Thermal management for gas lubricated, high-speed turbomachinery

High-speed turbomachinery is commonly designed to achieve high power densities. Limited space for active cooling results in a challenging thermal management. A thermal modeling approach leveraging modern declarative programming capabilities is presented, yielding an efficient dynamic model capable o...

Full description

Saved in:
Bibliographic Details
Published in:Applied thermal engineering Vol. 218; p. 119229
Main Authors: Olmedo, L.E., Liu, W., Gjika, K., Schiffmann, J.
Format: Journal Article
Language:English
Published: Elsevier Ltd 05.01.2023
Subjects:
ISSN:1359-4311
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract High-speed turbomachinery is commonly designed to achieve high power densities. Limited space for active cooling results in a challenging thermal management. A thermal modeling approach leveraging modern declarative programming capabilities is presented, yielding an efficient dynamic model capable of real-time simulation while achieving accurate results. These properties enable the inclusion of thermal management strategies in an early stage of the design process. Further, the effect of varying thermal and transport properties of materials and fluids during transient conditions is included and is suggested to yield a high impact on thermal loads and heat evacuation capabilities. The often neglected fluid advection within the system is modeled by integrating a 1D fluid network from MatlabTM SimscapeTM to the thermal model, displaying a significant impact on the temperature estimation for critical parts. The accuracy of the presented model is verified against three gas-bearing supported high-speed turbomachinery experiments for stationary and transient operation. •Dynamic thermal simulation for gas lubricated, high-speed turbomachinery.•Accurate and efficient multi-domain models based on 1D physical networks.•Modeling flexibility with declarative programming paradigm.•Experimental validation from three different gas-lubricated turbomachines.
AbstractList High-speed turbomachinery is commonly designed to achieve high power densities. Limited space for active cooling results in a challenging thermal management. A thermal modeling approach leveraging modern declarative programming capabilities is presented, yielding an efficient dynamic model capable of real-time simulation while achieving accurate results. These properties enable the inclusion of thermal management strategies in an early stage of the design process. Further, the effect of varying thermal and transport properties of materials and fluids during transient conditions is included and is suggested to yield a high impact on thermal loads and heat evacuation capabilities. The often neglected fluid advection within the system is modeled by integrating a 1D fluid network from MatlabTM SimscapeTM to the thermal model, displaying a significant impact on the temperature estimation for critical parts. The accuracy of the presented model is verified against three gas-bearing supported high-speed turbomachinery experiments for stationary and transient operation. •Dynamic thermal simulation for gas lubricated, high-speed turbomachinery.•Accurate and efficient multi-domain models based on 1D physical networks.•Modeling flexibility with declarative programming paradigm.•Experimental validation from three different gas-lubricated turbomachines.
ArticleNumber 119229
Author Olmedo, L.E.
Liu, W.
Schiffmann, J.
Gjika, K.
Author_xml – sequence: 1
  givenname: L.E.
  surname: Olmedo
  fullname: Olmedo, L.E.
  email: luiseric.olmedo@epfl.ch
  organization: Ecole Polytechnique Fédérale de Lausanne, EPFL STI IGM LAMD, CH-2002, Neuchâtel, Switzerland
– sequence: 2
  givenname: W.
  surname: Liu
  fullname: Liu, W.
  organization: Ecole Polytechnique Fédérale de Lausanne, EPFL STI IGM LAMD, CH-2002, Neuchâtel, Switzerland
– sequence: 3
  givenname: K.
  surname: Gjika
  fullname: Gjika, K.
  email: kostandin.gjika@kgturbomachinery.com
  organization: KG Turbomachinery, France
– sequence: 4
  givenname: J.
  orcidid: 0000-0001-8822-9974
  surname: Schiffmann
  fullname: Schiffmann, J.
  email: jurg.schiffmann@epfl.ch
  organization: Ecole Polytechnique Fédérale de Lausanne, EPFL STI IGM LAMD, CH-2002, Neuchâtel, Switzerland
BookMark eNqNkL1OwzAURj0UibbwDhkYSbBjU8cSA1BRQKrEUmbrxrlOXOVPtovUt6coLDB1-qZzpO8syKwfeiTkhtGMUba622cwjm1s0HfQYl9nOc3zjDGV52pG5ozfq1Rwxi7JIoQ9pSwvpJiTx91EJB30UGOHfUzs4JMaQtIeSu8MRKxuk8bVTRpGxCqJB18OHZjG9eiPV-TCQhvw-neX5HPzslu_pduP1_f10zY1vBAxVUxVUnIhrABbFCWTlgsqbQ4WmCqlUFhJbqUoWU5LKJiVRnFuVqDA8Ar5kjxMXuOHEDxaPXrXgT9qRvVPAb3XfwvonwJ6KnDCn__hxkWIbuijB9eeK9lMEjwd_XLodTAOe4OV82iirgZ3nugbHT-JHw
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2025_125664
