Towards optimal adsorption heat transformers for heat upgrading: Learnings from a validated full-scale model

Adsorption heat transformers (AdHTs) have recently been proposed to decarbonize industrial heat supply by upgrading low-temperature waste heat to higher temperatures. An AdHT’s performance strongly depends on equilibrium and kinetic properties of the selected working pair, component and cycle design...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied thermal engineering Ročník 255; s. 123871
Hlavní autoři: Engelpracht, Mirko, Rezo, Daniel, Postweiler, Patrik, Lache, Marten, Henninger, Matthias, Seiler, Jan, Bardow, André
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.10.2024
Témata:
ISSN:1359-4311
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Adsorption heat transformers (AdHTs) have recently been proposed to decarbonize industrial heat supply by upgrading low-temperature waste heat to higher temperatures. An AdHT’s performance strongly depends on equilibrium and kinetic properties of the selected working pair, component and cycle designs, operating temperatures, volume flow rates, and phase times. Exploring this multi-dimensional design space requires a validated full-scale dynamic AdHT model. Due to the lack of such a model, the optimal design and achievable performance of AdHTs are unknown. Here, we address this gap in two steps: First, we developed, calibrated, and validated a dynamic AdHT model for our one-bed prototype, which uses silica gel 123 & water. The model accurately predicted thermal efficiency and power density, with average deviations below 8.1% from measurements. Second, we successively optimized the process design for heat upgrading from 90 to 110 °C and releasing condensation heat at 25 °C. Improvements in the component designs increased the maximal thermal efficiency by 117 % to 0.35 J(th)J(th)−1 (43 % of the maximal Carnot efficiency) and the maximal power density by 79 % to 304 Wkg−1. Vapor mass recovery increased thermal efficiency the most. Combined heat and vapor mass recovery increased power density the most. The resulting AdHT also achieved an electrical efficiency of up to 40 J(th)J(el)−1. Thus, an AdHT can compete with a high-temperature heat pump from a thermodynamic perspective, encouraging further research into AdHTs. [Display omitted] •First full-scale dynamic model of an adsorption heat transformer (AdHT).•Efficiency COP and power density SHP are predicted with 8.1% deviation.•High performance requires casings tightly fit to the heat exchangers.•Power density SHP improves by combined heat and vapor mass recovery.•Optimal AdHT designs can exceed the efficiency EER of high-temperature heat pumps.
AbstractList Adsorption heat transformers (AdHTs) have recently been proposed to decarbonize industrial heat supply by upgrading low-temperature waste heat to higher temperatures. An AdHT’s performance strongly depends on equilibrium and kinetic properties of the selected working pair, component and cycle designs, operating temperatures, volume flow rates, and phase times. Exploring this multi-dimensional design space requires a validated full-scale dynamic AdHT model. Due to the lack of such a model, the optimal design and achievable performance of AdHTs are unknown. Here, we address this gap in two steps: First, we developed, calibrated, and validated a dynamic AdHT model for our one-bed prototype, which uses silica gel 123 & water. The model accurately predicted thermal efficiency and power density, with average deviations below 8.1% from measurements. Second, we successively optimized the process design for heat upgrading from 90 to 110 °C and releasing condensation heat at 25 °C. Improvements in the component designs increased the maximal thermal efficiency by 117 % to 0.35 J(th)J(th)−1 (43 % of the maximal Carnot efficiency) and the maximal power density by 79 % to 304 Wkg−1. Vapor mass recovery increased thermal efficiency the most. Combined heat and vapor mass recovery increased power density the most. The resulting AdHT also achieved an electrical efficiency of up to 40 J(th)J(el)−1. Thus, an AdHT can compete with a high-temperature heat pump from a thermodynamic perspective, encouraging further research into AdHTs. [Display omitted] •First full-scale dynamic model of an adsorption heat transformer (AdHT).•Efficiency COP and power density SHP are predicted with 8.1% deviation.•High performance requires casings tightly fit to the heat exchangers.•Power density SHP improves by combined heat and vapor mass recovery.•Optimal AdHT designs can exceed the efficiency EER of high-temperature heat pumps.
ArticleNumber 123871
Author Postweiler, Patrik
Henninger, Matthias
Rezo, Daniel
Lache, Marten
Seiler, Jan
Bardow, André
Engelpracht, Mirko
Author_xml – sequence: 1
  givenname: Mirko
  orcidid: 0000-0002-1743-1064
  surname: Engelpracht
  fullname: Engelpracht, Mirko
  email: mirko.engelpracht@ltt.rwth-aachen.de
  organization: Institute of Technical Thermodynamics (LTT), RWTH Aachen University, Schinkelstraße 8, 52062 Aachen, Germany
– sequence: 2
  givenname: Daniel
  orcidid: 0009-0005-8581-404X
  surname: Rezo
  fullname: Rezo, Daniel
  organization: Institute of Technical Thermodynamics (LTT), RWTH Aachen University, Schinkelstraße 8, 52062 Aachen, Germany
– sequence: 3
  givenname: Patrik
  orcidid: 0000-0003-2889-2023
  surname: Postweiler
  fullname: Postweiler, Patrik
  organization: Institute of Technical Thermodynamics (LTT), RWTH Aachen University, Schinkelstraße 8, 52062 Aachen, Germany
– sequence: 4
  givenname: Marten
  orcidid: 0000-0001-8896-0185
  surname: Lache
  fullname: Lache, Marten
  organization: Institute of Technical Thermodynamics (LTT), RWTH Aachen University, Schinkelstraße 8, 52062 Aachen, Germany
– sequence: 5
  givenname: Matthias
  orcidid: 0000-0003-1203-1026
  surname: Henninger
  fullname: Henninger, Matthias
  organization: Institute of Technical Thermodynamics (LTT), RWTH Aachen University, Schinkelstraße 8, 52062 Aachen, Germany
– sequence: 6
  givenname: Jan
  surname: Seiler
  fullname: Seiler, Jan
  organization: Energy & Process Systems Engineering (EPSE), ETH Zurich, Tannenstraße 3, 8092 Zurich, Switzerland
– sequence: 7
  givenname: André
  orcidid: 0000-0002-3831-0691
  surname: Bardow
  fullname: Bardow, André
  email: abardow@ethz.ch
  organization: Energy & Process Systems Engineering (EPSE), ETH Zurich, Tannenstraße 3, 8092 Zurich, Switzerland
BookMark eNqNkD1PwzAQhj0UibbwHzywJthJ2iSIBSoKSJVYymxd7Evryokj2y3i3-MqLDBVN9yX3ld3z4xMetsjIXecpZzx5f0hhWEwYY-uA4P9Ls1YVqQ8y6uST8iU54s6KXLOr8nM-wNjPKvKYkrM1n6BU57aIeiopKC8dbG2Pd0jBBoc9L61rkPnaczj9DjsHCjd7x7oBsH1sYpbZzsK9ARGKwioaHs0JvEy3kM7q9DckKsWjMfb3zwnn-uX7eot2Xy8vq-eNonMqyIkNYOy5nmGDao6hlItFLGtsGXIALBZyKqpK4l5yUreqrpZFBJUJbNmGft8Th5HX-ms9w5bMbj4nPsWnIkzLXEQf2mJMy0x0ory539yqQOckUQY2lxqsh5NMD560uiElxp7iUo7lEEoqy8z-gFPCpsa
CitedBy_id crossref_primary_10_1016_j_enconman_2025_119584
crossref_primary_10_1016_j_ijthermalsci_2025_109795
Cites_doi 10.1016/0021-9797(67)90195-6
10.1016/j.ijheatmasstransfer.2024.125384
10.1016/j.ijrefrig.2018.12.015
10.1016/j.applthermaleng.2021.116986
10.1016/j.rser.2022.112106
10.3390/en12214037
10.1016/j.applthermaleng.2015.08.021
10.1016/j.energy.2018.10.132
10.3390/e22080808
10.1109/TSMC.1971.4308298
10.1016/j.applthermaleng.2018.10.040
10.1016/j.applthermaleng.2023.121816
10.1016/j.apenergy.2017.11.015
10.1016/j.applthermaleng.2022.118581
10.1016/j.applthermaleng.2015.12.002
10.1016/j.applthermaleng.2018.05.094
10.1016/j.applthermaleng.2021.117689
10.3384/ecp14096875
10.1016/j.energy.2016.01.103
10.1016/j.applthermaleng.2015.06.016
10.1016/j.icheatmasstransfer.2023.106774
10.3390/app11083389
10.1016/S1290-0729(99)80083-0
10.1016/j.joule.2020.12.007
10.1016/j.applthermaleng.2020.115848
10.1002/ente.202200251
10.1007/s10311-020-01059-w
10.1016/j.energy.2019.06.169
10.1016/j.energy.2019.04.164
10.1016/j.energy.2024.131491
10.3384/ecp12076669
10.1134/S0040601518080098
10.1016/j.applthermaleng.2017.07.073
10.1016/j.apenergy.2021.117744
10.1002/ente.202000643
10.1007/s11708-017-0507-1
10.1016/j.ijrefrig.2022.04.015
10.1016/j.applthermaleng.2019.04.082
10.1016/j.energy.2021.121892
10.1134/S1810232818030086
10.1002/cite.202000244
10.1016/j.rser.2017.02.062
10.1063/1.1461829
10.1016/j.enconman.2017.12.099
10.1016/j.applthermaleng.2017.07.130
10.59327/IPCC/AR6-9789291691647
10.1007/s10973-022-11350-3
10.1016/j.ijrefrig.2014.12.016
10.3390/en13112904
10.1016/j.rser.2015.12.192
10.1016/0890-4332(90)90203-V
10.1134/S0040579518020069
10.1016/j.rser.2021.110757
10.1016/j.ijrefrig.2020.12.005
10.1063/1.3088050
10.1016/j.energy.2019.04.001
10.1063/1.4738955
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.applthermaleng.2024.123871
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_applthermaleng_2024_123871
S1359431124015394
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FGOYB
HZ~
R2-
~HD
ID FETCH-LOGICAL-c384t-90a79132ebed9d9dddfa432e8ef0e0aaeb5c8b98ce37071fd9b54cad8c2b671f3
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001275063000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1359-4311
IngestDate Sat Nov 29 03:21:13 EST 2025
Tue Nov 18 21:51:00 EST 2025
Sat Nov 09 16:00:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Energy efficiency ratio (EER)
Multi-objective optimization
Specific heating power (SHP)
Model calibration and validation
Dynamic modeling with Modelica
Coefficient of performance (COP)
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-90a79132ebed9d9dddfa432e8ef0e0aaeb5c8b98ce37071fd9b54cad8c2b671f3
ORCID 0000-0003-2889-2023
0009-0005-8581-404X
0000-0003-1203-1026
0000-0001-8896-0185
0000-0002-3831-0691
0000-0002-1743-1064
OpenAccessLink https://dx.doi.org/10.1016/j.applthermaleng.2024.123871
ParticipantIDs crossref_primary_10_1016_j_applthermaleng_2024_123871
crossref_citationtrail_10_1016_j_applthermaleng_2024_123871
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2024_123871
PublicationCentury 2000
PublicationDate 2024-10-15
PublicationDateYYYYMMDD 2024-10-15
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied thermal engineering
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gibelhaus, Postweiler, Bardow (b35) 2022; 139
Wagner, Pruß (b47) 2002; 31
Lanzerath (b54) 2014
Xu, Wang, Yang (b4) 2019; 176
Jiang, Hu, Wang, Deng, Cao, Wang (b70) 2022; 161
Engelpracht, Driesel, Nießen, Henninger, Seiler, Bardow (b10) 2022; 10
Gordeeva, Aristov (b13) 2019; 167
Girnik, Aristov (b16) 2019; 146
Gibelhaus (b34) 2021
Gibelhaus, Tangkrachang, Bau, Seiler, Bardow (b63) 2019; 185
Kosmadakis (b6) 2019; 156
Tokarev, Gordeeva, Grekova, Aristov (b21) 2018; 211
Tokarev, Girnik, Aristov (b24) 2022; 238
Schreiber (b64) 2017
U. Bau, F. Lanzerath, M. Gräber, S. Graf, H. Schreiber, N. Thielen, A. Bardow, Adsorption energy systems library - Modeling adsorption based chillers, heat pumps, thermal storages and desiccant systems, in: H. Tummescheit, K.-E. Årzén (Eds.), Proceedings of the 10th International Modelica Conference, in: Linköping Electronic Conference Proceedings, Modelica Association, Linköping, Sweden, 2014, pp. 875–883
TLK Thermo GmbH (b45) 2023
Fawzy, Osman, Doran, Rooney (b2) 2020; 18
Chandra, Patwardhan (b8) 1990; 10
Tokarev (b23) 2019; 12
Sah, Choudhury, Das, Sur (b53) 2017; 74
Schawe (b51) 2000
Huber, Perkins, Friend, Sengers, Assael, Metaxa, Miyagawa, Hellmann, Vogel (b49) 2012; 41
Tokarev, Gordeeva, Shkatulov, Aristov (b22) 2018; 159
Gordeeva, Tokarev, Aristov (b20) 2018; 52
Haimes, Lasdonm, Wismer (b55) 1971; SMC-1
Aristov (b12) 2020; 180
Henninger, Engelpracht, Tuchlinski, Ismail, Bardow, Seiler (b42) 2024; 236
Ye, Rupam, Islam, Saha (b26) 2024; 51
Corrales Ciganda, Cudok (b65) 2021; 193
LTT, RWTH Aachen University (b38) 2018
.
Schreiber, Lanzerath, Bardow (b40) 2018; 141
A. Pfeiffer, Optimization library for interactive multi-criteria optimization tasks, in: 9th International Modelica Conference, Munich, Germany, 2012, pp. 669–679, URL.
IPCC, in: Core Writing Team, H. Lee, J. Romero (Eds.), Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III To the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland, 2023, pp. 35–115
Bau, Hoseinpoori, Graf, Schreiber, Lanzerath, Kirches, Bardow (b43) 2017; 125
Aristov (b7) 2021; 236
Liu, Lu, Tao, Chen, Gong (b69) 2024; 299
Xu, Wang (b68) 2017; 11
Ziegler (b9) 1999; 38
Saren, Mitra, Miksik, Miyazaki, Ng, Thu (b32) 2024; 225
Girnik, Tokarev, Aristov (b18) 2020; 22
Frazzica, Palomba, Dawoud (b25) 2021; 11
Tokarev, Zlobin, Aristov (b17) 2019; 179
Velte, Laurenz, Leisner, Weber, Wittstadt, Füldner (b44) 2022; 212
Thiel, Stark (b3) 2021; 5
Engelpracht, Gibelhaus, Seiler, Graf, Nasruddin, Bardow (b33) 2021; 9
Graf, Lanzerath, Sapienza, Frazzica, Freni, Bardow (b41) 2016; 98
Cudok, Giannetti, Ciganda, Aoyama, Babu, Coronas, Fujii, Inoue, Saito, Yamaguchi, Ziegler (b66) 2021; 141
Bau (b62) 2018
Huber, Perkins, Laesecke, Friend, Sengers, Assael, Metaxa, Vogel, Mareš, Miyagawa (b48) 2009; 38
Saren, Mitra, Miyazaki, Ng, Thu (b29) 2022; 305
Wang, He, Chua (b60) 2015; 52
Aristov (b11) 2019; 105
Girnik, Aristov (b19) 2020; 13
Saren, Mitra, Miyazaki, Ng, Thu (b30) 2023; 148
Saren, Mitra, Miksik, Miyazaki, Ng, Thu (b31) 2023; 144
Seo, Kawakami, Miksik, Takata, Thu, Miyazaki (b27) 2021; 123
Rivera, Best, Cardoso, Romero (b67) 2015; 91
Lemmon, Bell, Huber, McLinden (b46) 2018
Voskresenskii, Okunev, Gordeeva (b15) 2018; 65
Dubinin (b50) 1967; 23
Scherle, Liedtke, Nieken (b61) 2022; 200
Okunev, Voskresensky, Girnik, Aristov (b14) 2018; 27
He, Bai, Huang, Li, Huhetaoli, Kobayashi, Osaka, Deng (b57) 2017; 126
Simmler, Brunner, Heinemann, Schwab, Kumaran, Mukhopadhyaya, Quénard, Sallée, Noller, Kücükpinar-Niarchos, Stramm, Tenpierik, Cauberg, Erb (b59) 2005
Schreiber, Graf, Lanzerath, Bardow (b39) 2015; 89
Hamamoto (b28) 2021; 39
Dassault Systèmes (b36) 2022
Forman, Muritala, Pardemann, Meyer (b5) 2016; 57
Pesaran, Lee, Hwang, Radermacher, Chun (b52) 2016; 100
Maćkowiak, Maćkowiak (b58) 2021; 93
Girnik (10.1016/j.applthermaleng.2024.123871_b19) 2020; 13
Aristov (10.1016/j.applthermaleng.2024.123871_b11) 2019; 105
Huber (10.1016/j.applthermaleng.2024.123871_b48) 2009; 38
Gordeeva (10.1016/j.applthermaleng.2024.123871_b13) 2019; 167
Voskresenskii (10.1016/j.applthermaleng.2024.123871_b15) 2018; 65
Sah (10.1016/j.applthermaleng.2024.123871_b53) 2017; 74
10.1016/j.applthermaleng.2024.123871_b56
Xu (10.1016/j.applthermaleng.2024.123871_b4) 2019; 176
Gordeeva (10.1016/j.applthermaleng.2024.123871_b20) 2018; 52
Lemmon (10.1016/j.applthermaleng.2024.123871_b46) 2018
Liu (10.1016/j.applthermaleng.2024.123871_b69) 2024; 299
TLK Thermo GmbH (10.1016/j.applthermaleng.2024.123871_b45) 2023
Scherle (10.1016/j.applthermaleng.2024.123871_b61) 2022; 200
Gibelhaus (10.1016/j.applthermaleng.2024.123871_b34) 2021
10.1016/j.applthermaleng.2024.123871_b1
Wang (10.1016/j.applthermaleng.2024.123871_b60) 2015; 52
Cudok (10.1016/j.applthermaleng.2024.123871_b66) 2021; 141
Pesaran (10.1016/j.applthermaleng.2024.123871_b52) 2016; 100
LTT, RWTH Aachen University (10.1016/j.applthermaleng.2024.123871_b38) 2018
Maćkowiak (10.1016/j.applthermaleng.2024.123871_b58) 2021; 93
Fawzy (10.1016/j.applthermaleng.2024.123871_b2) 2020; 18
Engelpracht (10.1016/j.applthermaleng.2024.123871_b33) 2021; 9
Velte (10.1016/j.applthermaleng.2024.123871_b44) 2022; 212
Haimes (10.1016/j.applthermaleng.2024.123871_b55) 1971; SMC-1
Jiang (10.1016/j.applthermaleng.2024.123871_b70) 2022; 161
Tokarev (10.1016/j.applthermaleng.2024.123871_b24) 2022; 238
Lanzerath (10.1016/j.applthermaleng.2024.123871_b54) 2014
Hamamoto (10.1016/j.applthermaleng.2024.123871_b28) 2021; 39
Gibelhaus (10.1016/j.applthermaleng.2024.123871_b35) 2022; 139
Saren (10.1016/j.applthermaleng.2024.123871_b32) 2024; 225
Chandra (10.1016/j.applthermaleng.2024.123871_b8) 1990; 10
Kosmadakis (10.1016/j.applthermaleng.2024.123871_b6) 2019; 156
Rivera (10.1016/j.applthermaleng.2024.123871_b67) 2015; 91
Saren (10.1016/j.applthermaleng.2024.123871_b31) 2023; 144
He (10.1016/j.applthermaleng.2024.123871_b57) 2017; 126
Saren (10.1016/j.applthermaleng.2024.123871_b30) 2023; 148
Bau (10.1016/j.applthermaleng.2024.123871_b43) 2017; 125
Corrales Ciganda (10.1016/j.applthermaleng.2024.123871_b65) 2021; 193
Tokarev (10.1016/j.applthermaleng.2024.123871_b21) 2018; 211
Tokarev (10.1016/j.applthermaleng.2024.123871_b17) 2019; 179
Aristov (10.1016/j.applthermaleng.2024.123871_b12) 2020; 180
Huber (10.1016/j.applthermaleng.2024.123871_b49) 2012; 41
Frazzica (10.1016/j.applthermaleng.2024.123871_b25) 2021; 11
Girnik (10.1016/j.applthermaleng.2024.123871_b18) 2020; 22
Girnik (10.1016/j.applthermaleng.2024.123871_b16) 2019; 146
10.1016/j.applthermaleng.2024.123871_b37
Simmler (10.1016/j.applthermaleng.2024.123871_b59) 2005
Graf (10.1016/j.applthermaleng.2024.123871_b41) 2016; 98
Thiel (10.1016/j.applthermaleng.2024.123871_b3) 2021; 5
Aristov (10.1016/j.applthermaleng.2024.123871_b7) 2021; 236
Tokarev (10.1016/j.applthermaleng.2024.123871_b22) 2018; 159
Engelpracht (10.1016/j.applthermaleng.2024.123871_b10) 2022; 10
Gibelhaus (10.1016/j.applthermaleng.2024.123871_b63) 2019; 185
Forman (10.1016/j.applthermaleng.2024.123871_b5) 2016; 57
Dassault Systèmes (10.1016/j.applthermaleng.2024.123871_b36) 2022
Ye (10.1016/j.applthermaleng.2024.123871_b26) 2024; 51
Okunev (10.1016/j.applthermaleng.2024.123871_b14) 2018; 27
Ziegler (10.1016/j.applthermaleng.2024.123871_b9) 1999; 38
Schawe (10.1016/j.applthermaleng.2024.123871_b51) 2000
Schreiber (10.1016/j.applthermaleng.2024.123871_b39) 2015; 89
Xu (10.1016/j.applthermaleng.2024.123871_b68) 2017; 11
Bau (10.1016/j.applthermaleng.2024.123871_b62) 2018
Schreiber (10.1016/j.applthermaleng.2024.123871_b64) 2017
Seo (10.1016/j.applthermaleng.2024.123871_b27) 2021; 123
Henninger (10.1016/j.applthermaleng.2024.123871_b42) 2024; 236
Tokarev (10.1016/j.applthermaleng.2024.123871_b23) 2019; 12
Wagner (10.1016/j.applthermaleng.2024.123871_b47) 2002; 31
Saren (10.1016/j.applthermaleng.2024.123871_b29) 2022; 305
Schreiber (10.1016/j.applthermaleng.2024.123871_b40) 2018; 141
Dubinin (10.1016/j.applthermaleng.2024.123871_b50) 1967; 23
References_xml – volume: 100
  start-page: 310
  year: 2016
  end-page: 320
  ident: b52
  article-title: Review article: Numerical simulation of adsorption heat pumps
  publication-title: Energy
– volume: 125
  start-page: 1565
  year: 2017
  end-page: 1576
  ident: b43
  article-title: Dynamic optimisation of adsorber-bed designs ensuring optimal control
  publication-title: Appl. Therm. Eng.
– volume: SMC-1
  start-page: 296
  year: 1971
  end-page: 297
  ident: b55
  article-title: On a bicriterion formulation of the problems of integrated system identification and system optimization
  publication-title: IEEE Trans. Syst., Man, Cybern.
– volume: 52
  start-page: 32
  year: 2015
  end-page: 41
  ident: b60
  article-title: Performance simulation of multi-bed silica gel-water adsorption chillers
  publication-title: Int. J. Refrig.
– year: 2022
  ident: b36
  article-title: Dymola systems engineering - Multi-engineering modeling and simulation based on Modelica and FMI
– year: 2000
  ident: b51
  article-title: Theoretical and Experimental Investigations of an Adsorption Heat Pump with Heat Transfer Between Two Adsorbers
– volume: 176
  start-page: 1037
  year: 2019
  end-page: 1043
  ident: b4
  article-title: Perspectives for low-temperature waste heat recovery
  publication-title: Energy
– volume: 13
  start-page: 2904
  year: 2020
  ident: b19
  article-title: An aqueous CaCl
  publication-title: Energies
– volume: 126
  start-page: 37
  year: 2017
  end-page: 42
  ident: b57
  article-title: Study on the performance of compact adsorption chiller with vapor valves
  publication-title: Appl. Therm. Eng.
– year: 2023
  ident: b45
  article-title: TILMedia Suite
– volume: 225
  year: 2024
  ident: b32
  article-title: Investigating maximum temperature lift potential of the adsorption heat transformer cycle using IUPAC classified isotherms
  publication-title: Int. J. Heat Mass Transf.
– volume: 193
  year: 2021
  ident: b65
  article-title: Performance evaluation of an absorption heat transformer for industrial heat waste recovery using the characteristic equation
  publication-title: Appl. Therm. Eng.
– volume: 212
  year: 2022
  ident: b44
  article-title: Experimental results of a gas fired adsorption heat pump and simulative prediction of annual performance in a multi-family house
  publication-title: Appl. Therm. Eng.
– year: 2017
  ident: b64
  article-title: Experiments and Validated Models for Adsorption Thermal Energy Storage in Industrial and Residential Applications
– volume: 141
  year: 2021
  ident: b66
  article-title: Absorption heat transformer - state-of-the-art of industrial applications
  publication-title: Renew. Sustain. Energy Rev.
– volume: 238
  year: 2022
  ident: b24
  article-title: Adsorptive transformation of ultralow-temperature heat using a “Heat from Cold” cycle
  publication-title: Energy
– volume: 11
  start-page: 414
  year: 2017
  end-page: 436
  ident: b68
  article-title: Absorption heat pump for waste heat reuse: Current states and future development
  publication-title: Front. Energy
– volume: 179
  start-page: 542
  year: 2019
  end-page: 548
  ident: b17
  article-title: A new version of the large pressure jump (T-LPJ) method for dynamic study of pressure-initiated adsorptive cycles for heat storage and transformation
  publication-title: Energy
– volume: 305
  year: 2022
  ident: b29
  article-title: A novel hybrid adsorption heat transformer – multi-effect distillation (AHT-MED) system for improved performance and waste heat upgrade
  publication-title: Appl. Energy
– year: 2018
  ident: b38
  article-title: SorpLib – Adsorption Energy Systems Library
– year: 2021
  ident: b34
  article-title: A Model-Based Framework for Optimal Systems Integration of Adsorption Chillers
– reference: A. Pfeiffer, Optimization library for interactive multi-criteria optimization tasks, in: 9th International Modelica Conference, Munich, Germany, 2012, pp. 669–679, URL.
– volume: 167
  start-page: 440
  year: 2019
  end-page: 453
  ident: b13
  article-title: Adsorptive heat storage and amplification: New cycles and adsorbents
  publication-title: Energy
– volume: 74
  start-page: 364
  year: 2017
  end-page: 376
  ident: b53
  article-title: An overview of modelling techniques employed for performance simulation of low–grade heat operated adsorption cooling systems
  publication-title: Renew. Sustain. Energy Rev.
– reference: U. Bau, F. Lanzerath, M. Gräber, S. Graf, H. Schreiber, N. Thielen, A. Bardow, Adsorption energy systems library - Modeling adsorption based chillers, heat pumps, thermal storages and desiccant systems, in: H. Tummescheit, K.-E. Årzén (Eds.), Proceedings of the 10th International Modelica Conference, in: Linköping Electronic Conference Proceedings, Modelica Association, Linköping, Sweden, 2014, pp. 875–883,
– volume: 51
  year: 2024
  ident: b26
  article-title: Study of metal–organic framework (MOF)/water pairs for adsorption heat transformer applications
  publication-title: Therm. Sci. Eng. Progress
– volume: 27
  start-page: 327
  year: 2018
  end-page: 338
  ident: b14
  article-title: Thermodynamic analysis of the new adsorption cycle “HeCol” for ambient heat upgrading: Ideal heat transfer
  publication-title: J. Eng. Thermophys.
– volume: 57
  start-page: 1568
  year: 2016
  end-page: 1579
  ident: b5
  article-title: Estimating the global waste heat potential
  publication-title: Renew. Sustain. Energy Rev.
– volume: 91
  start-page: 654
  year: 2015
  end-page: 670
  ident: b67
  article-title: A review of absorption heat transformers
  publication-title: Appl. Therm. Eng.
– volume: 38
  start-page: 101
  year: 2009
  end-page: 125
  ident: b48
  article-title: New international formulation for the viscosity of H
  publication-title: J. Phys. Chem. Ref. Data
– volume: 9
  year: 2021
  ident: b33
  article-title: Upgrading waste heat from 90 to 110 °C: The potential of adsorption heat transformation
  publication-title: Energy Technol.
– volume: 146
  start-page: 608
  year: 2019
  end-page: 612
  ident: b16
  article-title: A HeCol cycle for upgrading the ambient heat: The dynamic verification of desorption stage
  publication-title: Appl. Therm. Eng.
– volume: 39
  start-page: 97
  year: 2021
  ident: b28
  article-title: Thermodynamic analysis of adsorption heat transformer cycle using low heat capacity adsorption reactor and a proposal of heat recovery
  publication-title: Trans. Japan Soc. Refrig. Air Cond. Eng.
– volume: 11
  start-page: 3389
  year: 2021
  ident: b25
  article-title: Thermodynamic performance of adsorption working pairs for low-temperature waste heat upgrading in industrial applications
  publication-title: Appl. Sci.
– reference: IPCC, in: Core Writing Team, H. Lee, J. Romero (Eds.), Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III To the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland, 2023, pp. 35–115,
– volume: 236
  year: 2024
  ident: b42
  article-title: Water, ethanol, or methanol for adsorption chillers? Model-based performance prediction from infrared-large-temperature-jump experiments
  publication-title: Appl. Therm. Eng.
– year: 2014
  ident: b54
  article-title: Modellgestützte Entwicklung von Adsorptionswärmepumpen (in German)
– year: 2005
  ident: b59
  article-title: TRN: CH08E1023, Vacuum insulation panels - Study on VIP-components and panels for service life prediction of VIP in building applications (Subtask A)
– volume: 31
  start-page: 387
  year: 2002
  end-page: 535
  ident: b47
  article-title: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use
  publication-title: J. Phys. Chem. Ref. Data
– year: 2018
  ident: b62
  article-title: From Dynamic Simulation to Optimal Design and Control of Adsorption Energy Systems
– volume: 156
  start-page: 287
  year: 2019
  end-page: 298
  ident: b6
  article-title: Estimating the potential of industrial (high-temperature) heat pumps for exploiting waste heat in EU industries
  publication-title: Appl. Therm. Eng.
– volume: 105
  start-page: 19
  year: 2019
  end-page: 32
  ident: b11
  article-title: A new adsorptive cycle “HeCol” for upgrading the ambient heat: The current state of the art
  publication-title: Int. J. Refrig.
– volume: 89
  start-page: 485
  year: 2015
  end-page: 493
  ident: b39
  article-title: Adsorption thermal energy storage for cogeneration in industrial batch processes: Experiment, dynamic modeling and system analysis
  publication-title: Appl. Therm. Eng.
– volume: 5
  start-page: 531
  year: 2021
  end-page: 550
  ident: b3
  article-title: To decarbonize industry, we must decarbonize heat
  publication-title: Joule
– volume: 22
  start-page: 808
  year: 2020
  ident: b18
  article-title: Thermodynamic analysis of working fluids for a new “Heat from Cold” cycle
  publication-title: Entropy
– volume: 148
  start-page: 3059
  year: 2023
  end-page: 3071
  ident: b30
  article-title: Adsorption heat transformer cycle using multiple adsorbent + water pairs for waste heat upgrade
  publication-title: J. Therm. Anal. Calorim.
– volume: 299
  year: 2024
  ident: b69
  article-title: Experimental study on using 85 °C low-grade heat to generate
  publication-title: Energy
– volume: 161
  year: 2022
  ident: b70
  article-title: A review and perspective on industry high-temperature heat pumps
  publication-title: Renew. Sustain. Energy Rev.
– volume: 159
  start-page: 213
  year: 2018
  end-page: 220
  ident: b22
  article-title: Testing the lab-scale “Heat from Cold” prototype with the “LiCl/silica – methanol” working pair
  publication-title: Energy Convers. Manage.
– volume: 12
  start-page: 4037
  year: 2019
  ident: b23
  article-title: A double-bed adsorptive heat transformer for upgrading ambient heat: Design and first tests
  publication-title: Energies
– volume: 98
  start-page: 900
  year: 2016
  end-page: 909
  ident: b41
  article-title: Prediction of SCP and COP for adsorption heat pumps and chillers by combining the large-temperature-jump method and dynamic modeling
  publication-title: Appl. Therm. Eng.
– volume: 185
  start-page: 409
  year: 2019
  end-page: 422
  ident: b63
  article-title: Integrated design and control of full sorption chiller systems
  publication-title: Energy
– volume: 236
  year: 2021
  ident: b7
  article-title: Adsorptive conversion of ultralow-temperature heat: Thermodynamic issues
  publication-title: Energy
– volume: 65
  start-page: 524
  year: 2018
  end-page: 530
  ident: b15
  article-title: A thermodynamic analysis of a new cycle for adsorption heat pump “Heat from Cold”: Effect of the working pair on cycle efficiency
  publication-title: Therm. Eng.
– volume: 10
  start-page: 527
  year: 1990
  end-page: 537
  ident: b8
  article-title: Theoretical studies on adsorption heat transformer using zeolite-water vapour pair
  publication-title: Heat Recov. Syst. CHP
– year: 2018
  ident: b46
  article-title: NIST Standard Reference Database 23: Reference fluid thermodynamic and transport properties-REFPROP, Version 10.0, National Institute of Standards and Technology, standard reference data program, Gaithersburg
– volume: 211
  start-page: 136
  year: 2018
  end-page: 145
  ident: b21
  article-title: Adsorption cycle “Heat from Cold” for upgrading the ambient heat: The testing a lab-scale prototype with the composite sorbent CaClBr/silica
  publication-title: Appl. Energy
– volume: 10
  year: 2022
  ident: b10
  article-title: Closed–loop adsorption–based upgrading of heat from 90 to 110 °C: Experimental demonstration and insights for future development
  publication-title: Energy Technol.
– volume: 41
  year: 2012
  ident: b49
  article-title: New international formulation for the thermal conductivity of H
  publication-title: J. Phys. Chem. Ref. Data
– reference: .
– volume: 93
  start-page: 1178
  year: 2021
  end-page: 1182
  ident: b58
  article-title: Einsatz von Lamellen-Tropfenabscheidern in Trennkolonnen (in German)
  publication-title: Chemie Ingenieur Tech.
– volume: 141
  start-page: 548
  year: 2018
  end-page: 557
  ident: b40
  article-title: Predicting performance of adsorption thermal energy storage: From experiments to validated dynamic models
  publication-title: Appl. Therm. Eng.
– volume: 52
  start-page: 195
  year: 2018
  end-page: 205
  ident: b20
  article-title: New adsorption cycle for upgrading the ambient heat
  publication-title: Theor. Found. Chem. Eng.
– volume: 139
  start-page: 180
  year: 2022
  end-page: 191
  ident: b35
  article-title: Efficient modeling of adsorption chillers: Avoiding discretization by operator splitting
  publication-title: Int. J. Refrig.
– volume: 38
  start-page: 191
  year: 1999
  end-page: 208
  ident: b9
  article-title: Recent developments and future prospects of sorption heat pump systems
  publication-title: Int. J. Therm. Sci.
– volume: 18
  start-page: 2069
  year: 2020
  end-page: 2094
  ident: b2
  article-title: Strategies for mitigation of climate change: A review
  publication-title: Environ. Chem. Lett.
– volume: 144
  year: 2023
  ident: b31
  article-title: Impacts of the internal heat recovery scheme on the performance of an adsorption heat transformer cycle for temperature upgrade
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 23
  start-page: 487
  year: 1967
  end-page: 499
  ident: b50
  article-title: Adsorption in micropores
  publication-title: J. Colloid Interface Sci.
– volume: 180
  year: 2020
  ident: b12
  article-title: Review of adsorptive heat conversion/storage in cold climate countries
  publication-title: Appl. Therm. Eng.
– volume: 200
  year: 2022
  ident: b61
  article-title: Optimal sequencing and adsorbent design of multi-bed adsorption chillers
  publication-title: Appl. Therm. Eng.
– volume: 123
  start-page: 52
  year: 2021
  end-page: 62
  ident: b27
  article-title: Thermodynamic analysis and impact of thermal masses on adsorption cycles using MaxsorbIII/R245fa and SAC-2/R245fa pairs
  publication-title: Int. J. Refrig.
– volume: 23
  start-page: 487
  issue: 4
  year: 1967
  ident: 10.1016/j.applthermaleng.2024.123871_b50
  article-title: Adsorption in micropores
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(67)90195-6
– volume: 225
  year: 2024
  ident: 10.1016/j.applthermaleng.2024.123871_b32
  article-title: Investigating maximum temperature lift potential of the adsorption heat transformer cycle using IUPAC classified isotherms
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2024.125384
– year: 2018
  ident: 10.1016/j.applthermaleng.2024.123871_b38
– volume: 105
  start-page: 19
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.123871_b11
  article-title: A new adsorptive cycle “HeCol” for upgrading the ambient heat: The current state of the art
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2018.12.015
– volume: 193
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.123871_b65
  article-title: Performance evaluation of an absorption heat transformer for industrial heat waste recovery using the characteristic equation
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.116986
– volume: 161
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.123871_b70
  article-title: A review and perspective on industry high-temperature heat pumps
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2022.112106
– volume: 12
  start-page: 4037
  issue: 21
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.123871_b23
  article-title: A double-bed adsorptive heat transformer for upgrading ambient heat: Design and first tests
  publication-title: Energies
  doi: 10.3390/en12214037
– volume: 91
  start-page: 654
  year: 2015
  ident: 10.1016/j.applthermaleng.2024.123871_b67
  article-title: A review of absorption heat transformers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.08.021
– volume: 167
  start-page: 440
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.123871_b13
  article-title: Adsorptive heat storage and amplification: New cycles and adsorbents
  publication-title: Energy
  doi: 10.1016/j.energy.2018.10.132
– volume: 22
  start-page: 808
  issue: 8
  year: 2020
  ident: 10.1016/j.applthermaleng.2024.123871_b18
  article-title: Thermodynamic analysis of working fluids for a new “Heat from Cold” cycle
  publication-title: Entropy
  doi: 10.3390/e22080808
– year: 2014
  ident: 10.1016/j.applthermaleng.2024.123871_b54
– year: 2018
  ident: 10.1016/j.applthermaleng.2024.123871_b62
– volume: SMC-1
  start-page: 296
  issue: 3
  year: 1971
  ident: 10.1016/j.applthermaleng.2024.123871_b55
  article-title: On a bicriterion formulation of the problems of integrated system identification and system optimization
  publication-title: IEEE Trans. Syst., Man, Cybern.
  doi: 10.1109/TSMC.1971.4308298
– volume: 146
  start-page: 608
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.123871_b16
  article-title: A HeCol cycle for upgrading the ambient heat: The dynamic verification of desorption stage
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.10.040
– volume: 236
  year: 2024
  ident: 10.1016/j.applthermaleng.2024.123871_b42
  article-title: Water, ethanol, or methanol for adsorption chillers? Model-based performance prediction from infrared-large-temperature-jump experiments
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.121816
– volume: 211
  start-page: 136
  year: 2018
  ident: 10.1016/j.applthermaleng.2024.123871_b21
  article-title: Adsorption cycle “Heat from Cold” for upgrading the ambient heat: The testing a lab-scale prototype with the composite sorbent CaClBr/silica
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.11.015
– volume: 212
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.123871_b44
  article-title: Experimental results of a gas fired adsorption heat pump and simulative prediction of annual performance in a multi-family house
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.118581
– volume: 98
  start-page: 900
  year: 2016
  ident: 10.1016/j.applthermaleng.2024.123871_b41
  article-title: Prediction of SCP and COP for adsorption heat pumps and chillers by combining the large-temperature-jump method and dynamic modeling
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.12.002
– year: 2023
  ident: 10.1016/j.applthermaleng.2024.123871_b45
– volume: 141
  start-page: 548
  year: 2018
  ident: 10.1016/j.applthermaleng.2024.123871_b40
  article-title: Predicting performance of adsorption thermal energy storage: From experiments to validated dynamic models
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.05.094
– year: 2017
  ident: 10.1016/j.applthermaleng.2024.123871_b64
– year: 2018
  ident: 10.1016/j.applthermaleng.2024.123871_b46
– volume: 200
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.123871_b61
  article-title: Optimal sequencing and adsorbent design of multi-bed adsorption chillers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117689
– ident: 10.1016/j.applthermaleng.2024.123871_b37
  doi: 10.3384/ecp14096875
– volume: 100
  start-page: 310
  issue: 4
  year: 2016
  ident: 10.1016/j.applthermaleng.2024.123871_b52
  article-title: Review article: Numerical simulation of adsorption heat pumps
  publication-title: Energy
  doi: 10.1016/j.energy.2016.01.103
– volume: 89
  start-page: 485
  year: 2015
  ident: 10.1016/j.applthermaleng.2024.123871_b39
  article-title: Adsorption thermal energy storage for cogeneration in industrial batch processes: Experiment, dynamic modeling and system analysis
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.06.016
– volume: 144
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.123871_b31
  article-title: Impacts of the internal heat recovery scheme on the performance of an adsorption heat transformer cycle for temperature upgrade
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2023.106774
– volume: 238
  issue: Part C
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.123871_b24
  article-title: Adsorptive transformation of ultralow-temperature heat using a “Heat from Cold” cycle
  publication-title: Energy
– volume: 11
  start-page: 3389
  issue: 8
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.123871_b25
  article-title: Thermodynamic performance of adsorption working pairs for low-temperature waste heat upgrading in industrial applications
  publication-title: Appl. Sci.
  doi: 10.3390/app11083389
– volume: 38
  start-page: 191
  issue: 3
  year: 1999
  ident: 10.1016/j.applthermaleng.2024.123871_b9
  article-title: Recent developments and future prospects of sorption heat pump systems
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/S1290-0729(99)80083-0
– volume: 5
  start-page: 531
  issue: 3
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.123871_b3
  article-title: To decarbonize industry, we must decarbonize heat
  publication-title: Joule
  doi: 10.1016/j.joule.2020.12.007
– volume: 180
  year: 2020
  ident: 10.1016/j.applthermaleng.2024.123871_b12
  article-title: Review of adsorptive heat conversion/storage in cold climate countries
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115848
– volume: 10
  issue: 7
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.123871_b10
  article-title: Closed–loop adsorption–based upgrading of heat from 90 to 110 °C: Experimental demonstration and insights for future development
  publication-title: Energy Technol.
  doi: 10.1002/ente.202200251
– volume: 18
  start-page: 2069
  issue: 6
  year: 2020
  ident: 10.1016/j.applthermaleng.2024.123871_b2
  article-title: Strategies for mitigation of climate change: A review
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-020-01059-w
– volume: 185
  start-page: 409
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.123871_b63
  article-title: Integrated design and control of full sorption chiller systems
  publication-title: Energy
  doi: 10.1016/j.energy.2019.06.169
– volume: 179
  start-page: 542
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.123871_b17
  article-title: A new version of the large pressure jump (T-LPJ) method for dynamic study of pressure-initiated adsorptive cycles for heat storage and transformation
  publication-title: Energy
  doi: 10.1016/j.energy.2019.04.164
– volume: 299
  year: 2024
  ident: 10.1016/j.applthermaleng.2024.123871_b69
  article-title: Experimental study on using 85 °C low-grade heat to generate <120 °C steam by a temperature-distributed absorption heat transformer
  publication-title: Energy
  doi: 10.1016/j.energy.2024.131491
– volume: 39
  start-page: 97
  issue: 1
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.123871_b28
  article-title: Thermodynamic analysis of adsorption heat transformer cycle using low heat capacity adsorption reactor and a proposal of heat recovery
  publication-title: Trans. Japan Soc. Refrig. Air Cond. Eng.
– ident: 10.1016/j.applthermaleng.2024.123871_b56
  doi: 10.3384/ecp12076669
– volume: 65
  start-page: 524
  issue: 8
  year: 2018
  ident: 10.1016/j.applthermaleng.2024.123871_b15
  article-title: A thermodynamic analysis of a new cycle for adsorption heat pump “Heat from Cold”: Effect of the working pair on cycle efficiency
  publication-title: Therm. Eng.
  doi: 10.1134/S0040601518080098
– volume: 125
  start-page: 1565
  year: 2017
  ident: 10.1016/j.applthermaleng.2024.123871_b43
  article-title: Dynamic optimisation of adsorber-bed designs ensuring optimal control
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.07.073
– volume: 305
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.123871_b29
  article-title: A novel hybrid adsorption heat transformer – multi-effect distillation (AHT-MED) system for improved performance and waste heat upgrade
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117744
– volume: 9
  issue: 1
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.123871_b33
  article-title: Upgrading waste heat from 90 to 110 °C: The potential of adsorption heat transformation
  publication-title: Energy Technol.
  doi: 10.1002/ente.202000643
– volume: 11
  start-page: 414
  year: 2017
  ident: 10.1016/j.applthermaleng.2024.123871_b68
  article-title: Absorption heat pump for waste heat reuse: Current states and future development
  publication-title: Front. Energy
  doi: 10.1007/s11708-017-0507-1
– volume: 139
  start-page: 180
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.123871_b35
  article-title: Efficient modeling of adsorption chillers: Avoiding discretization by operator splitting
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2022.04.015
– volume: 156
  start-page: 287
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.123871_b6
  article-title: Estimating the potential of industrial (high-temperature) heat pumps for exploiting waste heat in EU industries
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.04.082
– volume: 236
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.123871_b7
  article-title: Adsorptive conversion of ultralow-temperature heat: Thermodynamic issues
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121892
– volume: 27
  start-page: 327
  year: 2018
  ident: 10.1016/j.applthermaleng.2024.123871_b14
  article-title: Thermodynamic analysis of the new adsorption cycle “HeCol” for ambient heat upgrading: Ideal heat transfer
  publication-title: J. Eng. Thermophys.
  doi: 10.1134/S1810232818030086
– volume: 93
  start-page: 1178
  issue: 7
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.123871_b58
  article-title: Einsatz von Lamellen-Tropfenabscheidern in Trennkolonnen (in German)
  publication-title: Chemie Ingenieur Tech.
  doi: 10.1002/cite.202000244
– volume: 74
  start-page: 364
  issue: 2
  year: 2017
  ident: 10.1016/j.applthermaleng.2024.123871_b53
  article-title: An overview of modelling techniques employed for performance simulation of low–grade heat operated adsorption cooling systems
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.02.062
– volume: 31
  start-page: 387
  issue: 2
  year: 2002
  ident: 10.1016/j.applthermaleng.2024.123871_b47
  article-title: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.1461829
– year: 2005
  ident: 10.1016/j.applthermaleng.2024.123871_b59
– volume: 159
  start-page: 213
  year: 2018
  ident: 10.1016/j.applthermaleng.2024.123871_b22
  article-title: Testing the lab-scale “Heat from Cold” prototype with the “LiCl/silica – methanol” working pair
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.12.099
– volume: 126
  start-page: 37
  year: 2017
  ident: 10.1016/j.applthermaleng.2024.123871_b57
  article-title: Study on the performance of compact adsorption chiller with vapor valves
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.07.130
– volume: 51
  year: 2024
  ident: 10.1016/j.applthermaleng.2024.123871_b26
  article-title: Study of metal–organic framework (MOF)/water pairs for adsorption heat transformer applications
  publication-title: Therm. Sci. Eng. Progress
– ident: 10.1016/j.applthermaleng.2024.123871_b1
  doi: 10.59327/IPCC/AR6-9789291691647
– volume: 148
  start-page: 3059
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.123871_b30
  article-title: Adsorption heat transformer cycle using multiple adsorbent + water pairs for waste heat upgrade
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-022-11350-3
– volume: 52
  start-page: 32
  year: 2015
  ident: 10.1016/j.applthermaleng.2024.123871_b60
  article-title: Performance simulation of multi-bed silica gel-water adsorption chillers
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2014.12.016
– year: 2021
  ident: 10.1016/j.applthermaleng.2024.123871_b34
– volume: 13
  start-page: 2904
  issue: 11
  year: 2020
  ident: 10.1016/j.applthermaleng.2024.123871_b19
  article-title: An aqueous CaCl2 solution in the condenser/evaporator instead of pure water: Application for the new adsorptive cycle “Heat from Cold”
  publication-title: Energies
  doi: 10.3390/en13112904
– volume: 57
  start-page: 1568
  year: 2016
  ident: 10.1016/j.applthermaleng.2024.123871_b5
  article-title: Estimating the global waste heat potential
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.12.192
– volume: 10
  start-page: 527
  issue: 5–6
  year: 1990
  ident: 10.1016/j.applthermaleng.2024.123871_b8
  article-title: Theoretical studies on adsorption heat transformer using zeolite-water vapour pair
  publication-title: Heat Recov. Syst. CHP
  doi: 10.1016/0890-4332(90)90203-V
– volume: 52
  start-page: 195
  year: 2018
  ident: 10.1016/j.applthermaleng.2024.123871_b20
  article-title: New adsorption cycle for upgrading the ambient heat
  publication-title: Theor. Found. Chem. Eng.
  doi: 10.1134/S0040579518020069
– volume: 141
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.123871_b66
  article-title: Absorption heat transformer - state-of-the-art of industrial applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.110757
– volume: 123
  start-page: 52
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.123871_b27
  article-title: Thermodynamic analysis and impact of thermal masses on adsorption cycles using MaxsorbIII/R245fa and SAC-2/R245fa pairs
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2020.12.005
– year: 2022
  ident: 10.1016/j.applthermaleng.2024.123871_b36
– volume: 38
  start-page: 101
  issue: 2
  year: 2009
  ident: 10.1016/j.applthermaleng.2024.123871_b48
  article-title: New international formulation for the viscosity of H2O
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.3088050
– volume: 176
  start-page: 1037
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.123871_b4
  article-title: Perspectives for low-temperature waste heat recovery
  publication-title: Energy
  doi: 10.1016/j.energy.2019.04.001
– volume: 41
  issue: 3
  year: 2012
  ident: 10.1016/j.applthermaleng.2024.123871_b49
  article-title: New international formulation for the thermal conductivity of H2O
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.4738955
– year: 2000
  ident: 10.1016/j.applthermaleng.2024.123871_b51
SSID ssj0012874
Score 2.4488137
Snippet Adsorption heat transformers (AdHTs) have recently been proposed to decarbonize industrial heat supply by upgrading low-temperature waste heat to higher...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 123871
SubjectTerms Coefficient of performance (COP)
Dynamic modeling with Modelica
Energy efficiency ratio (EER)
Model calibration and validation
Multi-objective optimization
Specific heating power (SHP)
Title Towards optimal adsorption heat transformers for heat upgrading: Learnings from a validated full-scale model
URI https://dx.doi.org/10.1016/j.applthermaleng.2024.123871
Volume 255
WOSCitedRecordID wos001275063000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  issn: 1359-4311
  databaseCode: AIEXJ
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0012874
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKhhA8IK5i3OSHvVWp0sSuY3hAExoCBBMPQ-pb5MTO1K0kVZKNiZ_Er-Sc2HEyLlJBQpXSxFLsuOfr8ZfjcyFkX5vCaCYWgeYmClik4iALIxWokOmciUKH3BabEEdHyXIpP00m3_tYmIu1KMvk8lJu_quooQ2EjaGzfyFu3yk0wDkIHY4gdjhuJ_jOEbaZVqAMvmAmAN1UtVUMqHixKISlqhi6i06GXev55qTu3OnRROCSrp40NvpETeH5Vmga0FM01wcNCNbYIjpjctszWuSUOLIZch164o4-tBiZZS0CH1f1WeX3fMy3aoh69zq7atqvZuUCFruKAj646ANmo3YRR62LaXMWjIih6rcxnE7pxlwGQGTmY60ccT7Sq7C-JrZUyy8q31ofTme44e_mB9Ob4UCz4barmbZ_WgG9X2Lv8naaXu0txd5S29s1shsJLkGD7h68O1y-93tWWDmge713s7lB9gdvwj8_3e8J0YjkHN8ht93bCT2wqLpLJqa8R26NclbeJ2uHL-rwRQd8UUQSHeOLwrdt9fh6QT26KKKLKurRRQd00Q5dD8jnN4fHr98GrmRHkMcJawMZKiHncQSqQUv4aF0oBpeJKUITKmUynieZTHITCyC3hZYZZ7nSSR5lC7iOH5KdsirNI0KLZCGKTOu5yRSTcwVMVmWhEbqAVclEfI-87H-3NHf57LGsyjrdRop7hPu7Nzavy5b3vepFlDqOarlnCnjcqofH_zjyE3Jz-PM8JTttfW6ekev5Rbtq6ucOjD8ANZHGUA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+optimal+adsorption+heat+transformers+for+heat+upgrading%3A+Learnings+from+a+validated+full-scale+model&rft.jtitle=Applied+thermal+engineering&rft.au=Engelpracht%2C+Mirko&rft.au=Rezo%2C+Daniel&rft.au=Postweiler%2C+Patrik&rft.au=Lache%2C+Marten&rft.date=2024-10-15&rft.issn=1359-4311&rft.volume=255&rft.spage=123871&rft_id=info:doi/10.1016%2Fj.applthermaleng.2024.123871&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2024_123871
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon