Rough-fuzzy MLP: modular evolution, rule generation, and evaluation

A methodology is described for evolving a Rough-fuzzy multi layer perceptron with modular concept using a genetic algorithm to obtain a structured network suitable for both classification and rule extraction. The modular concept, based on "divide and conquer" strategy, provides accelerated...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on knowledge and data engineering Ročník 15; číslo 1; s. 14 - 25
Hlavní autoři: Pal, S.K., Mitra, S., Mitra, P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2003
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1041-4347, 1558-2191
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A methodology is described for evolving a Rough-fuzzy multi layer perceptron with modular concept using a genetic algorithm to obtain a structured network suitable for both classification and rule extraction. The modular concept, based on "divide and conquer" strategy, provides accelerated training and a compact network suitable for generating a minimum number of rules with high certainty values. The concept of variable mutation operator is introduced for preserving the localized structure of the constituting knowledge-based subnetworks, while they are integrated and evolved. Rough set dependency rules are generated directly from the real valued attribute table containing fuzzy membership values. Two new indices viz., "certainty" and "confusion" in a decision are defined for evaluating quantitatively the quality of rules. The effectiveness of the model and the rule extraction algorithm is extensively demonstrated through experiments alongwith comparisons.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2003.1161579