crossref_primary_10_1016_j_jsv_2023_118079
crossref_primary_10_1016_j_ijmecsci_2025_110008
crossref_primary_10_3390_aerospace11040276
crossref_primary_10_1016_j_energy_2023_127385
crossref_primary_10_1016_j_applthermaleng_2024_125044
Cites_doi 10.1016/j.jmsy.2020.06.017
10.4271/2006-01-0023
10.1145/1089014.1089020
10.1016/j.rser.2017.04.119
10.1016/j.energy.2015.03.130
10.1115/1.4045104
10.1016/S0098-1354(01)00702-5
10.3139/124.110802
10.1080/03616967908955346
10.1016/j.apenergy.2019.114219
10.1115/1.3204586
10.1115/1.4006608
10.1177/1468087419834194
10.1137/0909014
10.1109/TIE.2008.927403
10.1109/TMAG.2013.2282047
10.1016/0017-9310(63)90006-1
10.1016/j.energy.2016.06.067
10.1063/1.4930987
10.1088/1742-6596/46/1/060
10.1016/0142-727X(88)90026-4
10.1016/j.ijrefrig.2019.09.019
10.1155/2012/309123
10.1016/j.energy.2011.02.035
10.3390/en14185652
10.1080/00207160802545908
10.1016/j.applthermaleng.2013.04.020
10.1016/j.energy.2014.04.096
10.1049/ip-b.1991.0025
10.1016/j.energy.2011.12.049
10.1115/1.4047124
10.1080/10402004.2019.1642547
10.1021/ie4033999
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.applthermaleng.2022.119229
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_applthermaleng_2022_119229
S1359431122011590
GrantInformation_xml – fundername: Innosuisse, Switzerland
  grantid: 26181.1 PFIW-IW; 26846.2 PFIW-IW
  funderid: http://dx.doi.org/10.13039/501100013348
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSH
SSR
SST
SSZ
T5K
TN5
~G-
9DU
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FGOYB
HZ~
R2-
SEW
~HD
ID FETCH-LOGICAL-c384t-919d77344f4af88b17f3407f2afa19b749ed73f74b120ba81f7c933c6a9ac3de3
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000875850000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1359-4311
IngestDate Sat Nov 29 07:03:29 EST 2025
Tue Nov 18 21:22:02 EST 2025
Sun Apr 06 06:54:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Turbomachinery
Thermal management
Declarative programming
1D-networks
Gas lubricated bearings
Dynamic modeling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-919d77344f4af88b17f3407f2afa19b749ed73f74b120ba81f7c933c6a9ac3de3
ORCID 0000-0001-8822-9974
OpenAccessLink http://infoscience.epfl.ch/record/298013
ParticipantIDs crossref_primary_10_1016_j_applthermaleng_2022_119229
crossref_citationtrail_10_1016_j_applthermaleng_2022_119229
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2022_119229
PublicationCentury 2000
PublicationDate 2023-01-05
PublicationDateYYYYMMDD 2023-01-05
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-05
  day: 05
PublicationDecade 2020
PublicationTitle Applied thermal engineering
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References F. Payri, P. Olmeda, F.J. Arnau, A. Dombrovsky, L. Smith, External heat losses in small turbochargers: Model and experiments, 71 (2014) 534–546.
Batteh, Newman (b40) 2008
Schiffmann (b55) 2008
Ma, Gowda, Anantharaman, Laughman, Shah, Rackauckas (b35) 2021
Furuichi, Terao, Wada, Tsuji (b47) 2015; 27
Soltanian, Dehghan, Karbassi (b30) 2010; 87
Lienhard, Lienhard (b48) 2020
A. Romagnoli, A. Manivannan, S. Rajoo, M.S. Chiong, A. Feneley, A. Pesiridis, R.F. Martinez-Botas, A review of heat transfer in turbochargers, 79 (2017) 1442–1460.
Hairer, Wanner (b31) 2010
Schweiger, Nilsson, Schoeggl, Birk, Posch (b38) 2020; 365
J. Pyrhonen, T. Jokinen, V. Hrabovcova, Design of Rotating Electrical Machines, second ed., Wiley, URL:.
Roberts (b25) 1986
Perez, Kassakian (b4) 1979; 3
J.R. Serrano, P. Olmeda, F.J. Arnau, A. Dombrovsky, L. Smith, Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes, 86 (2015) 204–218.
(b52) 2011
Wagner, Wuillemin, Constantin, Diethelm, Van herle, Schiffmann (b64) 2020; 262
Reference, Natick, Massachusetts, United State, 2021, URL:.
Keyes, Reynolds, Woodward (b36) 2006; 46
Vázquez-Leal, Filobello-Niño, Castañeda-Sheissa, Hernández-Martínez, Sarmiento-Reyes (b28) 2012; 2012
Qi, Stippich, Guettler, Neubert, De Doncker (b8) 2014
.
Liu, Fang, Dong, Xu (b3) 2021; 58
Remond, Gengler, Chapuis (b27) 2015
Schiffmann, Kontomaris, Arpagaus, Bless, Bertsch (b1) 2020; 109
Deligant, Podevin, Descombes (b10) 2012; 39
Northrop, Owen (b51) 1988; 9
Vieira, Biscaia Jr. (b34) 2001; 25
J.R. Serrano, P. Olmeda, F.J. Arnau, V. Samala, A holistic methodology to correct heat transfer and bearing friction losses from hot turbocharger maps in order to obtain adiabatic efficiency of the turbomachinery, 21 (2020) 1314–1335.
Nerg, Rilla, Pyrhonen (b49) 2008; 55
Simpson, Wrobel, Mellor (b7) 2014; 50
Multibody
Fritzson (b2) 2015
Chamoun, Rulliere, Haberschill, Peureux (b39) 2013; 58
M. Cormerais, J.-F. Hetet, P. Chesse, A. Maiboom, Heat Transfer Analysis in a Turbocharger Compressor: Modeling and Experiments, Technical Report, 2006.
