
– ident: b39
  doi: 10.1109/TMI.2013.2265805
– ident: b36
  doi: 10.1088/0031-9155/51/3/010
– ident: b9
  doi: 10.4240/wjgs.v4.i5.104
– ident: b28
  doi: 10.1073/pnas.93.4.1591
– ident: b32
  doi: 10.1016/j.ijrobp.2007.11.042
– ident: b16
  doi: 10.1118/1.2982245
– ident: b1
  doi: 10.1016/j.ijrobp.2011.09.008
– ident: b25
  doi: 10.1109/TIP.2010.2096950
– ident: b17
  doi: 10.1016/j.ijrobp.2007.07.2322
– ident: b31
  doi: 10.1088/0031-9155/55/18/009
– ident: b30
  doi: 10.1109/TIP.2010.2041414
– ident: b38
  doi: 10.1002/cncr.21747
– reference: 17889270 - Int J Radiat Oncol Biol Phys. 2007 Nov 1;69(3):895-902
– reference: 18313530 - Int J Radiat Oncol Biol Phys. 2008 Mar 15;70(4):1229-38
– reference: 20879555 - Med Phys. 2010 Aug;37(8):3927-34
– reference: 17692979 - Radiother Oncol. 2007 Sep;84(3):279-82
– reference: 22655124 - World J Gastrointest Surg. 2012 May 27;4(5):104-13
– reference: 23011805 - J Magn Reson Imaging. 2013 Feb;37(2):423-30
– reference: 22292339 - Cas Lek Cesk. 2011;150(11):587-93
– reference: 19610310 - Med Phys. 2009 Jun;36(6):2215-21
– reference: 17889271 - Int J Radiat Oncol Biol Phys. 2007 Nov 1;69(3):903-9
– reference: 15001240 - Int J Radiat Oncol Biol Phys. 2004 Mar 15;58(4):1017-21
– reference: 21549517 - Int J Radiat Oncol Biol Phys. 2011 Sep 1;81(1):181-8
– reference: 21659830 - Am J Clin Oncol. 2012 Dec;35(6):537-42
– reference: 23150822 - Pulm Med. 2012;2012:713073
– reference: 23102840 - Int J Radiat Oncol Biol Phys. 2013 Mar 15;85(4):999-1005
– reference: 18561647 - Med Phys. 2008 May;35(5):1718-33
– reference: 19733469 - Clin Oncol (R Coll Radiol). 2009 Nov;21(9):713-9
– reference: 22172900 - Int J Radiat Oncol Biol Phys. 2012 Jul 1;83(3):909-15
– reference: 14752736 - Semin Radiat Oncol. 2004 Jan;14(1):81-90
– reference: 22349351 - Phys Med Biol. 2012 Mar 7;57(5):1349-58
– reference: 22436785 - Int J Radiat Oncol Biol Phys. 2012 Jul 1;83(3):e423-9
– reference: 22293133 - Neuroimage. 2012 Apr 2;60(2):1025-35
– reference: 20801742 - IEEE Trans Image Process. 2010 Dec;19(12):3243-54
– reference: 19070231 - Med Phys. 2008 Nov;35(11):4974-81
– reference: 16475150 - Cancer. 2006 Mar 15;106(6):1347-52
– reference: 16424585 - Phys Med Biol. 2006 Feb 7;51(3):617-36
– reference: 16086906 - Radiother Oncol. 2005 May;75(2):149-56
– reference: 19904268 - Br J Cancer. 2009 Dec 1;101(11):1853-9
– reference: 18263948 - Phys Med Biol. 2008 Feb 21;53(4):909-23
– reference: 23475278 - Phys Med Biol. 2013 Apr 7;58(7):2235-45
– reference: 20736500 - Phys Med Biol. 2010 Sep 21;55(18):5401-15
– reference: 23744670 - IEEE Trans Med Imaging. 2013 Sep;32(9):1723-30
– reference: 11607632 - Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1591-5
– reference: 16168826 - Int J Radiat Oncol Biol Phys. 2005 Oct 1;63(2):320-3
– reference: 22284684 - Int J Radiat Oncol Biol Phys. 2012 Jul 1;83(3):916-20
SSID ssj0007590
Score 2.143661
Snippet MRI-guided radiotherapy is particularly attractive for abdominal targets with low CT contrast. To fully utilize this modality for pancreas tracking, automated...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 20140248
SubjectTerms Automation - methods
Feasibility Studies
Gastrointestinal/Abdominal
Healthy Volunteers
Humans
Magnetic Resonance Imaging - methods
Motion
Pancreas - anatomy & histology
Physics and Technology
Radiotherapy and Oncology
Title Feasibility of automated pancreas segmentation based on dynamic MRI
URI https://www.ncbi.nlm.nih.gov/pubmed/25270713
https://www.proquest.com/docview/1627074359
https://pubmed.ncbi.nlm.nih.gov/PMC4243213
Volume 87
WOSCitedRecordID wos000345423600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1748-880X
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0007590
  issn: 0007-1285
  databaseCode: WIN
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1748-880X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007590
  issn: 0007-1285
  databaseCode: DRFUL
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9BB4gXBOOrfExBgqcqLHO92nlEhQFSO1VVJ_oWObYDRSyp2gbtz-f8kSzehARIvESR69iV73wfvvPvAF4rJniBpm4sRomIKSd5jH6IjFFXCNQvBlHOgrhO2OkpXy7TmT9V2tpyAqws-cVFuv6vpMY2JLa5OvsX5G4HxQZ8R6LjE8mOzz8iPBp1PuXVBs9FvavQKkW7Eve9tCnoW_313F85KgdGjSkTMlCuNv1gOv8cRHo96lEHYmIj1Co4jf9Y1cEp6pc6CDhNVnWQQ-yTf2bdE4cjeiV7Y-ETF8zcQUbDPJi9EbgMP3dVed5qJ2MZ5TGKjWVXCHut65ktcZiQ18Q7-mq4_Pl3A-SKniFxIJ0doq7PLVXJMWHG_b5Ucm3q4Ww6pgQZ0FQ63iPsOOU92Hs_PzmbtAocG93NJf_f_X0JnPywO7XBkfbzhEbNNU_lasJtx4JZ3Id73vWI3jmWeQA3dLkPd6Y-uWIfbttsYLl9COMOD0VVEbU8FDU8FHV5KLI8FOGL56EIeegRnJ18WIw_xb7aRiyHnO7iXI40F4UyJgvhSpvKjUWOtgxVubmwXRAhUqW4pjSVSuQ2IE8l0UlhEN6T4WPolVWpn0KU4CB8qFIuBVqAMkkThZKADbnmjNAR78OgWa5Meih6UxHlR2ZcUlznDNc5a9a5D2_a3msHwfKbfq-alc9QRprAlyh1VW-zo5EhEzoGaR-eOEq0IzUk7AMLaNR2MPjr4S_l6pvFYfd89Oyfv3wOdy_31wvo7Ta1fgm35E_cW5sDuMmW_MAz5y8J2Ksn
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feasibility+of+automated+pancreas+segmentation+based+on+dynamic+MRI&rft.jtitle=British+journal+of+radiology&rft.au=Gou%2C+S&rft.au=Wu%2C+J&rft.au=Liu%2C+F&rft.au=Lee%2C+P&rft.date=2014-12-01&rft.pub=The+British+Institute+of+Radiology&rft.issn=0007-1285&rft.eissn=1748-880X&rft.volume=87&rft.issue=1044&rft_id=info:doi/10.1259%2Fbjr.20140248&rft_id=info%3Apmid%2F25270713&rft.externalDocID=PMC4243213
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1285&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1285&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1285&client=summon