Towards optimal adsorption heat transformers for heat upgrading: Learnings from a validated full-scale model
Adsorption heat transformers (AdHTs) have recently been proposed to decarbonize industrial heat supply by upgrading low-temperature waste heat to higher temperatures. An AdHT’s performance strongly depends on equilibrium and kinetic properties of the selected working pair, component and cycle design...
Uloženo v:
| Vydáno v: | Applied thermal engineering Ročník 255; s. 123871 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
15.10.2024
|
| Témata: | |
| ISSN: | 1359-4311 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Adsorption heat transformers (AdHTs) have recently been proposed to decarbonize industrial heat supply by upgrading low-temperature waste heat to higher temperatures. An AdHT’s performance strongly depends on equilibrium and kinetic properties of the selected working pair, component and cycle designs, operating temperatures, volume flow rates, and phase times. Exploring this multi-dimensional design space requires a validated full-scale dynamic AdHT model. Due to the lack of such a model, the optimal design and achievable performance of AdHTs are unknown. Here, we address this gap in two steps: First, we developed, calibrated, and validated a dynamic AdHT model for our one-bed prototype, which uses silica gel 123 & water. The model accurately predicted thermal efficiency and power density, with average deviations below 8.1% from measurements. Second, we successively optimized the process design for heat upgrading from 90 to 110 °C and releasing condensation heat at 25 °C. Improvements in the component designs increased the maximal thermal efficiency by 117 % to 0.35 J(th)J(th)−1 (43 % of the maximal Carnot efficiency) and the maximal power density by 79 % to 304 Wkg−1. Vapor mass recovery increased thermal efficiency the most. Combined heat and vapor mass recovery increased power density the most. The resulting AdHT also achieved an electrical efficiency of up to 40 J(th)J(el)−1. Thus, an AdHT can compete with a high-temperature heat pump from a thermodynamic perspective, encouraging further research into AdHTs.
[Display omitted]
•First full-scale dynamic model of an adsorption heat transformer (AdHT).•Efficiency COP and power density SHP are predicted with 8.1% deviation.•High performance requires casings tightly fit to the heat exchangers.•Power density SHP improves by combined heat and vapor mass recovery.•Optimal AdHT designs can exceed the efficiency EER of high-temperature heat pumps. |
|---|---|
| AbstractList | Adsorption heat transformers (AdHTs) have recently been proposed to decarbonize industrial heat supply by upgrading low-temperature waste heat to higher temperatures. An AdHT’s performance strongly depends on equilibrium and kinetic properties of the selected working pair, component and cycle designs, operating temperatures, volume flow rates, and phase times. Exploring this multi-dimensional design space requires a validated full-scale dynamic AdHT model. Due to the lack of such a model, the optimal design and achievable performance of AdHTs are unknown. Here, we address this gap in two steps: First, we developed, calibrated, and validated a dynamic AdHT model for our one-bed prototype, which uses silica gel 123 & water. The model accurately predicted thermal efficiency and power density, with average deviations below 8.1% from measurements. Second, we successively optimized the process design for heat upgrading from 90 to 110 °C and releasing condensation heat at 25 °C. Improvements in the component designs increased the maximal thermal efficiency by 117 % to 0.35 J(th)J(th)−1 (43 % of the maximal Carnot efficiency) and the maximal power density by 79 % to 304 Wkg−1. Vapor mass recovery increased thermal efficiency the most. Combined heat and vapor mass recovery increased power density the most. The resulting AdHT also achieved an electrical efficiency of up to 40 J(th)J(el)−1. Thus, an AdHT can compete with a high-temperature heat pump from a thermodynamic perspective, encouraging further research into AdHTs.
[Display omitted]
•First full-scale dynamic model of an adsorption heat transformer (AdHT).•Efficiency COP and power density SHP are predicted with 8.1% deviation.•High performance requires casings tightly fit to the heat exchangers.•Power density SHP improves by combined heat and vapor mass recovery.•Optimal AdHT designs can exceed the efficiency EER of high-temperature heat pumps. |
| ArticleNumber | 123871 |
| Author | Postweiler, Patrik Henninger, Matthias Rezo, Daniel Lache, Marten Seiler, Jan Bardow, André Engelpracht, Mirko |
| Author_xml | – sequence: 1 givenname: Mirko orcidid: 0000-0002-1743-1064 surname: Engelpracht fullname: Engelpracht, Mirko email: mirko.engelpracht@ltt.rwth-aachen.de organization: Institute of Technical Thermodynamics (LTT), RWTH Aachen University, Schinkelstraße 8, 52062 Aachen, Germany – sequence: 2 givenname: Daniel orcidid: 0009-0005-8581-404X surname: Rezo fullname: Rezo, Daniel organization: Institute of Technical Thermodynamics (LTT), RWTH Aachen University, Schinkelstraße 8, 52062 Aachen, Germany – sequence: 3 givenname: Patrik orcidid: 0000-0003-2889-2023 surname: Postweiler fullname: Postweiler, Patrik organization: Institute of Technical Thermodynamics (LTT), RWTH Aachen University, Schinkelstraße 8, 52062 Aachen, Germany – sequence: 4 givenname: Marten orcidid: 0000-0001-8896-0185 surname: Lache fullname: Lache, Marten organization: Institute of Technical Thermodynamics (LTT), RWTH Aachen University, Schinkelstraße 8, 52062 Aachen, Germany – sequence: 5 givenname: Matthias orcidid: 0000-0003-1203-1026 surname: Henninger fullname: Henninger, Matthias organization: Institute of Technical Thermodynamics (LTT), RWTH Aachen University, Schinkelstraße 8, 52062 Aachen, Germany – sequence: 6 givenname: Jan surname: Seiler fullname: Seiler, Jan organization: Energy & Process Systems Engineering (EPSE), ETH Zurich, Tannenstraße 3, 8092 Zurich, Switzerland – sequence: 7 givenname: André orcidid: 0000-0002-3831-0691 surname: Bardow fullname: Bardow, André email: abardow@ethz.ch organization: Energy & Process Systems Engineering (EPSE), ETH Zurich, Tannenstraße 3, 8092 Zurich, Switzerland |
| BookMark | eNqNkD1PwzAQhj0UibbwHzywJthJ2iSIBSoKSJVYymxd7Evryokj2y3i3-MqLDBVN9yX3ld3z4xMetsjIXecpZzx5f0hhWEwYY-uA4P9Ls1YVqQ8y6uST8iU54s6KXLOr8nM-wNjPKvKYkrM1n6BU57aIeiopKC8dbG2Pd0jBBoc9L61rkPnaczj9DjsHCjd7x7oBsH1sYpbZzsK9ARGKwioaHs0JvEy3kM7q9DckKsWjMfb3zwnn-uX7eot2Xy8vq-eNonMqyIkNYOy5nmGDao6hlItFLGtsGXIALBZyKqpK4l5yUreqrpZFBJUJbNmGft8Th5HX-ms9w5bMbj4nPsWnIkzLXEQf2mJMy0x0ory539yqQOckUQY2lxqsh5NMD560uiElxp7iUo7lEEoqy8z-gFPCpsa |
| CitedBy_id | crossref_primary_10_1016_j_enconman_2025_119584 crossref_primary_10_1016_j_ijthermalsci_2025_109795 |
| Cites_doi | 10.1016/0021-9797(67)90195-6 10.1016/j.ijheatmasstransfer.2024.125384 10.1016/j.ijrefrig.2018.12.015 10.1016/j.applthermaleng.2021.116986 10.1016/j.rser.2022.112106 10.3390/en12214037 10.1016/j.applthermaleng.2015.08.021 10.1016/j.energy.2018.10.132 10.3390/e22080808 10.1109/TSMC.1971.4308298 10.1016/j.applthermaleng.2018.10.040 10.1016/j.applthermaleng.2023.121816 10.1016/j.apenergy.2017.11.015 10.1016/j.applthermaleng.2022.118581 10.1016/j.applthermaleng.2015.12.002 10.1016/j.applthermaleng.2018.05.094 10.1016/j.applthermaleng.2021.117689 10.3384/ecp14096875 10.1016/j.energy.2016.01.103 10.1016/j.applthermaleng.2015.06.016 10.1016/j.icheatmasstransfer.2023.106774 10.3390/app11083389 10.1016/S1290-0729(99)80083-0 10.1016/j.joule.2020.12.007 10.1016/j.applthermaleng.2020.115848 10.1002/ente.202200251 10.1007/s10311-020-01059-w 10.1016/j.energy.2019.06.169 10.1016/j.energy.2019.04.164 10.1016/j.energy.2024.131491 10.3384/ecp12076669 10.1134/S0040601518080098 10.1016/j.applthermaleng.2017.07.073 10.1016/j.apenergy.2021.117744 10.1002/ente.202000643 10.1007/s11708-017-0507-1 10.1016/j.ijrefrig.2022.04.015 10.1016/j.applthermaleng.2019.04.082 10.1016/j.energy.2021.121892 10.1134/S1810232818030086 10.1002/cite.202000244 10.1016/j.rser.2017.02.062 10.1063/1.1461829 10.1016/j.enconman.2017.12.099 10.1016/j.applthermaleng.2017.07.130 10.59327/IPCC/AR6-9789291691647 10.1007/s10973-022-11350-3 10.1016/j.ijrefrig.2014.12.016 10.3390/en13112904 10.1016/j.rser.2015.12.192 10.1016/0890-4332(90)90203-V 10.1134/S0040579518020069 10.1016/j.rser.2021.110757 10.1016/j.ijrefrig.2020.12.005 10.1063/1.3088050 10.1016/j.energy.2019.04.001 10.1063/1.4738955 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) |
| Copyright_xml | – notice: 2024 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.applthermaleng.2024.123871 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_applthermaleng_2024_123871 S1359431124015394 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABFNM ABJNI ABMAC ABNUV ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- 9DU AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FGOYB HZ~ R2- ~HD |
| ID | FETCH-LOGICAL-c384t-90a79132ebed9d9dddfa432e8ef0e0aaeb5c8b98ce37071fd9b54cad8c2b671f3 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001275063000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1359-4311 |
| IngestDate | Sat Nov 29 03:21:13 EST 2025 Tue Nov 18 21:51:00 EST 2025 Sat Nov 09 16:00:50 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Energy efficiency ratio (EER) Multi-objective optimization Specific heating power (SHP) Model calibration and validation Dynamic modeling with Modelica Coefficient of performance (COP) |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c384t-90a79132ebed9d9dddfa432e8ef0e0aaeb5c8b98ce37071fd9b54cad8c2b671f3 |
| ORCID | 0000-0003-2889-2023 0009-0005-8581-404X 0000-0003-1203-1026 0000-0001-8896-0185 0000-0002-3831-0691 0000-0002-1743-1064 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.applthermaleng.2024.123871 |
| ParticipantIDs | crossref_primary_10_1016_j_applthermaleng_2024_123871 crossref_citationtrail_10_1016_j_applthermaleng_2024_123871 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2024_123871 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-15 |
| PublicationDateYYYYMMDD | 2024-10-15 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied thermal engineering |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Gibelhaus, Postweiler, Bardow (b35) 2022; 139 Wagner, Pruß (b47) 2002; 31 Lanzerath (b54) 2014 Xu, Wang, Yang (b4) 2019; 176 Jiang, Hu, Wang, Deng, Cao, Wang (b70) 2022; 161 Engelpracht, Driesel, Nießen, Henninger, Seiler, Bardow (b10) 2022; 10 Gordeeva, Aristov (b13) 2019; 167 Girnik, Aristov (b16) 2019; 146 Gibelhaus (b34) 2021 Gibelhaus, Tangkrachang, Bau, Seiler, Bardow (b63) 2019; 185 Kosmadakis (b6) 2019; 156 Tokarev, Gordeeva, Grekova, Aristov (b21) 2018; 211 Tokarev, Girnik, Aristov (b24) 2022; 238 Schreiber (b64) 2017 U. Bau, F. Lanzerath, M. Gräber, S. Graf, H. Schreiber, N. Thielen, A. Bardow, Adsorption energy systems library - Modeling adsorption based chillers, heat pumps, thermal storages and desiccant systems, in: H. Tummescheit, K.-E. Årzén (Eds.), Proceedings of the 10th International Modelica Conference, in: Linköping Electronic Conference Proceedings, Modelica Association, Linköping, Sweden, 2014, pp. 875–883 TLK Thermo GmbH (b45) 2023 Fawzy, Osman, Doran, Rooney (b2) 2020; 18 Chandra, Patwardhan (b8) 1990; 10 Tokarev (b23) 2019; 12 Sah, Choudhury, Das, Sur (b53) 2017; 74 Schawe (b51) 2000 Huber, Perkins, Friend, Sengers, Assael, Metaxa, Miyagawa, Hellmann, Vogel (b49) 2012; 41 Tokarev, Gordeeva, Shkatulov, Aristov (b22) 2018; 159 Gordeeva, Tokarev, Aristov (b20) 2018; 52 Haimes, Lasdonm, Wismer (b55) 1971; SMC-1 Aristov (b12) 2020; 180 Henninger, Engelpracht, Tuchlinski, Ismail, Bardow, Seiler (b42) 2024; 236 Ye, Rupam, Islam, Saha (b26) 2024; 51 Corrales Ciganda, Cudok (b65) 2021; 193 LTT, RWTH Aachen University (b38) 2018 . Schreiber, Lanzerath, Bardow (b40) 2018; 141 A. Pfeiffer, Optimization library for interactive multi-criteria optimization tasks, in: 9th International Modelica Conference, Munich, Germany, 2012, pp. 669–679, URL. IPCC, in: Core Writing Team, H. Lee, J. Romero (Eds.), Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III To the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland, 2023, pp. 35–115 Bau, Hoseinpoori, Graf, Schreiber, Lanzerath, Kirches, Bardow (b43) 2017; 125 Aristov (b7) 2021; 236 Liu, Lu, Tao, Chen, Gong (b69) 2024; 299 Xu, Wang (b68) 2017; 11 Ziegler (b9) 1999; 38 Saren, Mitra, Miksik, Miyazaki, Ng, Thu (b32) 2024; 225 Girnik, Tokarev, Aristov (b18) 2020; 22 Frazzica, Palomba, Dawoud (b25) 2021; 11 Tokarev, Zlobin, Aristov (b17) 2019; 179 Velte, Laurenz, Leisner, Weber, Wittstadt, Füldner (b44) 2022; 212 Thiel, Stark (b3) 2021; 5 Engelpracht, Gibelhaus, Seiler, Graf, Nasruddin, Bardow (b33) 2021; 9 Graf, Lanzerath, Sapienza, Frazzica, Freni, Bardow (b41) 2016; 98 Cudok, Giannetti, Ciganda, Aoyama, Babu, Coronas, Fujii, Inoue, Saito, Yamaguchi, Ziegler (b66) 2021; 141 Bau (b62) 2018 Huber, Perkins, Laesecke, Friend, Sengers, Assael, Metaxa, Vogel, Mareš, Miyagawa (b48) 2009; 38 Saren, Mitra, Miyazaki, Ng, Thu (b29) 2022; 305 Wang, He, Chua (b60) 2015; 52 Aristov (b11) 2019; 105 Girnik, Aristov (b19) 2020; 13 Saren, Mitra, Miyazaki, Ng, Thu (b30) 2023; 148 Saren, Mitra, Miksik, Miyazaki, Ng, Thu (b31) 2023; 144 Seo, Kawakami, Miksik, Takata, Thu, Miyazaki (b27) 2021; 123 Rivera, Best, Cardoso, Romero (b67) 2015; 91 Lemmon, Bell, Huber, McLinden (b46) 2018 Voskresenskii, Okunev, Gordeeva (b15) 2018; 65 Dubinin (b50) 1967; 23 Scherle, Liedtke, Nieken (b61) 2022; 200 Okunev, Voskresensky, Girnik, Aristov (b14) 2018; 27 He, Bai, Huang, Li, Huhetaoli, Kobayashi, Osaka, Deng (b57) 2017; 126 Simmler, Brunner, Heinemann, Schwab, Kumaran, Mukhopadhyaya, Quénard, Sallée, Noller, Kücükpinar-Niarchos, Stramm, Tenpierik, Cauberg, Erb (b59) 2005 Schreiber, Graf, Lanzerath, Bardow (b39) 2015; 89 Hamamoto (b28) 2021; 39 Dassault Systèmes (b36) 2022 Forman, Muritala, Pardemann, Meyer (b5) 2016; 57 Pesaran, Lee, Hwang, Radermacher, Chun (b52) 2016; 100 Maćkowiak, Maćkowiak (b58) 2021; 93 Girnik (10.1016/j.applthermaleng.2024.123871_b19) 2020; 13 Aristov (10.1016/j.applthermaleng.2024.123871_b11) 2019; 105 Huber (10.1016/j.applthermaleng.2024.123871_b48) 2009; 38 Gordeeva (10.1016/j.applthermaleng.2024.123871_b13) 2019; 167 Voskresenskii (10.1016/j.applthermaleng.2024.123871_b15) 2018; 65 Sah (10.1016/j.applthermaleng.2024.123871_b53) 2017; 74 10.1016/j.applthermaleng.2024.123871_b56 Xu (10.1016/j.applthermaleng.2024.123871_b4) 2019; 176 Gordeeva (10.1016/j.applthermaleng.2024.123871_b20) 2018; 52 Lemmon (10.1016/j.applthermaleng.2024.123871_b46) 2018 Liu (10.1016/j.applthermaleng.2024.123871_b69) 2024; 299 TLK Thermo GmbH (10.1016/j.applthermaleng.2024.123871_b45) 2023 Scherle (10.1016/j.applthermaleng.2024.123871_b61) 2022; 200 Gibelhaus (10.1016/j.applthermaleng.2024.123871_b34) 2021 10.1016/j.applthermaleng.2024.123871_b1 Wang (10.1016/j.applthermaleng.2024.123871_b60) 2015; 52 Cudok (10.1016/j.applthermaleng.2024.123871_b66) 2021; 141 Pesaran (10.1016/j.applthermaleng.2024.123871_b52) 2016; 100 LTT, RWTH Aachen University (10.1016/j.applthermaleng.2024.123871_b38) 2018 Maćkowiak (10.1016/j.applthermaleng.2024.123871_b58) 2021; 93 Fawzy (10.1016/j.applthermaleng.2024.123871_b2) 2020; 18 Engelpracht (10.1016/j.applthermaleng.2024.123871_b33) 2021; 9 Velte (10.1016/j.applthermaleng.2024.123871_b44) 2022; 212 Haimes (10.1016/j.applthermaleng.2024.123871_b55) 1971; SMC-1 Jiang (10.1016/j.applthermaleng.2024.123871_b70) 2022; 161 Tokarev (10.1016/j.applthermaleng.2024.123871_b24) 2022; 238 Lanzerath (10.1016/j.applthermaleng.2024.123871_b54) 2014 Hamamoto (10.1016/j.applthermaleng.2024.123871_b28) 2021; 39 Gibelhaus (10.1016/j.applthermaleng.2024.123871_b35) 2022; 139 Saren (10.1016/j.applthermaleng.2024.123871_b32) 2024; 225 Chandra (10.1016/j.applthermaleng.2024.123871_b8) 1990; 10 Kosmadakis (10.1016/j.applthermaleng.2024.123871_b6) 2019; 156 Rivera (10.1016/j.applthermaleng.2024.123871_b67) 2015; 91 Saren (10.1016/j.applthermaleng.2024.123871_b31) 2023; 144 He (10.1016/j.applthermaleng.2024.123871_b57) 2017; 126 Saren (10.1016/j.applthermaleng.2024.123871_b30) 2023; 148 Bau (10.1016/j.applthermaleng.2024.123871_b43) 2017; 125 Corrales Ciganda (10.1016/j.applthermaleng.2024.123871_b65) 2021; 193 Tokarev (10.1016/j.applthermaleng.2024.123871_b21) 2018; 211 Tokarev (10.1016/j.applthermaleng.2024.123871_b17) 2019; 179 Aristov (10.1016/j.applthermaleng.2024.123871_b12) 2020; 180 Huber (10.1016/j.applthermaleng.2024.123871_b49) 2012; 41 Frazzica (10.1016/j.applthermaleng.2024.123871_b25) 2021; 11 Girnik (10.1016/j.applthermaleng.2024.123871_b18) 2020; 22 Girnik (10.1016/j.applthermaleng.2024.123871_b16) 2019; 146 10.1016/j.applthermaleng.2024.123871_b37 Simmler (10.1016/j.applthermaleng.2024.123871_b59) 2005 Graf (10.1016/j.applthermaleng.2024.123871_b41) 2016; 98 Thiel (10.1016/j.applthermaleng.2024.123871_b3) 2021; 5 Aristov (10.1016/j.applthermaleng.2024.123871_b7) 2021; 236 Tokarev (10.1016/j.applthermaleng.2024.123871_b22) 2018; 159 Engelpracht (10.1016/j.applthermaleng.2024.123871_b10) 2022; 10 Gibelhaus (10.1016/j.applthermaleng.2024.123871_b63) 2019; 185 Forman (10.1016/j.applthermaleng.2024.123871_b5) 2016; 57 Dassault Systèmes (10.1016/j.applthermaleng.2024.123871_b36) 2022 Ye (10.1016/j.applthermaleng.2024.123871_b26) 2024; 51 Okunev (10.1016/j.applthermaleng.2024.123871_b14) 2018; 27 Ziegler (10.1016/j.applthermaleng.2024.123871_b9) 1999; 38 Schawe (10.1016/j.applthermaleng.2024.123871_b51) 2000 Schreiber (10.1016/j.applthermaleng.2024.123871_b39) 2015; 89 Xu (10.1016/j.applthermaleng.2024.123871_b68) 2017; 11 Bau (10.1016/j.applthermaleng.2024.123871_b62) 2018 Schreiber (10.1016/j.applthermaleng.2024.123871_b64) 2017 Seo (10.1016/j.applthermaleng.2024.123871_b27) 2021; 123 Henninger (10.1016/j.applthermaleng.2024.123871_b42) 2024; 236 Tokarev (10.1016/j.applthermaleng.2024.123871_b23) 2019; 12 Wagner (10.1016/j.applthermaleng.2024.123871_b47) 2002; 31 Saren (10.1016/j.applthermaleng.2024.123871_b29) 2022; 305 Schreiber (10.1016/j.applthermaleng.2024.123871_b40) 2018; 141 Dubinin (10.1016/j.applthermaleng.2024.123871_b50) 1967; 23 |