Pérez Arriaga, Kassakian (b24) 1979
Marelli, Marmorato, Capobianco (b15) 2016; 112
Wagner (b65) 2019
Lüdtke (b17) 2004
Hindmarsh, Brown, Grant, Lee, Serban, Shumaker, Woodward (b37) 2005; 31
The Modelica Association (b41) 2017
Kunick, Berry, Martineau, Kretzschmar, Gampe (b60) 2017; 82
Wagner, Van herle, Schiffmann (b22) 2020; 142
I. The MathWorks, Simscape
Slocum (b63) 1992
Zimmer (b45) 2019
Baines, Wygant, Dris (b12) 2010; 132
Otter, Elmqvist, Zimmer, Laughman (b42) 2019
Pantelides (b33) 1988; 9
Neumayr, Otter (b44) 2019
Li, Gohl, Batteh, Greiner, Wang (b61) 2019
Casey, Krähenbuhl, Zwyssig (b18) 2013
Touhami, Bertin, Lefèvre, Llibre, Henaux, Fenot (b6) 2017
Schinnerl, Ehrhard, Bogner, Seume (b19) 2017
Mack (b53) 1967
Dibelius, Heinen (b50) 2015
H. Elmqvist, M. Otter, Methods for tearing systems of equations in object-oriented modeling, in: Proceedings ESM, Vol. 94, 1994, pp. 1–3.
Graffeo, Vaschetto, Miotto, Carbone, Tenconi, Cavagnino (b9) 2021; 14
Sirakov, Casey (b21) 2012; 135
Lemmon, Bell, Huber, McLinden (b58) 2018
Diango, Perilhon, Descombes, Danho (b23) 2011; 36
Rosset, Schiffmann (b54) 2020; 142
Guenat, Schiffmann (b62) 2019; 62
Becker (b46) 1963; 6
Reference Version 5.2, Natick, Massachusetts, United State, 2021, URL:.
Mellor, Roberts, Turner (b5) 1991; 138
Bell, Wronski, Quoilin, Lemort (b59) 2014; 53
Elmqvist, Otter, Neumayr, Hippmann (b43) 2021
Sielemann, Casella, Otter, al (b29) 2011
Liu, Gjika, Schiffmann (b66) 2022
Soltanian (10.1016/j.applthermaleng.2022.119229_b30) 2010; 87
Graffeo (10.1016/j.applthermaleng.2022.119229_b9) 2021; 14
Schinnerl (10.1016/j.applthermaleng.2022.119229_b19) 2017
Mack (10.1016/j.applthermaleng.2022.119229_b53) 1967
Otter (10.1016/j.applthermaleng.2022.119229_b42) 2019
Mellor (10.1016/j.applthermaleng.2022.119229_b5) 1991; 138
Hindmarsh (10.1016/j.applthermaleng.2022.119229_b37) 2005; 31
Chamoun (10.1016/j.applthermaleng.2022.119229_b39) 2013; 58
Slocum (10.1016/j.applthermaleng.2022.119229_b63) 1992
Wagner (10.1016/j.applthermaleng.2022.119229_b65) 2019
Kunick (10.1016/j.applthermaleng.2022.119229_b60) 2017; 82
Wagner (10.1016/j.applthermaleng.2022.119229_b22) 2020; 142
Pérez Arriaga (10.1016/j.applthermaleng.2022.119229_b24) 1979
Fritzson (10.1016/j.applthermaleng.2022.119229_b2) 2015
Schiffmann (10.1016/j.applthermaleng.2022.119229_b55) 2008
Wagner (10.1016/j.applthermaleng.2022.119229_b64) 2020; 262
Schweiger (10.1016/j.applthermaleng.2022.119229_b38) 2020; 365
Becker (10.1016/j.applthermaleng.2022.119229_b46) 1963; 6
Liu (10.1016/j.applthermaleng.2022.119229_b3) 2021; 58
Vázquez-Leal (10.1016/j.applthermaleng.2022.119229_b28) 2012; 2012
10.1016/j.applthermaleng.2022.119229_b11
Perez (10.1016/j.applthermaleng.2022.119229_b4) 1979; 3
10.1016/j.applthermaleng.2022.119229_b14
10.1016/j.applthermaleng.2022.119229_b56
10.1016/j.applthermaleng.2022.119229_b13
(10.1016/j.applthermaleng.2022.119229_b52) 2011
10.1016/j.applthermaleng.2022.119229_b57
Sielemann (10.1016/j.applthermaleng.2022.119229_b29) 2011
10.1016/j.applthermaleng.2022.119229_b16
Elmqvist (10.1016/j.applthermaleng.2022.119229_b43) 2021
Simpson (10.1016/j.applthermaleng.2022.119229_b7) 2014; 50
Marelli (10.1016/j.applthermaleng.2022.119229_b15) 2016; 112
Remond (10.1016/j.applthermaleng.2022.119229_b27) 2015
Lemmon (10.1016/j.applthermaleng.2022.119229_b58) 2018
Diango (10.1016/j.applthermaleng.2022.119229_b23) 2011; 36
Deligant (10.1016/j.applthermaleng.2022.119229_b10) 2012; 39
Zimmer (10.1016/j.applthermaleng.2022.119229_b45) 2019
Ma (10.1016/j.applthermaleng.2022.119229_b35) 2021
Touhami (10.1016/j.applthermaleng.2022.119229_b6) 2017
Liu (10.1016/j.applthermaleng.2022.119229_b66) 2022
Batteh (10.1016/j.applthermaleng.2022.119229_b40) 2008
Furuichi (10.1016/j.applthermaleng.2022.119229_b47) 2015; 27
Keyes (10.1016/j.applthermaleng.2022.119229_b36) 2006; 46
10.1016/j.applthermaleng.2022.119229_b20
Sirakov (10.1016/j.applthermaleng.2022.119229_b21) 2012; 135
10.1016/j.applthermaleng.2022.119229_b26
Dibelius (10.1016/j.applthermaleng.2022.119229_b50) 2015
Guenat (10.1016/j.applthermaleng.2022.119229_b62) 2019; 62
Casey (10.1016/j.applthermaleng.2022.119229_b18) 2013
The Modelica Association (10.1016/j.applthermaleng.2022.119229_b41) 2017
Northrop (10.1016/j.applthermaleng.2022.119229_b51) 1988; 9
Neumayr (10.1016/j.applthermaleng.2022.119229_b44) 2019
Lienhard (10.1016/j.applthermaleng.2022.119229_b48) 2020
Hairer (10.1016/j.applthermaleng.2022.119229_b31) 2010
Bell (10.1016/j.applthermaleng.2022.119229_b59) 2014; 53
Li (10.1016/j.applthermaleng.2022.119229_b61) 2019
10.1016/j.applthermaleng.2022.119229_b32
Baines (10.1016/j.applthermaleng.2022.119229_b12) 2010; 132
Qi (10.1016/j.applthermaleng.2022.119229_b8) 2014
Vieira (10.1016/j.applthermaleng.2022.119229_b34) 2001; 25
Lüdtke (10.1016/j.applthermaleng.2022.119229_b17) 2004
Pantelides (10.1016/j.applthermaleng.2022.119229_b33) 1988; 9
Roberts (10.1016/j.applthermaleng.2022.119229_b25) 1986
Rosset (10.1016/j.applthermaleng.2022.119229_b54) 2020; 142
Nerg (10.1016/j.applthermaleng.2022.119229_b49) 2008; 55
Schiffmann (10.1016/j.applthermaleng.2022.119229_b1) 2020; 109
References_xml – volume: 39
  start-page: 388
  year: 2012
  end-page: 394
  ident: b10
  article-title: Experimental identification of turbocharger mechanical friction losses
  publication-title: Energy
– reference: Multibody
– year: 2008
  ident: b55
  article-title: Integrated Design, Optimization and Experimental Investigation of a Direct Driven Turbocompressor for Domestic Heat Pumps
– volume: 46
  start-page: 433
  year: 2006
  end-page: 442
  ident: b36
  article-title: Implicit solvers for large-scale nonlinear problems
  publication-title: J. Phys. Conf. Ser.
– reference: J.R. Serrano, P. Olmeda, F.J. Arnau, A. Dombrovsky, L. Smith, Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes, 86 (2015) 204–218.
– volume: 58
  start-page: 479
  year: 2013
  end-page: 489
  ident: b39
  article-title: Modelica-based modeling and simulation of a twin screw compressor for heat pump applications
  publication-title: Appl. Therm. Eng.
– volume: 142
  year: 2020
  ident: b22
  article-title: Theoretical and experimental investigation of a small-scale, high-speed, and oil-free radial anode off-gas recirculation fan for solid oxide fuel cell systems
  publication-title: J. Eng. Gas Turbines Power
– volume: 58
  start-page: 346
  year: 2021
  end-page: 361
  ident: b3
  article-title: Review of digital twin about concepts, technologies, and industrial applications
  publication-title: J. Manuf. Syst.
– year: 2017
  ident: b41
  article-title: Modelica - A Unified Object-Oriented Language for Physical Systems Modeling -Language Specification Version
– year: 2017
  ident: b19
  article-title: Correcting turbocharger performance measurements for heat transfer and friction
– start-page: 73
  year: 2021
  end-page: 86
  ident: b43
  article-title: Modia - Equation based modeling and domain specific algorithms
  publication-title: Modelica Conferences
– year: 2004
  ident: b17
  article-title: Process Centrifugal Compressors
– volume: 25
  start-page: 1299
  year: 2001
  end-page: 1311
  ident: b34
  article-title: Direct methods for consistent initialization of DAE systems
  publication-title: Comput. Chem. Eng.
– volume: 132
  year: 2010
  ident: b12
  article-title: The analysis of heat transfer in automotive turbochargers
  publication-title: J. Eng. Gas Turbines Power
– start-page: pp
  year: 2017
  end-page: 1
  ident: b6
  article-title: Lumped parameter thermal model of permanent magnet synchronous machines
  publication-title: Electrimacs 2017
– reference: J. Pyrhonen, T. Jokinen, V. Hrabovcova, Design of Rotating Electrical Machines, second ed., Wiley, URL:.
– year: 2019
  ident: b61
  article-title: Fast calculation of refrigerant properties in vapor compression cycles using spline-based table look-up method (SBTL)
– start-page: 77
  year: 2019
  end-page: 80
  ident: b45
  article-title: Are differential-algebraic equations the right tool for the object-oriented modeling of physical systems?
  publication-title: Proceedings of the 9th International Workshop on Equation-Based Object-Oriented Modeling Languages and Tools
– reference: A. Romagnoli, A. Manivannan, S. Rajoo, M.S. Chiong, A. Feneley, A. Pesiridis, R.F. Martinez-Botas, A review of heat transfer in turbochargers, 79 (2017) 1442–1460.
– start-page: 517
  year: 2015
  end-page: 526
  ident: b27
  article-title: Simulation of piping 3D designs powered by modelica
– start-page: 1
  year: 2013
  end-page: 13
  ident: b18
  article-title: The design of ultra-high-speed miniature centrifugal compressors
  publication-title: European Conference on Turbomachinery Fluid Dynamics and Thermodynamics ETC, Vol. 10
– year: 1986
  ident: b25
  article-title: The Application of an Induction Motor Thermal Model to Motor Protection and Other Functions
– reference: M. Cormerais, J.-F. Hetet, P. Chesse, A. Maiboom, Heat Transfer Analysis in a Turbocharger Compressor: Modeling and Experiments, Technical Report, 2006.
– volume: 138
  start-page: 205
  year: 1991
  end-page: 218
  ident: b5
  article-title: Lumped parameter thermal model for electrical machines of TEFC design
  publication-title: IEE Proc. B - Electr. Power Appl.
– volume: 135
  year: 2012
  ident: b21
  article-title: Evaluation of heat transfer effects on turbocharger performance
  publication-title: J. Turbomach.
– volume: 9
  start-page: 19
  year: 1988
  end-page: 26
  ident: b51
  article-title: Heat transfer measurements in rotating-disc systems part 1: The free disc
  publication-title: Int. J. Heat Fluid Flow
– volume: 53
  start-page: 2498
  year: 2014
  end-page: 2508
  ident: b59
  article-title: Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop
  publication-title: Ind. Eng. Chem. Res.
– year: 1967
  ident: b53
  article-title: Luftreibungsverluste bei Elektrischen Maschinen kleiner Baugrosse
– reference: Reference, Natick, Massachusetts, United State, 2021, URL:.
– reference: Reference Version 5.2, Natick, Massachusetts, United State, 2021, URL:.
– volume: 365
  year: 2020
  ident: b38
  article-title: Modeling and simulation of large-scale systems: A systematic comparison of modeling paradigms
  publication-title: Appl. Math. Comput.
– start-page: 383
  year: 2019
  end-page: 392
  ident: b44
  article-title: Algorithms for component-based 3D modeling
  publication-title: Proceedings of the 13th International Modelica Conference
– volume: 14
  start-page: 5652
  year: 2021
  ident: b9
  article-title: Lumped-parameters thermal network of PM synchronous machines for automotive brake-by-wire systems
  publication-title: Energies
– reference: H. Elmqvist, M. Otter, Methods for tearing systems of equations in object-oriented modeling, in: Proceedings ESM, Vol. 94, 1994, pp. 1–3.
– volume: 62
  start-page: 1041
  year: 2019
  end-page: 1050
  ident: b62
  article-title: Multi-objective optimization of grooved gas journal bearings for robustness in manufacturing tolerances
  publication-title: Tribol. Trans.
– volume: 2012
  year: 2012
  ident: b28
  article-title: Modified HPMs inspired by homotopy continuation methods
  publication-title: Math. Probl. Eng.
– start-page: 651
  year: 2014
  end-page: 657
  ident: b8
  article-title: Methodical considerations for setting up space-resolved lumped-parameter thermal models for electrical machines
  publication-title: 2014 17th International Conference on Electrical Machines and Systems
– volume: 27
  year: 2015
  ident: b47
  article-title: Friction factor and mean velocity profile for pipe flow at high Reynolds numbers
  publication-title: Phys. Fluids
– volume: 6
  start-page: 1053
  year: 1963
  end-page: 1062
  ident: b46
  article-title: Measurements of convective heat transfer from a horizontal cylinder rotating in a tank of water
  publication-title: Int. J. Heat Mass Transfer
– year: 2015
  ident: b2
  article-title: Principles of object oriented modeling and simulation with modelica 3.3: A cyber-physical approach
– volume: 87
  start-page: 1950
  year: 2010
  end-page: 1974
  ident: b30
  article-title: Solution of the differential algebraic equations via homotopy perturbation method and their engineering applications
  publication-title: Int. J. Comput. Math.
– year: 2011
  ident: b52
  publication-title: Advances in Gas Turbine Technology
– year: 2015
  ident: b50
  publication-title: Heat Transfer From a Rotating Disc
– volume: 112
  start-page: 264
  year: 2016
  end-page: 272
  ident: b15
  article-title: Evaluation of heat transfer effects in small turbochargers by theoretical model and its experimental validation
  publication-title: Energy
– year: 2008
  ident: b40
  article-title: Detailed simulation of turbocharged engines with modelica
– volume: 3
  start-page: 285
  year: 1979
  end-page: 303
  ident: b4
  article-title: A stationary thermal model for smooth air-gap rotating electric machines
  publication-title: Electr. Mach. Power Syst.
– volume: 55
  start-page: 3543
  year: 2008
  end-page: 3554
  ident: b49
  article-title: Thermal analysis of radial-flux electrical machines with a high power density
  publication-title: IEEE Trans. Ind. Electron.
– year: 2018
  ident: b58
  article-title: NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0
– volume: 31
  start-page: 363
  year: 2005
  end-page: 396
  ident: b37
  article-title: SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers
  publication-title: ACM Trans. Math. Softw.
– volume: 82
  start-page: 264
  year: 2017
  end-page: 279
  ident: b60
  article-title: Application of the new IAPWS Guideline on the fast and accurate calculation of steam and water properties with the Spline-Based Table Look-Up Method (SBTL) in RELAP-7
  publication-title: Kerntechnik
– reference: J.R. Serrano, P. Olmeda, F.J. Arnau, V. Samala, A holistic methodology to correct heat transfer and bearing friction losses from hot turbocharger maps in order to obtain adiabatic efficiency of the turbomachinery, 21 (2020) 1314–1335.
– volume: 50
  start-page: 269
  year: 2014
  end-page: 272
  ident: b7
  article-title: An accurate mesh-based equivalent circuit approach to thermal modeling
  publication-title: IEEE Trans. Magn.
– year: 2010
  ident: b31
  article-title: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems
– volume: 142
  year: 2020
  ident: b54
  article-title: Extended windage loss models for gas bearing supported spindles operated in dense gases
  publication-title: J. Eng. Gas Turbines Power
– volume: 9
  start-page: 213
  year: 1988
  end-page: 231
  ident: b33
  article-title: The consistent initialization of differential-algebraic systems
  publication-title: SIAM J. Sci. Stat. Comput.
– year: 2021
  ident: b35
  article-title: ModelingToolkit: A composable graph transformation system for equation-based modeling
– year: 2019
  ident: b65
  article-title: Integrated Design, Optimization, and Experimental Realization of a Steam-Driven Micro Recirculation Fan for Solid Oxide Fuel Cell Systems
– start-page: 589
  year: 2019
  end-page: 598
  ident: b42
  article-title: Thermodynamic property and fluid modeling with modern programming language construct
  publication-title: Proceedings of the 13th International Modelica Conference
– volume: 109
  start-page: 92
  year: 2020
  end-page: 104
  ident: b1
  article-title: Scale limitations of gas bearing supported turbocompressors for vapor compression cycles
  publication-title: Int. J. Refrig.
– year: 1992
  ident: b63
  article-title: Precision Machine Design
– year: 1979
  ident: b24
  article-title: A stationary thermal model for smooth air-gap rotating electric machines
– volume: 262
  year: 2020
  ident: b64
  article-title: Experimental characterization of a solid oxide fuel cell coupled to a steam-driven micro anode off-gas recirculation fan
  publication-title: Appl. Energy
– year: 2022
  ident: b66
  article-title: Design and experimental investigation of a herringbone grooved gas bearing supported turbocharger
  publication-title: Mech. Syst. Signal Process.
– reference: .
– volume: 36
  start-page: 2924
  year: 2011
  end-page: 2936
  ident: b23
  article-title: Application of exergy balances for the optimization of non-adiabatic small turbomachines operation
  publication-title: Energy
– reference: F. Payri, P. Olmeda, F.J. Arnau, A. Dombrovsky, L. Smith, External heat losses in small turbochargers: Model and experiments, 71 (2014) 534–546.
– reference: I. The MathWorks, Simscape
– year: 2020
  ident: b48
  article-title: A Heat Transfer Textbook
– start-page: 75
  year: 2011
  end-page: 85
  ident: b29
  article-title: Robust initialization of differential-algebraic equations using homotopy
  publication-title: 8th International Modelica Conference 2011. Proceedings
– volume: 58
  start-page: 346
  year: 2021
  ident: 10.1016/j.applthermaleng.2022.119229_b3
  article-title: Review of digital twin about concepts, technologies, and industrial applications
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2020.06.017
– ident: 10.1016/j.applthermaleng.2022.119229_b20
  doi: 10.4271/2006-01-0023
– year: 2018
  ident: 10.1016/j.applthermaleng.2022.119229_b58
– ident: 10.1016/j.applthermaleng.2022.119229_b32
– volume: 31
  start-page: 363
  issue: 3
  year: 2005
  ident: 10.1016/j.applthermaleng.2022.119229_b37
  article-title: SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/1089014.1089020
– ident: 10.1016/j.applthermaleng.2022.119229_b14
  doi: 10.1016/j.rser.2017.04.119
– ident: 10.1016/j.applthermaleng.2022.119229_b16
  doi: 10.1016/j.energy.2015.03.130
– year: 1967
  ident: 10.1016/j.applthermaleng.2022.119229_b53
– volume: 142
  issue: 4
  year: 2020
  ident: 10.1016/j.applthermaleng.2022.119229_b22
  article-title: Theoretical and experimental investigation of a small-scale, high-speed, and oil-free radial anode off-gas recirculation fan for solid oxide fuel cell systems
  publication-title: J. Eng. Gas Turbines Power
  doi: 10.1115/1.4045104
– start-page: 75
  year: 2011
  ident: 10.1016/j.applthermaleng.2022.119229_b29
  article-title: Robust initialization of differential-algebraic equations using homotopy
– volume: 25
  start-page: 1299
  issue: 9–10
  year: 2001
  ident: 10.1016/j.applthermaleng.2022.119229_b34
  article-title: Direct methods for consistent initialization of DAE systems
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(01)00702-5
– volume: 82
  start-page: 264
  issue: 3
  year: 2017
  ident: 10.1016/j.applthermaleng.2022.119229_b60
  article-title: Application of the new IAPWS Guideline on the fast and accurate calculation of steam and water properties with the Spline-Based Table Look-Up Method (SBTL) in RELAP-7
  publication-title: Kerntechnik
  doi: 10.3139/124.110802
– ident: 10.1016/j.applthermaleng.2022.119229_b26
– volume: 3
  start-page: 285
  issue: 3–4
  year: 1979
  ident: 10.1016/j.applthermaleng.2022.119229_b4
  article-title: A stationary thermal model for smooth air-gap rotating electric machines
  publication-title: Electr. Mach. Power Syst.
  doi: 10.1080/03616967908955346
– volume: 262
  year: 2020
  ident: 10.1016/j.applthermaleng.2022.119229_b64
  article-title: Experimental characterization of a solid oxide fuel cell coupled to a steam-driven micro anode off-gas recirculation fan
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114219
– volume: 132
  issue: 4
  year: 2010
  ident: 10.1016/j.applthermaleng.2022.119229_b12
  article-title: The analysis of heat transfer in automotive turbochargers
  publication-title: J. Eng. Gas Turbines Power
  doi: 10.1115/1.3204586
– volume: 135
  issue: 2
  year: 2012
  ident: 10.1016/j.applthermaleng.2022.119229_b21
  article-title: Evaluation of heat transfer effects on turbocharger performance
  publication-title: J. Turbomach.
  doi: 10.1115/1.4006608
– ident: 10.1016/j.applthermaleng.2022.119229_b13
  doi: 10.1177/1468087419834194
– volume: 9
  start-page: 213
  issue: 2
  year: 1988
  ident: 10.1016/j.applthermaleng.2022.119229_b33
  article-title: The consistent initialization of differential-algebraic systems
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0909014
– volume: 55
  start-page: 3543
  issue: 10
  year: 2008
  ident: 10.1016/j.applthermaleng.2022.119229_b49
  article-title: Thermal analysis of radial-flux electrical machines with a high power density
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2008.927403
– volume: 50
  start-page: 269
  issue: 2
  year: 2014
  ident: 10.1016/j.applthermaleng.2022.119229_b7
  article-title: An accurate mesh-based equivalent circuit approach to thermal modeling
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2013.2282047
– volume: 6
  start-page: 1053
  issue: 12
  year: 1963
  ident: 10.1016/j.applthermaleng.2022.119229_b46
  article-title: Measurements of convective heat transfer from a horizontal cylinder rotating in a tank of water
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(63)90006-1
– volume: 112
  start-page: 264
  year: 2016
  ident: 10.1016/j.applthermaleng.2022.119229_b15
  article-title: Evaluation of heat transfer effects in small turbochargers by theoretical model and its experimental validation
  publication-title: Energy
  doi: 10.1016/j.energy.2016.06.067
– volume: 27
  issue: 9
  year: 2015
  ident: 10.1016/j.applthermaleng.2022.119229_b47
  article-title: Friction factor and mean velocity profile for pipe flow at high Reynolds numbers
  publication-title: Phys. Fluids
  doi: 10.1063/1.4930987
– start-page: 73
  year: 2021
  ident: 10.1016/j.applthermaleng.2022.119229_b43
  article-title: Modia - Equation based modeling and domain specific algorithms
– start-page: pp
  year: 2017
  ident: 10.1016/j.applthermaleng.2022.119229_b6
  article-title: Lumped parameter thermal model of permanent magnet synchronous machines
– year: 1986
  ident: 10.1016/j.applthermaleng.2022.119229_b25
– start-page: 77
  year: 2019
  ident: 10.1016/j.applthermaleng.2022.119229_b45
  article-title: Are differential-algebraic equations the right tool for the object-oriented modeling of physical systems?
– start-page: 383
  year: 2019
  ident: 10.1016/j.applthermaleng.2022.119229_b44
  article-title: Algorithms for component-based 3D modeling
– volume: 46
  start-page: 433
  year: 2006
  ident: 10.1016/j.applthermaleng.2022.119229_b36
  article-title: Implicit solvers for large-scale nonlinear problems
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/46/1/060
– year: 1992
  ident: 10.1016/j.applthermaleng.2022.119229_b63
– start-page: 1
  year: 2013
  ident: 10.1016/j.applthermaleng.2022.119229_b18
  article-title: The design of ultra-high-speed miniature centrifugal compressors
– year: 2017
  ident: 10.1016/j.applthermaleng.2022.119229_b19
– year: 2021
  ident: 10.1016/j.applthermaleng.2022.119229_b35
– volume: 9
  start-page: 19
  issue: 1
  year: 1988
  ident: 10.1016/j.applthermaleng.2022.119229_b51
  article-title: Heat transfer measurements in rotating-disc systems part 1: The free disc
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/0142-727X(88)90026-4
– start-page: 651
  year: 2014
  ident: 10.1016/j.applthermaleng.2022.119229_b8
  article-title: Methodical considerations for setting up space-resolved lumped-parameter thermal models for electrical machines
– volume: 109
  start-page: 92
  year: 2020
  ident: 10.1016/j.applthermaleng.2022.119229_b1
  article-title: Scale limitations of gas bearing supported turbocompressors for vapor compression cycles
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2019.09.019
– ident: 10.1016/j.applthermaleng.2022.119229_b57
– year: 2017
  ident: 10.1016/j.applthermaleng.2022.119229_b41
– volume: 2012
  year: 2012
  ident: 10.1016/j.applthermaleng.2022.119229_b28
  article-title: Modified HPMs inspired by homotopy continuation methods
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2012/309123
– volume: 36
  start-page: 2924
  issue: 5
  year: 2011
  ident: 10.1016/j.applthermaleng.2022.119229_b23
  article-title: Application of exergy balances for the optimization of non-adiabatic small turbomachines operation
  publication-title: Energy
  doi: 10.1016/j.energy.2011.02.035
– year: 1979
  ident: 10.1016/j.applthermaleng.2022.119229_b24
– year: 2019
  ident: 10.1016/j.applthermaleng.2022.119229_b65
– volume: 14
  start-page: 5652
  issue: 18
  year: 2021
  ident: 10.1016/j.applthermaleng.2022.119229_b9
  article-title: Lumped-parameters thermal network of PM synchronous machines for automotive brake-by-wire systems
  publication-title: Energies
  doi: 10.3390/en14185652
– year: 2019
  ident: 10.1016/j.applthermaleng.2022.119229_b61
– year: 2020
  ident: 10.1016/j.applthermaleng.2022.119229_b48
– volume: 365
  year: 2020
  ident: 10.1016/j.applthermaleng.2022.119229_b38
  article-title: Modeling and simulation of large-scale systems: A systematic comparison of modeling paradigms
  publication-title: Appl. Math. Comput.
– volume: 87
  start-page: 1950
  issue: 9
  year: 2010
  ident: 10.1016/j.applthermaleng.2022.119229_b30
  article-title: Solution of the differential algebraic equations via homotopy perturbation method and their engineering applications
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160802545908
– year: 2010
  ident: 10.1016/j.applthermaleng.2022.119229_b31
– volume: 58
  start-page: 479
  issue: 1
  year: 2013
  ident: 10.1016/j.applthermaleng.2022.119229_b39
  article-title: Modelica-based modeling and simulation of a twin screw compressor for heat pump applications
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2013.04.020
– ident: 10.1016/j.applthermaleng.2022.119229_b11
  doi: 10.1016/j.energy.2014.04.096
– volume: 138
  start-page: 205
  issue: 5
  year: 1991
  ident: 10.1016/j.applthermaleng.2022.119229_b5
  article-title: Lumped parameter thermal model for electrical machines of TEFC design
  publication-title: IEE Proc. B - Electr. Power Appl.
  doi: 10.1049/ip-b.1991.0025
– year: 2004
  ident: 10.1016/j.applthermaleng.2022.119229_b17
– start-page: 589
  year: 2019
  ident: 10.1016/j.applthermaleng.2022.119229_b42
  article-title: Thermodynamic property and fluid modeling with modern programming language construct
– ident: 10.1016/j.applthermaleng.2022.119229_b56
– year: 2022
  ident: 10.1016/j.applthermaleng.2022.119229_b66
  article-title: Design and experimental investigation of a herringbone grooved gas bearing supported turbocharger
  publication-title: Mech. Syst. Signal Process.
– year: 2015
  ident: 10.1016/j.applthermaleng.2022.119229_b50
– volume: 39
  start-page: 388
  issue: 1
  year: 2012
  ident: 10.1016/j.applthermaleng.2022.119229_b10
  article-title: Experimental identification of turbocharger mechanical friction losses
  publication-title: Energy
  doi: 10.1016/j.energy.2011.12.049
– start-page: 517
  year: 2015
  ident: 10.1016/j.applthermaleng.2022.119229_b27
– volume: 142
  issue: 6
  year: 2020
  ident: 10.1016/j.applthermaleng.2022.119229_b54
  article-title: Extended windage loss models for gas bearing supported spindles operated in dense gases
  publication-title: J. Eng. Gas Turbines Power
  doi: 10.1115/1.4047124
– year: 2008
  ident: 10.1016/j.applthermaleng.2022.119229_b40
– year: 2011
  ident: 10.1016/j.applthermaleng.2022.119229_b52
– year: 2015
  ident: 10.1016/j.applthermaleng.2022.119229_b2
– volume: 62
  start-page: 1041
  issue: 6
  year: 2019
  ident: 10.1016/j.applthermaleng.2022.119229_b62
  article-title: Multi-objective optimization of grooved gas journal bearings for robustness in manufacturing tolerances
  publication-title: Tribol. Trans.
  doi: 10.1080/10402004.2019.1642547
– year: 2008
  ident: 10.1016/j.applthermaleng.2022.119229_b55
– volume: 53
  start-page: 2498
  issue: 6
  year: 2014
  ident: 10.1016/j.applthermaleng.2022.119229_b59
  article-title: Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie4033999
SSID ssj0012874
Score 2.4332933
Snippet High-speed turbomachinery is commonly designed to achieve high power densities. Limited space for active cooling results in a challenging thermal management. A...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119229
SubjectTerms 1D-networks
Declarative programming
Dynamic modeling
Gas lubricated bearings
Thermal management
Turbomachinery
Title Thermal management for gas lubricated, high-speed turbomachinery
URI https://dx.doi.org/10.1016/j.applthermaleng.2022.119229
Volume 218
WOSCitedRecordID wos000875850000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1359-4311
  databaseCode: AIEXJ
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0012874
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZdOsb2MLpLWXcpfuhbZxNdHEnsYSsjazdGGayDvBlJkUrS1A1NMvrzdyzJl3QbZIO-GCPQseXz-dx0dA5CB4prUAoSp4M-1ynDBKfCUJ3qgTZM5S5X475vNsFPT8VoJL_FHfyFbyfAy1Lc3Mj5nbIaxoDZ1dHZf2B3QxQG4B6YDldgO1w3ZTwI21nMS_V7_VUq4blaHM5W2ncFCgHOqlJxupiD-joEvaOvLn1e5a0z0rWVuoxUbVu_sI3Pgkb1Edev2TBrMnwmK5-_1wwcTycX4fxZM_QdHujcZd2nOeuGIAj1IYi8IzVpLlOwRHBXrJIoV4NgxGBJhtDGbzI7hA-mWbVjHxcDawHXnZCsnbZeKvuWCmsSC-uctWmxTq2oqBWB2j20TXguRQ9tH30ejr40m05V6X_vn8fVPEAHbTrg39_uzxZNx0o520GPo3uRHAVYPEFbtnyKHnWKTj5DHyJAkhYgCQAkAYAkLUDeJi08knV4PEc_Pg3PPp6ksY9GaqhgS9Bncsw5Zcwx5YTQmDsKfrwjyiksNWfSjjl1nGlM-loJ7LiRlJqBksrQsaW7qFdelfYFSjgzREtHnQE_2lolhcBWm6qIlWBm4PbQu_pbFCYWma96ncyKTTizh_Jm9jwUW9lw3vv6sxfRcAwGYQEY24jCy_988iv0sP0hXqPe8npl36D75udysrjejwD7BfMbmPs
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+management+for+gas+lubricated%2C+high-speed+turbomachinery&rft.jtitle=Applied+thermal+engineering&rft.au=Olmedo%2C+L.E.&rft.au=Liu%2C+W.&rft.au=Gjika%2C+K.&rft.au=Schiffmann%2C+J.&rft.date=2023-01-05&rft.issn=1359-4311&rft.volume=218&rft.spage=119229&rft_id=info:doi/10.1016%2Fj.applthermaleng.2022.119229&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2022_119229
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon