Machine translation of English speech: Comparison of multiple algorithms

In order to improve the efficiency of the English translation, machine translation is gradually and widely used. This study briefly introduces the neural network algorithm for speech recognition. Long short-term memory (LSTM), instead of traditional recurrent neural network (RNN), was used as the en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent systems Jg. 31; H. 1; S. 159 - 167
Hauptverfasser: Wu, Yijun, Qin, Yonghong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin De Gruyter 01.01.2022
Walter de Gruyter GmbH
Schlagworte:
ISSN:2191-026X, 0334-1860, 2191-026X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In order to improve the efficiency of the English translation, machine translation is gradually and widely used. This study briefly introduces the neural network algorithm for speech recognition. Long short-term memory (LSTM), instead of traditional recurrent neural network (RNN), was used as the encoding algorithm for the encoder, and RNN as the decoding algorithm for the decoder. Then, simulation experiments were carried out on the machine translation algorithm, and it was compared with two other machine translation algorithms. The results showed that the back-propagation (BP) neural network had a lower word error rate and spent less recognition time than artificial recognition in recognizing the speech; the LSTM–RNN algorithm had a lower word error rate than BP–RNN and RNN–RNN algorithms in recognizing the test samples. In the actual speech translation test, as the length of speech increased, the LSTM–RNN algorithm had the least changes in the translation score and word error rate, and it had the highest translation score and the lowest word error rate under the same speech length.
AbstractList In order to improve the efficiency of the English translation, machine translation is gradually and widely used. This study briefly introduces the neural network algorithm for speech recognition. Long short-term memory (LSTM), instead of traditional recurrent neural network (RNN), was used as the encoding algorithm for the encoder, and RNN as the decoding algorithm for the decoder. Then, simulation experiments were carried out on the machine translation algorithm, and it was compared with two other machine translation algorithms. The results showed that the back-propagation (BP) neural network had a lower word error rate and spent less recognition time than artificial recognition in recognizing the speech; the LSTM–RNN algorithm had a lower word error rate than BP–RNN and RNN–RNN algorithms in recognizing the test samples. In the actual speech translation test, as the length of speech increased, the LSTM–RNN algorithm had the least changes in the translation score and word error rate, and it had the highest translation score and the lowest word error rate under the same speech length.
Author Qin, Yonghong
Wu, Yijun
Author_xml – sequence: 1
  givenname: Yijun
  surname: Wu
  fullname: Wu, Yijun
  email: y6w8yi@163.com
  organization: Department of Foreign Languages, Xi’an Jiaotong University City College, Xi’an, Shaanxi 710018, China
– sequence: 2
  givenname: Yonghong
  surname: Qin
  fullname: Qin, Yonghong
  organization: School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
BookMark eNp1kM2L2zAQxUVJodk0514NPXtXI1myXeihhOwHbNnLLuxNyJNRouBYruRQ8t_XiUu7lz3NMPPeb4Z3xWZd6IixL8CvQYG62ft0SrngQuScc_WBzQXUkHOhX2dv-k9smdJ-VPCiBlWpObv_aXHnO8qGaLvU2sGHLgsuW3fb1qddlnoi3H3LVuHQ2-jTtD0c28H3LWW23Yboh90hfWYfnW0TLf_WBXu5XT-v7vPHp7uH1Y_HHGVVDHldqpJkgRwbZ0GS0I2WWClX1gUQcgfcOaEQKy54paFAYbksq9oikJIkF-xh4m6C3Zs--oONJxOsN5dBiFtj4-CxJSOgICxsKYTjBVLTSNRScN1ssCTQ9cj6OrH6GH4dKQ1mH46xG983QkOtFWglRtXNpMIYUork_l0Fbs7pm0v65py-Oac_Or5Pjt-2HShuaBuPp7H5j3_PCQCqln8AZcyOQg
Cites_doi 10.18653/v1/P16-1208
10.1109/ACCESS.2020.3039539
10.1051/e3sconf/202127312140
10.1093/jamia/ocz110
10.1088/1742-6596/1744/3/032019
10.21071/hikma.v19i2.12516
10.1007/s10590-019-09227-8
10.1017/S1351324919000469
10.1080/0907676X.2017.1291695
10.1162/tacl_a_00067
10.1007/s41870-019-00340-8
10.1088/1755-1315/687/1/012205
10.1007/s10590-021-09262-4
ContentType Journal Article
Copyright 2022. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
JQ2
DOA
DOI 10.1515/jisys-2022-0005
DatabaseName CrossRef
ProQuest Computer Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList

CrossRef
ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2191-026X
EndPage 167
ExternalDocumentID oai_doaj_org_article_214ec4a722f04cebb3c63206bdc7e169
10_1515_jisys_2022_0005
10_1515_jisys_2022_0005311159
GroupedDBID 0R~
0~D
4.4
7WY
AAFPC
AAFWJ
AAGVJ
AAPJK
AAQCX
AASOL
AASQH
AAWFC
AAXCG
ABAOT
ABAQN
ABFKT
ABIQR
ABSOE
ABUVI
ABXMZ
ABYKJ
ACEFL
ACGFS
ACZBO
ADGQD
ADGYE
ADJVZ
ADMLS
ADOZN
AEJTT
AEQDQ
AERZL
AEXIE
AFBAA
AFBDD
AFCXV
AFPKN
AFQUK
AHGBP
AHGSO
AIERV
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BAKPI
BBCWN
BCIFA
CFGNV
EBS
GROUPED_DOAJ
HZ~
IY9
M0C
O9-
OK1
P2P
QD8
RDG
SA.
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c384t-9757e34c0cbfa13e26b63c85f7941ec0f10ff25cc80208614c2a03789ac1e53e3
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000742763900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2191-026X
0334-1860
IngestDate Fri Oct 03 12:51:44 EDT 2025
Mon Jun 30 02:37:45 EDT 2025
Sat Nov 29 04:22:19 EST 2025
Sat Nov 29 01:28:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c384t-9757e34c0cbfa13e26b63c85f7941ec0f10ff25cc80208614c2a03789ac1e53e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/214ec4a722f04cebb3c63206bdc7e169
PQID 2619651652
PQPubID 2031329
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_214ec4a722f04cebb3c63206bdc7e169
proquest_journals_2619651652
crossref_primary_10_1515_jisys_2022_0005
walterdegruyter_journals_10_1515_jisys_2022_0005311159
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Journal of intelligent systems
PublicationYear 2022
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References Li, S (j_jisys-2022-0005_ref_015) 2021; 1744
Ashengo, YA; Aga, RT; Abebe, SL (j_jisys-2022-0005_ref_004) 2021; 35
Herbig, N; Pal, S; Vela, M; Krüger, A; van Genabith, J (j_jisys-2022-0005_ref_003) 2019; 33
Plaza-Lara, C (j_jisys-2022-0005_ref_013) 2020; 19
Chatzikoumi, E (j_jisys-2022-0005_ref_007) 2019; 26
Niyazbek, M; Talp, K; Sun, J (j_jisys-2022-0005_ref_009) 2021; 687
Bywood, L; Georgakopoulou, P; Etchegoyhen, T (j_jisys-2022-0005_ref_010) 2017; 25
Ren, Q; Su, Y; Wu, N (j_jisys-2022-0005_ref_002) 2020; 18
Lee, J; Cho, K; Hofmann, T (j_jisys-2022-0005_ref_005) 2017; 5
Soto, X; Perez-de-Viñaspre, O; Labaka, G; Oronoz, M (j_jisys-2022-0005_ref_008) 2019; 26
Bayatli, S; Kurnaz, S; Ali, A; Washington, JN; Tyers, FM (j_jisys-2022-0005_ref_001) 2020; 36
Gritsay, I; Vodyanitskaya, L (j_jisys-2022-0005_ref_014) 2021; 273
Xiao, Q; Chang, X; Zhang, X; Liu, X (j_jisys-2022-0005_ref_011) 2020; 8
2022120618435633074_j_jisys-2022-0005_ref_009
2022120618435633074_j_jisys-2022-0005_ref_007
2022120618435633074_j_jisys-2022-0005_ref_008
2022120618435633074_j_jisys-2022-0005_ref_005
2022120618435633074_j_jisys-2022-0005_ref_006
2022120618435633074_j_jisys-2022-0005_ref_003
2022120618435633074_j_jisys-2022-0005_ref_014
2022120618435633074_j_jisys-2022-0005_ref_004
2022120618435633074_j_jisys-2022-0005_ref_015
2022120618435633074_j_jisys-2022-0005_ref_001
2022120618435633074_j_jisys-2022-0005_ref_012
2022120618435633074_j_jisys-2022-0005_ref_002
2022120618435633074_j_jisys-2022-0005_ref_013
2022120618435633074_j_jisys-2022-0005_ref_010
2022120618435633074_j_jisys-2022-0005_ref_011
References_xml – volume: 273
  start-page: 12140
  year: 2021
  ident: j_jisys-2022-0005_ref_014
  article-title: Pedagogical technologies of machine translation skills forming on the example of bachelor students specializing in mechatronics and robotics at Don State Technical University
  publication-title: E3S Web Conf
– volume: 35
  start-page: 19
  year: 2021
  end-page: 36
  ident: j_jisys-2022-0005_ref_004
  article-title: Context based machine translation with recurrent neural network for English–Amharic translation
  publication-title: Mach Transl
– volume: 25
  start-page: 1
  issue: 3
  year: 2017
  end-page: 17
  ident: j_jisys-2022-0005_ref_010
  article-title: Embracing the threat: machine translation as a solution for subtitling
  publication-title: Persp Stud Transl
– volume: 5
  start-page: 365
  year: 2017
  end-page: 78
  ident: j_jisys-2022-0005_ref_005
  article-title: Fully character-level neural machine translation without explicit segmentation
  publication-title: Trans Assoc Comput Linguist
– volume: 26
  start-page: 1478
  issue: 12
  year: 2019
  end-page: 87
  ident: j_jisys-2022-0005_ref_008
  article-title: Neural machine translation of clinical texts between long distance languages
  publication-title: J Am Med Inf Assoc
– volume: 18
  start-page: 46
  issue: 1
  year: 2020
  end-page: 59
  ident: j_jisys-2022-0005_ref_002
  article-title: Research on Mongolian-Chinese machine translation based on the end-to-end neural network
  publication-title: Int J Wavel Multi
– volume: 19
  start-page: 163
  year: 2020
  end-page: 82
  ident: j_jisys-2022-0005_ref_013
  article-title: How does machine translation and post-editing affect project management? An interdisciplinary approach
  publication-title: Hikma
– volume: 8
  start-page: 216718
  year: 2020
  end-page: 28
  ident: j_jisys-2022-0005_ref_011
  article-title: Multi-information spatial-temporal LSTM fusion continuous sign language neural machine translation
  publication-title: IEEE Access
– volume: 36
  start-page: 309
  issue: 2
  year: 2020
  end-page: 22
  ident: j_jisys-2022-0005_ref_001
  article-title: Unsupervised weighting of transfer rules in rule-based machine translation using maximum-entropy approach
  publication-title: J Inf Sci Eng
– volume: 1744
  start-page: 032019
  year: 2021
  ident: j_jisys-2022-0005_ref_015
  article-title: Research on the external communication of Chinese excellent traditional culture from the perspective of machine translation
  publication-title: J Phys Conf Ser
– volume: 33
  start-page: 91
  issue: 1–2
  year: 2019
  end-page: 115
  ident: j_jisys-2022-0005_ref_003
  article-title: Multi-modal indicators for estimating perceived cognitive load in post-editing of machine translation
  publication-title: Mach Transl
– volume: 687
  start-page: 012205
  issue: 1
  year: 2021
  ident: j_jisys-2022-0005_ref_009
  article-title: The development and construction of bilingual machine translation auxiliary tool between Chinese and Kazakh languages
  publication-title: IOP Conf Ser Earth Environ Sci
– volume: 26
  start-page: 1
  issue: 2
  year: 2019
  end-page: 25
  ident: j_jisys-2022-0005_ref_007
  article-title: How to evaluate machine translation: a review of automated and human metrics
  publication-title: Nat Lang Eng
– ident: 2022120618435633074_j_jisys-2022-0005_ref_012
  doi: 10.18653/v1/P16-1208
– ident: 2022120618435633074_j_jisys-2022-0005_ref_011
  doi: 10.1109/ACCESS.2020.3039539
– ident: 2022120618435633074_j_jisys-2022-0005_ref_014
  doi: 10.1051/e3sconf/202127312140
– ident: 2022120618435633074_j_jisys-2022-0005_ref_008
  doi: 10.1093/jamia/ocz110
– ident: 2022120618435633074_j_jisys-2022-0005_ref_015
  doi: 10.1088/1742-6596/1744/3/032019
– ident: 2022120618435633074_j_jisys-2022-0005_ref_013
  doi: 10.21071/hikma.v19i2.12516
– ident: 2022120618435633074_j_jisys-2022-0005_ref_003
  doi: 10.1007/s10590-019-09227-8
– ident: 2022120618435633074_j_jisys-2022-0005_ref_007
  doi: 10.1017/S1351324919000469
– ident: 2022120618435633074_j_jisys-2022-0005_ref_010
  doi: 10.1080/0907676X.2017.1291695
– ident: 2022120618435633074_j_jisys-2022-0005_ref_005
  doi: 10.1162/tacl_a_00067
– ident: 2022120618435633074_j_jisys-2022-0005_ref_006
  doi: 10.1007/s41870-019-00340-8
– ident: 2022120618435633074_j_jisys-2022-0005_ref_002
– ident: 2022120618435633074_j_jisys-2022-0005_ref_001
– ident: 2022120618435633074_j_jisys-2022-0005_ref_009
  doi: 10.1088/1755-1315/687/1/012205
– ident: 2022120618435633074_j_jisys-2022-0005_ref_004
  doi: 10.1007/s10590-021-09262-4
SSID ssj0000491585
Score 2.3155196
Snippet In order to improve the efficiency of the English translation, machine translation is gradually and widely used. This study briefly introduces the neural...
SourceID doaj
proquest
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 159
SubjectTerms Algorithms
Back propagation networks
Coders
Decoding
English
Errors
long short-term memory
Machine translation
Neural networks
recurrent neural network
Recurrent neural networks
Speech
Speech recognition
Translations
Title Machine translation of English speech: Comparison of multiple algorithms
URI https://www.degruyter.com/doi/10.1515/jisys-2022-0005
https://www.proquest.com/docview/2619651652
https://doaj.org/article/214ec4a722f04cebb3c63206bdc7e169
Volume 31
WOSCitedRecordID wos000742763900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2191-026X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000491585
  issn: 2191-026X
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4Q4sBlvMVgoBw4cKmWR5O03GAC7cLEASRuVeskYwi2aS0g_j1J2o6HhLhwbaPU-mzHdu3YCJ1YIWOglkYuUFNRnHOICgI64jpUBFgodD1sQo1Gyf19evNl1JevCavbA9fA9RmNDcS5YsySGExRcJCcEVloUIbKcHWPqPRLMPVY-73UOcJNLx9ns_uPk_K9dDLhYi_vp3wzQ6Fb_zcXs_MWktXajBcv71WbHA0252oTdRpnEZ_XRG6hFTPdRhvtIAbc6OUOGl6HkkiDK2956uo2PLO4uaOLy7kx8HCGB8uhg_5tW0uI86fxbDGpHp7LXXR3dXk7GEbNiIQIeBJXUaqEMjwGAoXNKTdMFpJDIqxTM2qAWEqsZQIg8cM4nSkGlhOukjQHagQ3fA-tTmdTs49wkkuIKbXa7eROT5U6x8htSFOtidCMddFpi1g2rzthZD6CcOBmAdzMg-uT2aKLLjyiy2W-hXV44BibNYzN_mJsF_VafmSNXrlPSN8BkUrhyJE_ePS56heyuDvXRXrwH8QdovValPy_mB5arRYv5gitwWs1KRfHQRY_AKVP5MY
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+translation+of+English+speech%3A+Comparison+of+multiple+algorithms&rft.jtitle=Journal+of+intelligent+systems&rft.au=Wu+Yijun&rft.au=Qin+Yonghong&rft.date=2022-01-01&rft.pub=De+Gruyter&rft.eissn=2191-026X&rft.volume=31&rft.issue=1&rft.spage=159&rft.epage=167&rft_id=info:doi/10.1515%2Fjisys-2022-0005&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_214ec4a722f04cebb3c63206bdc7e169
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-026X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-026X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-026X&client=summon