| References_xml | – volume: 100 start-page: 310 year: 2016 end-page: 320 ident: b52 article-title: Review article: Numerical simulation of adsorption heat pumps publication-title: Energy – volume: 125 start-page: 1565 year: 2017 end-page: 1576 ident: b43 article-title: Dynamic optimisation of adsorber-bed designs ensuring optimal control publication-title: Appl. Therm. Eng. – volume: SMC-1 start-page: 296 year: 1971 end-page: 297 ident: b55 article-title: On a bicriterion formulation of the problems of integrated system identification and system optimization publication-title: IEEE Trans. Syst., Man, Cybern. – volume: 52 start-page: 32 year: 2015 end-page: 41 ident: b60 article-title: Performance simulation of multi-bed silica gel-water adsorption chillers publication-title: Int. J. Refrig. – year: 2022 ident: b36 article-title: Dymola systems engineering - Multi-engineering modeling and simulation based on Modelica and FMI – year: 2000 ident: b51 article-title: Theoretical and Experimental Investigations of an Adsorption Heat Pump with Heat Transfer Between Two Adsorbers – volume: 176 start-page: 1037 year: 2019 end-page: 1043 ident: b4 article-title: Perspectives for low-temperature waste heat recovery publication-title: Energy – volume: 13 start-page: 2904 year: 2020 ident: b19 article-title: An aqueous CaCl publication-title: Energies – volume: 126 start-page: 37 year: 2017 end-page: 42 ident: b57 article-title: Study on the performance of compact adsorption chiller with vapor valves publication-title: Appl. Therm. Eng. – year: 2023 ident: b45 article-title: TILMedia Suite – volume: 225 year: 2024 ident: b32 article-title: Investigating maximum temperature lift potential of the adsorption heat transformer cycle using IUPAC classified isotherms publication-title: Int. J. Heat Mass Transf. – volume: 193 year: 2021 ident: b65 article-title: Performance evaluation of an absorption heat transformer for industrial heat waste recovery using the characteristic equation publication-title: Appl. Therm. Eng. – volume: 212 year: 2022 ident: b44 article-title: Experimental results of a gas fired adsorption heat pump and simulative prediction of annual performance in a multi-family house publication-title: Appl. Therm. Eng. – year: 2017 ident: b64 article-title: Experiments and Validated Models for Adsorption Thermal Energy Storage in Industrial and Residential Applications – volume: 141 year: 2021 ident: b66 article-title: Absorption heat transformer - state-of-the-art of industrial applications publication-title: Renew. Sustain. Energy Rev. – volume: 238 year: 2022 ident: b24 article-title: Adsorptive transformation of ultralow-temperature heat using a “Heat from Cold” cycle publication-title: Energy – volume: 11 start-page: 414 year: 2017 end-page: 436 ident: b68 article-title: Absorption heat pump for waste heat reuse: Current states and future development publication-title: Front. Energy – volume: 179 start-page: 542 year: 2019 end-page: 548 ident: b17 article-title: A new version of the large pressure jump (T-LPJ) method for dynamic study of pressure-initiated adsorptive cycles for heat storage and transformation publication-title: Energy – volume: 305 year: 2022 ident: b29 article-title: A novel hybrid adsorption heat transformer – multi-effect distillation (AHT-MED) system for improved performance and waste heat upgrade publication-title: Appl. Energy – year: 2018 ident: b38 article-title: SorpLib – Adsorption Energy Systems Library – year: 2021 ident: b34 article-title: A Model-Based Framework for Optimal Systems Integration of Adsorption Chillers – reference: A. Pfeiffer, Optimization library for interactive multi-criteria optimization tasks, in: 9th International Modelica Conference, Munich, Germany, 2012, pp. 669–679, URL. – volume: 167 start-page: 440 year: 2019 end-page: 453 ident: b13 article-title: Adsorptive heat storage and amplification: New cycles and adsorbents publication-title: Energy – volume: 74 start-page: 364 year: 2017 end-page: 376 ident: b53 article-title: An overview of modelling techniques employed for performance simulation of low–grade heat operated adsorption cooling systems publication-title: Renew. Sustain. Energy Rev. – reference: U. Bau, F. Lanzerath, M. Gräber, S. Graf, H. Schreiber, N. Thielen, A. Bardow, Adsorption energy systems library - Modeling adsorption based chillers, heat pumps, thermal storages and desiccant systems, in: H. Tummescheit, K.-E. Årzén (Eds.), Proceedings of the 10th International Modelica Conference, in: Linköping Electronic Conference Proceedings, Modelica Association, Linköping, Sweden, 2014, pp. 875–883, – volume: 51 year: 2024 ident: b26 article-title: Study of metal–organic framework (MOF)/water pairs for adsorption heat transformer applications publication-title: Therm. Sci. Eng. Progress – volume: 27 start-page: 327 year: 2018 end-page: 338 ident: b14 article-title: Thermodynamic analysis of the new adsorption cycle “HeCol” for ambient heat upgrading: Ideal heat transfer publication-title: J. Eng. Thermophys. – volume: 57 start-page: 1568 year: 2016 end-page: 1579 ident: b5 article-title: Estimating the global waste heat potential publication-title: Renew. Sustain. Energy Rev. – volume: 91 start-page: 654 year: 2015 end-page: 670 ident: b67 article-title: A review of absorption heat transformers publication-title: Appl. Therm. Eng. – volume: 38 start-page: 101 year: 2009 end-page: 125 ident: b48 article-title: New international formulation for the viscosity of H publication-title: J. Phys. Chem. Ref. Data – volume: 9 year: 2021 ident: b33 article-title: Upgrading waste heat from 90 to 110 °C: The potential of adsorption heat transformation publication-title: Energy Technol. – volume: 146 start-page: 608 year: 2019 end-page: 612 ident: b16 article-title: A HeCol cycle for upgrading the ambient heat: The dynamic verification of desorption stage publication-title: Appl. Therm. Eng. – volume: 39 start-page: 97 year: 2021 ident: b28 article-title: Thermodynamic analysis of adsorption heat transformer cycle using low heat capacity adsorption reactor and a proposal of heat recovery publication-title: Trans. Japan Soc. Refrig. Air Cond. Eng. – volume: 11 start-page: 3389 year: 2021 ident: b25 article-title: Thermodynamic performance of adsorption working pairs for low-temperature waste heat upgrading in industrial applications publication-title: Appl. Sci. – reference: IPCC, in: Core Writing Team, H. Lee, J. Romero (Eds.), Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III To the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland, 2023, pp. 35–115, – volume: 236 year: 2024 ident: b42 article-title: Water, ethanol, or methanol for adsorption chillers? Model-based performance prediction from infrared-large-temperature-jump experiments publication-title: Appl. Therm. Eng. – year: 2014 ident: b54 article-title: Modellgestützte Entwicklung von Adsorptionswärmepumpen (in German) – year: 2005 ident: b59 article-title: TRN: CH08E1023, Vacuum insulation panels - Study on VIP-components and panels for service life prediction of VIP in building applications (Subtask A) – volume: 31 start-page: 387 year: 2002 end-page: 535 ident: b47 article-title: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use publication-title: J. Phys. Chem. Ref. Data – year: 2018 ident: b62 article-title: From Dynamic Simulation to Optimal Design and Control of Adsorption Energy Systems – volume: 156 start-page: 287 year: 2019 end-page: 298 ident: b6 article-title: Estimating the potential of industrial (high-temperature) heat pumps for exploiting waste heat in EU industries publication-title: Appl. Therm. Eng. – volume: 105 start-page: 19 year: 2019 end-page: 32 ident: b11 article-title: A new adsorptive cycle “HeCol” for upgrading the ambient heat: The current state of the art publication-title: Int. J. Refrig. – volume: 89 start-page: 485 year: 2015 end-page: 493 ident: b39 article-title: Adsorption thermal energy storage for cogeneration in industrial batch processes: Experiment, dynamic modeling and system analysis publication-title: Appl. Therm. Eng. – volume: 5 start-page: 531 year: 2021 end-page: 550 ident: b3 article-title: To decarbonize industry, we must decarbonize heat publication-title: Joule – volume: 22 start-page: 808 year: 2020 ident: b18 article-title: Thermodynamic analysis of working fluids for a new “Heat from Cold” cycle publication-title: Entropy – volume: 148 start-page: 3059 year: 2023 end-page: 3071 ident: b30 article-title: Adsorption heat transformer cycle using multiple adsorbent + water pairs for waste heat upgrade publication-title: J. Therm. Anal. Calorim. – volume: 299 year: 2024 ident: b69 article-title: Experimental study on using 85 °C low-grade heat to generate publication-title: Energy – volume: 161 year: 2022 ident: b70 article-title: A review and perspective on industry high-temperature heat pumps publication-title: Renew. Sustain. Energy Rev. – volume: 159 start-page: 213 year: 2018 end-page: 220 ident: b22 article-title: Testing the lab-scale “Heat from Cold” prototype with the “LiCl/silica – methanol” working pair publication-title: Energy Convers. Manage. – volume: 12 start-page: 4037 year: 2019 ident: b23 article-title: A double-bed adsorptive heat transformer for upgrading ambient heat: Design and first tests publication-title: Energies – volume: 98 start-page: 900 year: 2016 end-page: 909 ident: b41 article-title: Prediction of SCP and COP for adsorption heat pumps and chillers by combining the large-temperature-jump method and dynamic modeling publication-title: Appl. Therm. Eng. – volume: 185 start-page: 409 year: 2019 end-page: 422 ident: b63 article-title: Integrated design and control of full sorption chiller systems publication-title: Energy – volume: 236 year: 2021 ident: b7 article-title: Adsorptive conversion of ultralow-temperature heat: Thermodynamic issues publication-title: Energy – volume: 65 start-page: 524 year: 2018 end-page: 530 ident: b15 article-title: A thermodynamic analysis of a new cycle for adsorption heat pump “Heat from Cold”: Effect of the working pair on cycle efficiency publication-title: Therm. Eng. – volume: 10 start-page: 527 year: 1990 end-page: 537 ident: b8 article-title: Theoretical studies on adsorption heat transformer using zeolite-water vapour pair publication-title: Heat Recov. Syst. CHP – year: 2018 ident: b46 article-title: NIST Standard Reference Database 23: Reference fluid thermodynamic and transport properties-REFPROP, Version 10.0, National Institute of Standards and Technology, standard reference data program, Gaithersburg – volume: 211 start-page: 136 year: 2018 end-page: 145 ident: b21 article-title: Adsorption cycle “Heat from Cold” for upgrading the ambient heat: The testing a lab-scale prototype with the composite sorbent CaClBr/silica publication-title: Appl. Energy – volume: 10 year: 2022 ident: b10 article-title: Closed–loop adsorption–based upgrading of heat from 90 to 110 °C: Experimental demonstration and insights for future development publication-title: Energy Technol. – volume: 41 year: 2012 ident: b49 article-title: New international formulation for the thermal conductivity of H publication-title: J. Phys. Chem. Ref. Data – reference: . – volume: 93 start-page: 1178 year: 2021 end-page: 1182 ident: b58 article-title: Einsatz von Lamellen-Tropfenabscheidern in Trennkolonnen (in German) publication-title: Chemie Ingenieur Tech. – volume: 141 start-page: 548 year: 2018 end-page: 557 ident: b40 article-title: Predicting performance of adsorption thermal energy storage: From experiments to validated dynamic models publication-title: Appl. Therm. Eng. – volume: 52 start-page: 195 year: 2018 end-page: 205 ident: b20 article-title: New adsorption cycle for upgrading the ambient heat publication-title: Theor. Found. Chem. Eng. – volume: 139 start-page: 180 year: 2022 end-page: 191 ident: b35 article-title: Efficient modeling of adsorption chillers: Avoiding discretization by operator splitting publication-title: Int. J. Refrig. – volume: 38 start-page: 191 year: 1999 end-page: 208 ident: b9 article-title: Recent developments and future prospects of sorption heat pump systems publication-title: Int. J. Therm. Sci. – volume: 18 start-page: 2069 year: 2020 end-page: 2094 ident: b2 article-title: Strategies for mitigation of climate change: A review publication-title: Environ. Chem. Lett. – volume: 144 year: 2023 ident: b31 article-title: Impacts of the internal heat recovery scheme on the performance of an adsorption heat transformer cycle for temperature upgrade publication-title: Int. Commun. Heat Mass Transfer – volume: 23 start-page: 487 year: 1967 end-page: 499 ident: b50 article-title: Adsorption in micropores publication-title: J. Colloid Interface Sci. – volume: 180 year: 2020 ident: b12 article-title: Review of adsorptive heat conversion/storage in cold climate countries publication-title: Appl. Therm. Eng. – volume: 200 year: 2022 ident: b61 article-title: Optimal sequencing and adsorbent design of multi-bed adsorption chillers publication-title: Appl. Therm. Eng. – volume: 123 start-page: 52 year: 2021 end-page: 62 ident: b27 article-title: Thermodynamic analysis and impact of thermal masses on adsorption cycles using MaxsorbIII/R245fa and SAC-2/R245fa pairs publication-title: Int. J. Refrig. – volume: 23 start-page: 487 issue: 4 year: 1967 ident: 10.1016/j.applthermaleng.2024.123871_b50 article-title: Adsorption in micropores publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(67)90195-6 – volume: 225 year: 2024 ident: 10.1016/j.applthermaleng.2024.123871_b32 article-title: Investigating maximum temperature lift potential of the adsorption heat transformer cycle using IUPAC classified isotherms publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2024.125384 – year: 2018 ident: 10.1016/j.applthermaleng.2024.123871_b38 – volume: 105 start-page: 19 year: 2019 ident: 10.1016/j.applthermaleng.2024.123871_b11 article-title: A new adsorptive cycle “HeCol” for upgrading the ambient heat: The current state of the art publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2018.12.015 – volume: 193 year: 2021 ident: 10.1016/j.applthermaleng.2024.123871_b65 article-title: Performance evaluation of an absorption heat transformer for industrial heat waste recovery using the characteristic equation publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.116986 – volume: 161 year: 2022 ident: 10.1016/j.applthermaleng.2024.123871_b70 article-title: A review and perspective on industry high-temperature heat pumps publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2022.112106 – volume: 12 start-page: 4037 issue: 21 year: 2019 ident: 10.1016/j.applthermaleng.2024.123871_b23 article-title: A double-bed adsorptive heat transformer for upgrading ambient heat: Design and first tests publication-title: Energies doi: 10.3390/en12214037 – volume: 91 start-page: 654 year: 2015 ident: 10.1016/j.applthermaleng.2024.123871_b67 article-title: A review of absorption heat transformers publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.08.021 – volume: 167 start-page: 440 year: 2019 ident: 10.1016/j.applthermaleng.2024.123871_b13 article-title: Adsorptive heat storage and amplification: New cycles and adsorbents publication-title: Energy doi: 10.1016/j.energy.2018.10.132 – volume: 22 start-page: 808 issue: 8 year: 2020 ident: 10.1016/j.applthermaleng.2024.123871_b18 article-title: Thermodynamic analysis of working fluids for a new “Heat from Cold” cycle publication-title: Entropy doi: 10.3390/e22080808 – year: 2014 ident: 10.1016/j.applthermaleng.2024.123871_b54 – year: 2018 ident: 10.1016/j.applthermaleng.2024.123871_b62 – volume: SMC-1 start-page: 296 issue: 3 year: 1971 ident: 10.1016/j.applthermaleng.2024.123871_b55 article-title: On a bicriterion formulation of the problems of integrated system identification and system optimization publication-title: IEEE Trans. Syst., Man, Cybern. doi: 10.1109/TSMC.1971.4308298 – volume: 146 start-page: 608 year: 2019 ident: 10.1016/j.applthermaleng.2024.123871_b16 article-title: A HeCol cycle for upgrading the ambient heat: The dynamic verification of desorption stage publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.10.040 – volume: 236 year: 2024 ident: 10.1016/j.applthermaleng.2024.123871_b42 article-title: Water, ethanol, or methanol for adsorption chillers? Model-based performance prediction from infrared-large-temperature-jump experiments publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2023.121816 – volume: 211 start-page: 136 year: 2018 ident: 10.1016/j.applthermaleng.2024.123871_b21 article-title: Adsorption cycle “Heat from Cold” for upgrading the ambient heat: The testing a lab-scale prototype with the composite sorbent CaClBr/silica publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.11.015 – volume: 212 year: 2022 ident: 10.1016/j.applthermaleng.2024.123871_b44 article-title: Experimental results of a gas fired adsorption heat pump and simulative prediction of annual performance in a multi-family house publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.118581 – volume: 98 start-page: 900 year: 2016 ident: 10.1016/j.applthermaleng.2024.123871_b41 article-title: Prediction of SCP and COP for adsorption heat pumps and chillers by combining the large-temperature-jump method and dynamic modeling publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.12.002 – year: 2023 ident: 10.1016/j.applthermaleng.2024.123871_b45 – volume: 141 start-page: 548 year: 2018 ident: 10.1016/j.applthermaleng.2024.123871_b40 article-title: Predicting performance of adsorption thermal energy storage: From experiments to validated dynamic models publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.05.094 – year: 2017 ident: 10.1016/j.applthermaleng.2024.123871_b64 – year: 2018 ident: 10.1016/j.applthermaleng.2024.123871_b46 – volume: 200 year: 2022 ident: 10.1016/j.applthermaleng.2024.123871_b61 article-title: Optimal sequencing and adsorbent design of multi-bed adsorption chillers publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.117689 – ident: 10.1016/j.applthermaleng.2024.123871_b37 doi: 10.3384/ecp14096875 – volume: 100 start-page: 310 issue: 4 year: 2016 ident: 10.1016/j.applthermaleng.2024.123871_b52 article-title: Review article: Numerical simulation of adsorption heat pumps publication-title: Energy doi: 10.1016/j.energy.2016.01.103 – volume: 89 start-page: 485 year: 2015 ident: 10.1016/j.applthermaleng.2024.123871_b39 article-title: Adsorption thermal energy storage for cogeneration in industrial batch processes: Experiment, dynamic modeling and system analysis publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.06.016 – volume: 144 year: 2023 ident: 10.1016/j.applthermaleng.2024.123871_b31 article-title: Impacts of the internal heat recovery scheme on the performance of an adsorption heat transformer cycle for temperature upgrade publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2023.106774 – volume: 238 issue: Part C year: 2022 ident: 10.1016/j.applthermaleng.2024.123871_b24 article-title: Adsorptive transformation of ultralow-temperature heat using a “Heat from Cold” cycle publication-title: Energy – volume: 11 start-page: 3389 issue: 8 year: 2021 ident: 10.1016/j.applthermaleng.2024.123871_b25 article-title: Thermodynamic performance of adsorption working pairs for low-temperature waste heat upgrading in industrial applications publication-title: Appl. Sci. doi: 10.3390/app11083389 – volume: 38 start-page: 191 issue: 3 year: 1999 ident: 10.1016/j.applthermaleng.2024.123871_b9 article-title: Recent developments and future prospects of sorption heat pump systems publication-title: Int. J. Therm. Sci. doi: 10.1016/S1290-0729(99)80083-0 – volume: 5 start-page: 531 issue: 3 year: 2021 ident: 10.1016/j.applthermaleng.2024.123871_b3 article-title: To decarbonize industry, we must decarbonize heat publication-title: Joule doi: 10.1016/j.joule.2020.12.007 – volume: 180 year: 2020 ident: 10.1016/j.applthermaleng.2024.123871_b12 article-title: Review of adsorptive heat conversion/storage in cold climate countries publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115848 – volume: 10 issue: 7 year: 2022 ident: 10.1016/j.applthermaleng.2024.123871_b10 article-title: Closed–loop adsorption–based upgrading of heat from 90 to 110 °C: Experimental demonstration and insights for future development publication-title: Energy Technol. doi: 10.1002/ente.202200251 – volume: 18 start-page: 2069 issue: 6 year: 2020 ident: 10.1016/j.applthermaleng.2024.123871_b2 article-title: Strategies for mitigation of climate change: A review publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-020-01059-w – volume: 185 start-page: 409 year: 2019 ident: 10.1016/j.applthermaleng.2024.123871_b63 article-title: Integrated design and control of full sorption chiller systems publication-title: Energy doi: 10.1016/j.energy.2019.06.169 – volume: 179 start-page: 542 year: 2019 ident: 10.1016/j.applthermaleng.2024.123871_b17 article-title: A new version of the large pressure jump (T-LPJ) method for dynamic study of pressure-initiated adsorptive cycles for heat storage and transformation publication-title: Energy doi: 10.1016/j.energy.2019.04.164 – volume: 299 year: 2024 ident: 10.1016/j.applthermaleng.2024.123871_b69 article-title: Experimental study on using 85 °C low-grade heat to generate <120 °C steam by a temperature-distributed absorption heat transformer publication-title: Energy doi: 10.1016/j.energy.2024.131491 – volume: 39 start-page: 97 issue: 1 year: 2021 ident: 10.1016/j.applthermaleng.2024.123871_b28 article-title: Thermodynamic analysis of adsorption heat transformer cycle using low heat capacity adsorption reactor and a proposal of heat recovery publication-title: Trans. Japan Soc. Refrig. Air Cond. Eng. – ident: 10.1016/j.applthermaleng.2024.123871_b56 doi: 10.3384/ecp12076669 – volume: 65 start-page: 524 issue: 8 year: 2018 ident: 10.1016/j.applthermaleng.2024.123871_b15 article-title: A thermodynamic analysis of a new cycle for adsorption heat pump “Heat from Cold”: Effect of the working pair on cycle efficiency publication-title: Therm. Eng. doi: 10.1134/S0040601518080098 – volume: 125 start-page: 1565 year: 2017 ident: 10.1016/j.applthermaleng.2024.123871_b43 article-title: Dynamic optimisation of adsorber-bed designs ensuring optimal control publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.07.073 – volume: 305 year: 2022 ident: 10.1016/j.applthermaleng.2024.123871_b29 article-title: A novel hybrid adsorption heat transformer – multi-effect distillation (AHT-MED) system for improved performance and waste heat upgrade publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117744 – volume: 9 issue: 1 year: 2021 ident: 10.1016/j.applthermaleng.2024.123871_b33 article-title: Upgrading waste heat from 90 to 110 °C: The potential of adsorption heat transformation publication-title: Energy Technol. doi: 10.1002/ente.202000643 – volume: 11 start-page: 414 year: 2017 ident: 10.1016/j.applthermaleng.2024.123871_b68 article-title: Absorption heat pump for waste heat reuse: Current states and future development publication-title: Front. Energy doi: 10.1007/s11708-017-0507-1 – volume: 139 start-page: 180 year: 2022 ident: 10.1016/j.applthermaleng.2024.123871_b35 article-title: Efficient modeling of adsorption chillers: Avoiding discretization by operator splitting publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2022.04.015 – volume: 156 start-page: 287 year: 2019 ident: 10.1016/j.applthermaleng.2024.123871_b6 article-title: Estimating the potential of industrial (high-temperature) heat pumps for exploiting waste heat in EU industries publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.04.082 – volume: 236 year: 2021 ident: 10.1016/j.applthermaleng.2024.123871_b7 article-title: Adsorptive conversion of ultralow-temperature heat: Thermodynamic issues publication-title: Energy doi: 10.1016/j.energy.2021.121892 – volume: 27 start-page: 327 year: 2018 ident: 10.1016/j.applthermaleng.2024.123871_b14 article-title: Thermodynamic analysis of the new adsorption cycle “HeCol” for ambient heat upgrading: Ideal heat transfer publication-title: J. Eng. Thermophys. doi: 10.1134/S1810232818030086 – volume: 93 start-page: 1178 issue: 7 year: 2021 ident: 10.1016/j.applthermaleng.2024.123871_b58 article-title: Einsatz von Lamellen-Tropfenabscheidern in Trennkolonnen (in German) publication-title: Chemie Ingenieur Tech. doi: 10.1002/cite.202000244 – volume: 74 start-page: 364 issue: 2 year: 2017 ident: 10.1016/j.applthermaleng.2024.123871_b53 article-title: An overview of modelling techniques employed for performance simulation of low–grade heat operated adsorption cooling systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.02.062 – volume: 31 start-page: 387 issue: 2 year: 2002 ident: 10.1016/j.applthermaleng.2024.123871_b47 article-title: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.1461829 – year: 2005 ident: 10.1016/j.applthermaleng.2024.123871_b59 – volume: 159 start-page: 213 year: 2018 ident: 10.1016/j.applthermaleng.2024.123871_b22 article-title: Testing the lab-scale “Heat from Cold” prototype with the “LiCl/silica – methanol” working pair publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.12.099 – volume: 126 start-page: 37 year: 2017 ident: 10.1016/j.applthermaleng.2024.123871_b57 article-title: Study on the performance of compact adsorption chiller with vapor valves publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.07.130 – volume: 51 year: 2024 ident: 10.1016/j.applthermaleng.2024.123871_b26 article-title: Study of metal–organic framework (MOF)/water pairs for adsorption heat transformer applications publication-title: Therm. Sci. Eng. Progress – ident: 10.1016/j.applthermaleng.2024.123871_b1 doi: 10.59327/IPCC/AR6-9789291691647 – volume: 148 start-page: 3059 year: 2023 ident: 10.1016/j.applthermaleng.2024.123871_b30 article-title: Adsorption heat transformer cycle using multiple adsorbent + water pairs for waste heat upgrade publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-022-11350-3 – volume: 52 start-page: 32 year: 2015 ident: 10.1016/j.applthermaleng.2024.123871_b60 article-title: Performance simulation of multi-bed silica gel-water adsorption chillers publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2014.12.016 – year: 2021 ident: 10.1016/j.applthermaleng.2024.123871_b34 – volume: 13 start-page: 2904 issue: 11 year: 2020 ident: 10.1016/j.applthermaleng.2024.123871_b19 article-title: An aqueous CaCl2 solution in the condenser/evaporator instead of pure water: Application for the new adsorptive cycle “Heat from Cold” publication-title: Energies doi: 10.3390/en13112904 – volume: 57 start-page: 1568 year: 2016 ident: 10.1016/j.applthermaleng.2024.123871_b5 article-title: Estimating the global waste heat potential publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.12.192 – volume: 10 start-page: 527 issue: 5–6 year: 1990 ident: 10.1016/j.applthermaleng.2024.123871_b8 article-title: Theoretical studies on adsorption heat transformer using zeolite-water vapour pair publication-title: Heat Recov. Syst. CHP doi: 10.1016/0890-4332(90)90203-V – volume: 52 start-page: 195 year: 2018 ident: 10.1016/j.applthermaleng.2024.123871_b20 article-title: New adsorption cycle for upgrading the ambient heat publication-title: Theor. Found. Chem. Eng. doi: 10.1134/S0040579518020069 – volume: 141 year: 2021 ident: 10.1016/j.applthermaleng.2024.123871_b66 article-title: Absorption heat transformer - state-of-the-art of industrial applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.110757 – volume: 123 start-page: 52 year: 2021 ident: 10.1016/j.applthermaleng.2024.123871_b27 article-title: Thermodynamic analysis and impact of thermal masses on adsorption cycles using MaxsorbIII/R245fa and SAC-2/R245fa pairs publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2020.12.005 – year: 2022 ident: 10.1016/j.applthermaleng.2024.123871_b36 – volume: 38 start-page: 101 issue: 2 year: 2009 ident: 10.1016/j.applthermaleng.2024.123871_b48 article-title: New international formulation for the viscosity of H2O publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.3088050 – volume: 176 start-page: 1037 year: 2019 ident: 10.1016/j.applthermaleng.2024.123871_b4 article-title: Perspectives for low-temperature waste heat recovery publication-title: Energy doi: 10.1016/j.energy.2019.04.001 – volume: 41 issue: 3 year: 2012 ident: 10.1016/j.applthermaleng.2024.123871_b49 article-title: New international formulation for the thermal conductivity of H2O publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.4738955 – year: 2000 ident: 10.1016/j.applthermaleng.2024.123871_b51 |
| SSID | ssj0012874 |
| Score | 2.4488137 |
| Snippet | Adsorption heat transformers (AdHTs) have recently been proposed to decarbonize industrial heat supply by upgrading low-temperature waste heat to higher... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 123871 |
| SubjectTerms | Coefficient of performance (COP) Dynamic modeling with Modelica Energy efficiency ratio (EER) Model calibration and validation Multi-objective optimization Specific heating power (SHP) |
| Title | Towards optimal adsorption heat transformers for heat upgrading: Learnings from a validated full-scale model |
| URI | https://dx.doi.org/10.1016/j.applthermaleng.2024.123871 |
| Volume | 255 |
| WOSCitedRecordID | wos001275063000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier issn: 1359-4311 databaseCode: AIEXJ dateStart: 19960101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0012874 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKhhA8IK5i3OSHvVWp0sSuY3hAExoCBBMPQ-pb5MTO1K0kVZKNiZ_Er-Sc2HEyLlJBQpXSxFLsuOfr8ZfjcyFkX5vCaCYWgeYmClik4iALIxWokOmciUKH3BabEEdHyXIpP00m3_tYmIu1KMvk8lJu_quooQ2EjaGzfyFu3yk0wDkIHY4gdjhuJ_jOEbaZVqAMvmAmAN1UtVUMqHixKISlqhi6i06GXev55qTu3OnRROCSrp40NvpETeH5Vmga0FM01wcNCNbYIjpjctszWuSUOLIZch164o4-tBiZZS0CH1f1WeX3fMy3aoh69zq7atqvZuUCFruKAj646ANmo3YRR62LaXMWjIih6rcxnE7pxlwGQGTmY60ccT7Sq7C-JrZUyy8q31ofTme44e_mB9Ob4UCz4barmbZ_WgG9X2Lv8naaXu0txd5S29s1shsJLkGD7h68O1y-93tWWDmge713s7lB9gdvwj8_3e8J0YjkHN8ht93bCT2wqLpLJqa8R26NclbeJ2uHL-rwRQd8UUQSHeOLwrdt9fh6QT26KKKLKurRRQd00Q5dD8jnN4fHr98GrmRHkMcJawMZKiHncQSqQUv4aF0oBpeJKUITKmUynieZTHITCyC3hZYZZ7nSSR5lC7iOH5KdsirNI0KLZCGKTOu5yRSTcwVMVmWhEbqAVclEfI-87H-3NHf57LGsyjrdRop7hPu7Nzavy5b3vepFlDqOarlnCnjcqofH_zjyE3Jz-PM8JTttfW6ekev5Rbtq6ucOjD8ANZHGUA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+optimal+adsorption+heat+transformers+for+heat+upgrading%3A+Learnings+from+a+validated+full-scale+model&rft.jtitle=Applied+thermal+engineering&rft.au=Engelpracht%2C+Mirko&rft.au=Rezo%2C+Daniel&rft.au=Postweiler%2C+Patrik&rft.au=Lache%2C+Marten&rft.date=2024-10-15&rft.issn=1359-4311&rft.volume=255&rft.spage=123871&rft_id=info:doi/10.1016%2Fj.applthermaleng.2024.123871&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2024_123871 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |