Blade shape optimization of the Savonius wind turbine using a genetic algorithm
•GA is incorporated into CFD for the optimization of Savonius wind turbine’s blades.•33% improvement in power coefficient is observed for turbine with optimal blades.•Turbine with optimal blades outperforms conventional one at a wide range of TSR. The Savonius wind turbine is one of the best candida...
Saved in:
| Published in: | Applied energy Vol. 213; pp. 148 - 157 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.03.2018
|
| Subjects: | |
| ISSN: | 0306-2619, 1872-9118 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •GA is incorporated into CFD for the optimization of Savonius wind turbine’s blades.•33% improvement in power coefficient is observed for turbine with optimal blades.•Turbine with optimal blades outperforms conventional one at a wide range of TSR.
The Savonius wind turbine is one of the best candidates for harvesting wind energy in an urban environment, due to unique features such as compactness, simple assembly, low noise level, self-starting ability at low wind speed, and low cost. However, the conventional Savonius wind turbine with semicircular blades has a relatively low power coefficient. This work focuses on optimizing the shape of the blade of the Savonius wind turbine to further improve its power coefficient. An evolutionary-based genetic algorithm (GA) is incorporated into computational fluid dynamics (CFD) simulations, thereby coupling blade geometry definition with mesh generation and fitness function evaluation in an iterative process. Three variable points along the blade cross-section are used to define the geometry of the blade arc, and the objective function of GA is set to maximize the power coefficient. Two-dimensional flow around the wind turbine is modeled by the shear-stress transport (SST) k-ω turbulence model and solved through the finite-volume method in ANSYS Fluent. Three GA optimization runs with different population and genetic operations have been carried out to provide the optimal shape of the blade of the Savonius turbine. Compared to the wind turbine with semicircular blades, the wind turbine with optimal blades and a tip speed ratio (TSR) of 0.8 achieved significant improvement (up to 33%) on the time-averaged power coefficient. In addition, the Savonius turbine with optimal blades outperformed the one with semicircular blades at a wide range of TSR (= 0.6–1.2), suggesting that the Savonius wind turbine with optimal blades has great potential to be applied in the real urban environment. The aerodynamic forces and flow structures pertaining to both wind turbines with optimal and semicircular blades are compared and discussed, to improve our understanding on their underlying mechanisms and to further improve their performance. |
|---|---|
| AbstractList | The Savonius wind turbine is one of the best candidates for harvesting wind energy in an urban environment, due to unique features such as compactness, simple assembly, low noise level, self-starting ability at low wind speed, and low cost. However, the conventional Savonius wind turbine with semicircular blades has a relatively low power coefficient. This work focuses on optimizing the shape of the blade of the Savonius wind turbine to further improve its power coefficient. An evolutionary-based genetic algorithm (GA) is incorporated into computational fluid dynamics (CFD) simulations, thereby coupling blade geometry definition with mesh generation and fitness function evaluation in an iterative process. Three variable points along the blade cross-section are used to define the geometry of the blade arc, and the objective function of GA is set to maximize the power coefficient. Two-dimensional flow around the wind turbine is modeled by the shear-stress transport (SST) k-ω turbulence model and solved through the finite-volume method in ANSYS Fluent. Three GA optimization runs with different population and genetic operations have been carried out to provide the optimal shape of the blade of the Savonius turbine. Compared to the wind turbine with semicircular blades, the wind turbine with optimal blades and a tip speed ratio (TSR) of 0.8 achieved significant improvement (up to 33%) on the time-averaged power coefficient. In addition, the Savonius turbine with optimal blades outperformed the one with semicircular blades at a wide range of TSR (= 0.6–1.2), suggesting that the Savonius wind turbine with optimal blades has great potential to be applied in the real urban environment. The aerodynamic forces and flow structures pertaining to both wind turbines with optimal and semicircular blades are compared and discussed, to improve our understanding on their underlying mechanisms and to further improve their performance. •GA is incorporated into CFD for the optimization of Savonius wind turbine’s blades.•33% improvement in power coefficient is observed for turbine with optimal blades.•Turbine with optimal blades outperforms conventional one at a wide range of TSR. The Savonius wind turbine is one of the best candidates for harvesting wind energy in an urban environment, due to unique features such as compactness, simple assembly, low noise level, self-starting ability at low wind speed, and low cost. However, the conventional Savonius wind turbine with semicircular blades has a relatively low power coefficient. This work focuses on optimizing the shape of the blade of the Savonius wind turbine to further improve its power coefficient. An evolutionary-based genetic algorithm (GA) is incorporated into computational fluid dynamics (CFD) simulations, thereby coupling blade geometry definition with mesh generation and fitness function evaluation in an iterative process. Three variable points along the blade cross-section are used to define the geometry of the blade arc, and the objective function of GA is set to maximize the power coefficient. Two-dimensional flow around the wind turbine is modeled by the shear-stress transport (SST) k-ω turbulence model and solved through the finite-volume method in ANSYS Fluent. Three GA optimization runs with different population and genetic operations have been carried out to provide the optimal shape of the blade of the Savonius turbine. Compared to the wind turbine with semicircular blades, the wind turbine with optimal blades and a tip speed ratio (TSR) of 0.8 achieved significant improvement (up to 33%) on the time-averaged power coefficient. In addition, the Savonius turbine with optimal blades outperformed the one with semicircular blades at a wide range of TSR (= 0.6–1.2), suggesting that the Savonius wind turbine with optimal blades has great potential to be applied in the real urban environment. The aerodynamic forces and flow structures pertaining to both wind turbines with optimal and semicircular blades are compared and discussed, to improve our understanding on their underlying mechanisms and to further improve their performance. |
| Author | Bai, H.L. He, D.Q. Chan, C.M. |
| Author_xml | – sequence: 1 givenname: C.M. surname: Chan fullname: Chan, C.M. – sequence: 2 givenname: H.L. surname: Bai fullname: Bai, H.L. email: hongleibai@ust.hk – sequence: 3 givenname: D.Q. surname: He fullname: He, D.Q. |
| BookMark | eNqFkDFvFDEQRi0UJC6Bv4Bc0uwy473YXokCiIBEipQCqK057-ydT3v2YXuDwq9nw0FDk2qa772R3rk4iymyEK8RWgTUb_ctHTly3j60CtC2gC2o_plYoTWq6RHtmVhBB7pRGvsX4ryUPQAoVLASdx8nGliW3eKQ6VjDIfyiGlKUaZR1x_Ir3acY5iJ_hjjIOudNiCznEuJWktwuj2vwkqZtyqHuDi_F85Gmwq_-3gvx_fOnb1fXze3dl5urD7eN7-y6NnZkVGwsk1FmvWELI2hUNJDpFAAPWm16ukSydOnJ2NEa2-tRY2f0euypuxBvTt5jTj9mLtUdQvE8TRQ5zcUp0EZZi916merT1OdUSubRHXM4UH5wCO6xoNu7fwXdY0EH6JaCC_juP9CH-idOzRSmp_H3J5yXDveBsys-cPQ8hMy-uiGFpxS_AYQllD0 |
| CitedBy_id | crossref_primary_10_1016_j_apenergy_2020_115045 crossref_primary_10_1016_j_enconman_2018_08_025 crossref_primary_10_1016_j_oceaneng_2023_116279 crossref_primary_10_1007_s10494_023_00459_6 crossref_primary_10_1007_s11804_024_00473_8 crossref_primary_10_1016_j_jpowsour_2019_05_089 crossref_primary_10_1007_s12667_021_00428_w crossref_primary_10_1016_j_oceaneng_2024_117086 crossref_primary_10_1088_1742_6596_1700_1_012051 crossref_primary_10_3390_wind5030018 crossref_primary_10_1007_s11356_022_22399_w crossref_primary_10_3390_dynamics5010008 crossref_primary_10_1016_j_renene_2024_120115 crossref_primary_10_1007_s00158_022_03415_6 crossref_primary_10_1016_j_jobe_2024_109818 crossref_primary_10_1016_j_energy_2024_132224 crossref_primary_10_1016_j_renene_2020_07_099 crossref_primary_10_1177_09576509221098480 crossref_primary_10_1002_sstr_202500280 crossref_primary_10_1016_j_seta_2019_100534 crossref_primary_10_1108_MMMS_12_2019_0224 crossref_primary_10_1016_j_nxener_2025_100346 crossref_primary_10_1016_j_jclepro_2019_02_237 crossref_primary_10_3390_su14105918 crossref_primary_10_1016_j_seta_2023_103382 crossref_primary_10_1016_j_oceaneng_2019_106229 crossref_primary_10_1016_j_energy_2019_07_144 crossref_primary_10_1016_j_rser_2022_112531 crossref_primary_10_1080_15567036_2023_2226096 crossref_primary_10_1016_j_renene_2021_05_086 crossref_primary_10_1177_0309524X221150491 crossref_primary_10_1007_s40430_025_05691_x crossref_primary_10_1016_j_enconman_2022_115679 crossref_primary_10_1088_1757_899X_399_1_012015 crossref_primary_10_1016_j_compstruct_2024_118825 crossref_primary_10_1177_0309524X19862760 crossref_primary_10_1007_s40747_021_00292_2 crossref_primary_10_1177_00368504211013227 crossref_primary_10_1016_j_renene_2025_122647 crossref_primary_10_1007_s12667_020_00387_8 crossref_primary_10_1080_15435075_2023_2220372 crossref_primary_10_3390_su12156017 crossref_primary_10_1007_s10915_021_01499_8 crossref_primary_10_1016_j_ress_2024_110654 crossref_primary_10_3390_en13102636 crossref_primary_10_1002_we_2776 crossref_primary_10_1007_s12046_023_02176_2 crossref_primary_10_3390_app12168037 crossref_primary_10_1016_j_energy_2018_06_072 crossref_primary_10_1016_j_ijft_2025_101077 crossref_primary_10_1016_j_jclepro_2020_120012 crossref_primary_10_1007_s00158_018_2110_4 crossref_primary_10_1016_j_renene_2020_05_038 crossref_primary_10_1080_15435075_2021_1947821 crossref_primary_10_1080_15567036_2022_2088898 crossref_primary_10_1016_j_renene_2022_10_021 crossref_primary_10_1177_0309524X231217726 crossref_primary_10_1016_j_renene_2019_02_044 crossref_primary_10_1016_j_ijhydene_2021_11_119 crossref_primary_10_1016_j_renene_2025_123208 crossref_primary_10_1016_j_energy_2020_117064 crossref_primary_10_3390_en15207629 crossref_primary_10_3390_pr10112278 crossref_primary_10_3390_su15118848 crossref_primary_10_3390_en13092311 crossref_primary_10_1016_j_seppur_2021_120130 crossref_primary_10_3390_app12147018 crossref_primary_10_3390_app9132679 crossref_primary_10_1177_0309524X241239983 crossref_primary_10_1016_j_apenergy_2019_01_056 crossref_primary_10_1016_j_enconman_2024_118569 crossref_primary_10_1016_j_matpr_2021_09_226 crossref_primary_10_1016_j_enconman_2024_118722 crossref_primary_10_1016_j_heliyon_2024_e40799 crossref_primary_10_1016_j_energy_2018_11_026 crossref_primary_10_1016_j_taml_2020_01_034 crossref_primary_10_3390_pr11051473 crossref_primary_10_1016_j_energy_2025_135738 crossref_primary_10_1016_j_oceaneng_2023_115690 crossref_primary_10_3390_su13010410 crossref_primary_10_1016_j_seta_2020_100871 crossref_primary_10_1016_j_energy_2023_126952 crossref_primary_10_1088_1755_1315_1074_1_012011 crossref_primary_10_1016_j_apenergy_2018_07_084 crossref_primary_10_3390_pr12061094 crossref_primary_10_1007_s11581_022_04751_9 crossref_primary_10_1007_s40430_023_04351_2 crossref_primary_10_1016_j_renene_2020_10_119 crossref_primary_10_1016_j_jhazmat_2019_121769 crossref_primary_10_3390_su14169816 crossref_primary_10_1007_s40997_020_00410_4 crossref_primary_10_1155_er_7548518 crossref_primary_10_32604_ee_2023_042287 crossref_primary_10_1016_j_oceaneng_2021_110400 crossref_primary_10_1016_j_matpr_2021_02_231 crossref_primary_10_1016_j_oceaneng_2023_115418 crossref_primary_10_1016_j_renene_2021_04_097 crossref_primary_10_1002_cjce_23498 crossref_primary_10_1016_j_apenergy_2020_116069 crossref_primary_10_1080_14484846_2020_1714364 crossref_primary_10_1016_j_renene_2019_06_013 crossref_primary_10_3390_en14071962 crossref_primary_10_1016_j_enconman_2024_118469 crossref_primary_10_1109_ACCESS_2020_2966268 crossref_primary_10_1016_j_enconman_2023_117637 crossref_primary_10_1038_s41598_025_88544_w crossref_primary_10_1007_s11831_021_09589_4 crossref_primary_10_1016_j_scitotenv_2019_135029 crossref_primary_10_1177_0309524X211072868 crossref_primary_10_3390_en17215348 crossref_primary_10_1088_1742_6596_1618_4_042007 crossref_primary_10_1007_s00158_022_03391_x crossref_primary_10_1016_j_jclepro_2023_138789 crossref_primary_10_1007_s10462_019_09768_7 crossref_primary_10_1016_j_sna_2023_114535 crossref_primary_10_1016_j_energy_2020_117772 crossref_primary_10_1088_1361_6439_abde91 crossref_primary_10_1109_TVT_2023_3267500 crossref_primary_10_1016_j_jocs_2021_101388 crossref_primary_10_1016_j_enconman_2021_114109 crossref_primary_10_1016_j_energy_2020_117659 crossref_primary_10_1016_j_oceaneng_2023_115086 crossref_primary_10_1016_j_enconman_2018_10_012 crossref_primary_10_3390_app11136198 crossref_primary_10_1016_j_egyr_2022_05_244 crossref_primary_10_1080_15567036_2023_2180114 crossref_primary_10_1061__ASCE_EY_1943_7897_0000741 crossref_primary_10_1016_j_jweia_2022_104903 crossref_primary_10_1016_j_egyr_2022_09_062 crossref_primary_10_3390_en15010225 crossref_primary_10_1016_j_heliyon_2023_e15672 crossref_primary_10_3390_en12132543 crossref_primary_10_1007_s40430_023_04474_6 crossref_primary_10_1016_j_energy_2019_07_008 crossref_primary_10_1016_j_jup_2021_101197 crossref_primary_10_1088_1757_899X_881_1_012154 crossref_primary_10_1016_j_rser_2022_112314 crossref_primary_10_3390_en15238808 crossref_primary_10_1016_j_energy_2023_127172 crossref_primary_10_5194_ms_12_875_2021 crossref_primary_10_1186_s10033_024_01077_7 crossref_primary_10_35633_inmateh_76_25 crossref_primary_10_1016_j_egyr_2022_02_065 crossref_primary_10_1016_j_renene_2020_08_145 crossref_primary_10_1007_s13369_022_07424_x crossref_primary_10_3390_app13095584 crossref_primary_10_1063_5_0273363 crossref_primary_10_34133_space_0309 |
| Cites_doi | 10.1016/j.apenergy.2016.07.072 10.1016/j.renene.2017.10.067 10.1016/j.renene.2017.06.020 10.1016/j.enconman.2008.08.021 10.1016/j.rser.2005.08.004 10.1016/j.renene.2010.04.007 10.1016/j.enconman.2016.05.044 10.1016/j.energy.2014.11.023 10.1016/j.rser.2013.03.060 10.1016/j.apenergy.2011.03.025 10.1016/j.jweia.2015.01.003 10.1016/j.energy.2015.06.023 10.1016/j.rser.2012.02.056 10.1016/j.energy.2013.10.094 10.1016/j.rser.2013.07.049 10.1016/j.enconman.2010.06.070 10.1016/j.apenergy.2014.10.022 10.1016/j.apenergy.2008.09.019 10.1016/j.renene.2013.06.009 10.1016/j.rser.2014.05.053 10.1016/j.apenergy.2014.12.043 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd |
| Copyright_xml | – notice: 2018 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2018.01.029 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| EndPage | 157 |
| ExternalDocumentID | 10_1016_j_apenergy_2018_01_029 S0306261918300291 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c384t-8fe12e78ea7274be80f0612ada73200ed62b9a51a8a5ca78f87896f613764f9a3 |
| ISICitedReferencesCount | 188 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000425576900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Thu Oct 02 05:12:54 EDT 2025 Tue Nov 18 22:32:22 EST 2025 Sat Nov 29 07:20:35 EST 2025 Fri Feb 23 02:31:40 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Genetic algorithm optimization Wind energy Savonius wind turbine/rotor |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c384t-8fe12e78ea7274be80f0612ada73200ed62b9a51a8a5ca78f87896f613764f9a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2067288134 |
| PQPubID | 24069 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2067288134 crossref_primary_10_1016_j_apenergy_2018_01_029 crossref_citationtrail_10_1016_j_apenergy_2018_01_029 elsevier_sciencedirect_doi_10_1016_j_apenergy_2018_01_029 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-03-01 |
| PublicationDateYYYYMMDD | 2018-03-01 |
| PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied energy |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Akwa, Vielmo, Petry (b0015) 2012; 16 Roy, Saha (b0065) 2015; 137 Tian, Mao, Zhang, Li (b0085) 2018; 117 Roy, Saha (b0110) 2013; 24 Driss, Mlayeh, Driss, Driss, Maaloul, Abid (b0055) 2015; 89 Tartuferi, D’Alessandro, Montelpare, Ricci (b0060) 2015; 79 Herbert, Iniyan, Sreevalsan, Rajapandian (b0005) 2007; 11 Roy, Ducoin (b0070) 2016; 121 Petkovic, Cojbasic, Nikolic (b0090) 2013; 28 Ishugah, Li, Wang, Kiplagat (b0010) 2014; 37 Petkovic, Cojbasic, Nikolic, Shamshirband, Kiah, Anuar (b0095) 2014; 64 Kacprzak, Liskiewicz, Sobczak (b0050) 2013; 60 Mohamed, Janiga, Pap, Thévenin (b0045) 2011; 52 Goldberg (b0105) 1989 Golecha, Eldho, Prabhu (b0030) 2011; 88 Chehouri, Younes, Ilinca, Perron (b0100) 2015; 142 Yang, Huang, Yeh (b0075) 2016; 179 El-Askary, Nasef, AbdEL-hamid, Gad (b0025) 2015; 139 Kamoji, Kedare, Prabhu (b0040) 2009; 86 Altan, Atılgan (b0020) 2008; 49 Mohamed, Janiga, Pap, Thévenin (b0035) 2010; 35 Kumar, Saini (b0080) 2017; 113 Tartuferi (10.1016/j.apenergy.2018.01.029_b0060) 2015; 79 Kamoji (10.1016/j.apenergy.2018.01.029_b0040) 2009; 86 Petkovic (10.1016/j.apenergy.2018.01.029_b0095) 2014; 64 Roy (10.1016/j.apenergy.2018.01.029_b0110) 2013; 24 Herbert (10.1016/j.apenergy.2018.01.029_b0005) 2007; 11 Goldberg (10.1016/j.apenergy.2018.01.029_b0105) 1989 Yang (10.1016/j.apenergy.2018.01.029_b0075) 2016; 179 Ishugah (10.1016/j.apenergy.2018.01.029_b0010) 2014; 37 Tian (10.1016/j.apenergy.2018.01.029_b0085) 2018; 117 Kacprzak (10.1016/j.apenergy.2018.01.029_b0050) 2013; 60 Petkovic (10.1016/j.apenergy.2018.01.029_b0090) 2013; 28 Chehouri (10.1016/j.apenergy.2018.01.029_b0100) 2015; 142 Akwa (10.1016/j.apenergy.2018.01.029_b0015) 2012; 16 Altan (10.1016/j.apenergy.2018.01.029_b0020) 2008; 49 Mohamed (10.1016/j.apenergy.2018.01.029_b0035) 2010; 35 Driss (10.1016/j.apenergy.2018.01.029_b0055) 2015; 89 Mohamed (10.1016/j.apenergy.2018.01.029_b0045) 2011; 52 Kumar (10.1016/j.apenergy.2018.01.029_b0080) 2017; 113 Golecha (10.1016/j.apenergy.2018.01.029_b0030) 2011; 88 Roy (10.1016/j.apenergy.2018.01.029_b0065) 2015; 137 Roy (10.1016/j.apenergy.2018.01.029_b0070) 2016; 121 El-Askary (10.1016/j.apenergy.2018.01.029_b0025) 2015; 139 |
| References_xml | – volume: 28 start-page: 91 year: 2013 end-page: 195 ident: b0090 article-title: Adaptive neuro-fuzzy approach for wind turbine power coefficient estimation publication-title: Renew Sustain Energy Rev – volume: 64 start-page: 868 year: 2014 end-page: 874 ident: b0095 article-title: Adaptive neuro-fuzzy maximal power extraction of wind turbine with continously variable transmission publication-title: Energy – volume: 60 start-page: 578 year: 2013 end-page: 585 ident: b0050 article-title: Numerical investigation of conventional and modified Savonius wind turbines publication-title: Renew Energy – volume: 142 start-page: 361 year: 2015 end-page: 388 ident: b0100 article-title: Review of performance optimization techniques applied to wind turbines publication-title: Appl Energy – volume: 49 start-page: 3425 year: 2008 end-page: 3432 ident: b0020 article-title: An experimental and numerical study on the improvement of the performance of Savonius wind rotor publication-title: Energy Convers Manage – volume: 113 start-page: 461 year: 2017 end-page: 478 ident: b0080 article-title: Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades publication-title: Renew Energy – volume: 37 start-page: 613 year: 2014 end-page: 626 ident: b0010 article-title: Advances in wind energy resource exploitation in urban environment: a review publication-title: Renew Sustain Energy Rev – volume: 179 start-page: 875 year: 2016 end-page: 887 ident: b0075 article-title: Performance investigation of an innovative vertical axis turbine consisting of deflectable blades publication-title: Appl Energy – volume: 16 start-page: 3054 year: 2012 end-page: 3064 ident: b0015 article-title: A review on the performance of Savonius wind turbines publication-title: Renew Sustain Energy Rev – volume: 139 start-page: 8 year: 2015 end-page: 15 ident: b0025 article-title: Harvesting wind energy for improving performance of Savonius turbine publication-title: J Wind Eng Ind Aerodyn – volume: 24 start-page: 73 year: 2013 end-page: 83 ident: b0110 article-title: Review on the numerical investigations into the design and development of Savonius wind rotors publication-title: Renew Sustain Energy Rev – volume: 89 start-page: 708 year: 2015 end-page: 729 ident: b0055 article-title: Study of the bucket design effect on the turbulent flow around unconventional Savonius wind rotors publication-title: Energy – volume: 35 start-page: 2618 year: 2010 end-page: 2626 ident: b0035 article-title: Optimization of Savonius turbines using an obstacle shielding the returning blade publication-title: Renew Energy – volume: 79 start-page: 371 year: 2015 end-page: 384 ident: b0060 article-title: Enhancement of Savonius wind rotor aerodynamic performance: a computational study of new blade shapes and curtain systems publication-title: Energy – year: 1989 ident: b0105 article-title: Genetic Algoriths in Search, Optimization, and Maching Learning – volume: 117 start-page: 287 year: 2018 end-page: 299 ident: b0085 article-title: Shape optimization of a Savonius wind rotor with different convec and concave sides publication-title: Renew Energy – volume: 88 start-page: 3207 year: 2011 end-page: 3217 ident: b0030 article-title: Influence of the deflector plate on the performance of modified Savonius water turbine publication-title: Appl Energy – volume: 52 start-page: 236 year: 2011 end-page: 242 ident: b0045 article-title: Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade publication-title: Energy Convers Manage – volume: 86 start-page: 1064 year: 2009 end-page: 1073 ident: b0040 article-title: Experimental investigations on single stage modified Savonius rotor publication-title: Appl Energy – volume: 121 start-page: 281 year: 2016 end-page: 296 ident: b0070 article-title: Unsteady analysis on the instantaneous forces and moment arms acting on a novel Savonius-style wind turbine publication-title: Energy Convers Manage – volume: 137 start-page: 117 year: 2015 end-page: 125 ident: b0065 article-title: Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine publication-title: Appl Energy – volume: 11 start-page: 1117 year: 2007 end-page: 1145 ident: b0005 article-title: A review of wind energy technologies publication-title: Renew Sustain Energy Rev – volume: 179 start-page: 875 year: 2016 ident: 10.1016/j.apenergy.2018.01.029_b0075 article-title: Performance investigation of an innovative vertical axis turbine consisting of deflectable blades publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.07.072 – volume: 117 start-page: 287 year: 2018 ident: 10.1016/j.apenergy.2018.01.029_b0085 article-title: Shape optimization of a Savonius wind rotor with different convec and concave sides publication-title: Renew Energy doi: 10.1016/j.renene.2017.10.067 – volume: 113 start-page: 461 year: 2017 ident: 10.1016/j.apenergy.2018.01.029_b0080 article-title: Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades publication-title: Renew Energy doi: 10.1016/j.renene.2017.06.020 – volume: 49 start-page: 3425 issue: 12 year: 2008 ident: 10.1016/j.apenergy.2018.01.029_b0020 article-title: An experimental and numerical study on the improvement of the performance of Savonius wind rotor publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2008.08.021 – volume: 11 start-page: 1117 issue: 6 year: 2007 ident: 10.1016/j.apenergy.2018.01.029_b0005 article-title: A review of wind energy technologies publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2005.08.004 – volume: 35 start-page: 2618 issue: 11 year: 2010 ident: 10.1016/j.apenergy.2018.01.029_b0035 article-title: Optimization of Savonius turbines using an obstacle shielding the returning blade publication-title: Renew Energy doi: 10.1016/j.renene.2010.04.007 – volume: 121 start-page: 281 year: 2016 ident: 10.1016/j.apenergy.2018.01.029_b0070 article-title: Unsteady analysis on the instantaneous forces and moment arms acting on a novel Savonius-style wind turbine publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.05.044 – volume: 79 start-page: 371 year: 2015 ident: 10.1016/j.apenergy.2018.01.029_b0060 article-title: Enhancement of Savonius wind rotor aerodynamic performance: a computational study of new blade shapes and curtain systems publication-title: Energy doi: 10.1016/j.energy.2014.11.023 – volume: 24 start-page: 73 year: 2013 ident: 10.1016/j.apenergy.2018.01.029_b0110 article-title: Review on the numerical investigations into the design and development of Savonius wind rotors publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.03.060 – volume: 88 start-page: 3207 issue: 9 year: 2011 ident: 10.1016/j.apenergy.2018.01.029_b0030 article-title: Influence of the deflector plate on the performance of modified Savonius water turbine publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.03.025 – volume: 139 start-page: 8 year: 2015 ident: 10.1016/j.apenergy.2018.01.029_b0025 article-title: Harvesting wind energy for improving performance of Savonius turbine publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2015.01.003 – volume: 89 start-page: 708 year: 2015 ident: 10.1016/j.apenergy.2018.01.029_b0055 article-title: Study of the bucket design effect on the turbulent flow around unconventional Savonius wind rotors publication-title: Energy doi: 10.1016/j.energy.2015.06.023 – volume: 16 start-page: 3054 issue: 5 year: 2012 ident: 10.1016/j.apenergy.2018.01.029_b0015 article-title: A review on the performance of Savonius wind turbines publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2012.02.056 – volume: 64 start-page: 868 year: 2014 ident: 10.1016/j.apenergy.2018.01.029_b0095 article-title: Adaptive neuro-fuzzy maximal power extraction of wind turbine with continously variable transmission publication-title: Energy doi: 10.1016/j.energy.2013.10.094 – volume: 28 start-page: 91 year: 2013 ident: 10.1016/j.apenergy.2018.01.029_b0090 article-title: Adaptive neuro-fuzzy approach for wind turbine power coefficient estimation publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.07.049 – volume: 52 start-page: 236 issue: 1 year: 2011 ident: 10.1016/j.apenergy.2018.01.029_b0045 article-title: Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2010.06.070 – volume: 137 start-page: 117 year: 2015 ident: 10.1016/j.apenergy.2018.01.029_b0065 article-title: Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.10.022 – volume: 86 start-page: 1064 issue: 7–8 year: 2009 ident: 10.1016/j.apenergy.2018.01.029_b0040 article-title: Experimental investigations on single stage modified Savonius rotor publication-title: Appl Energy doi: 10.1016/j.apenergy.2008.09.019 – year: 1989 ident: 10.1016/j.apenergy.2018.01.029_b0105 – volume: 60 start-page: 578 year: 2013 ident: 10.1016/j.apenergy.2018.01.029_b0050 article-title: Numerical investigation of conventional and modified Savonius wind turbines publication-title: Renew Energy doi: 10.1016/j.renene.2013.06.009 – volume: 37 start-page: 613 year: 2014 ident: 10.1016/j.apenergy.2018.01.029_b0010 article-title: Advances in wind energy resource exploitation in urban environment: a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.05.053 – volume: 142 start-page: 361 year: 2015 ident: 10.1016/j.apenergy.2018.01.029_b0100 article-title: Review of performance optimization techniques applied to wind turbines publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.12.043 |
| SSID | ssj0002120 |
| Score | 2.6047342 |
| Snippet | •GA is incorporated into CFD for the optimization of Savonius wind turbine’s blades.•33% improvement in power coefficient is observed for turbine with optimal... The Savonius wind turbine is one of the best candidates for harvesting wind energy in an urban environment, due to unique features such as compactness, simple... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 148 |
| SubjectTerms | algorithms blades equipment design Genetic algorithm optimization Savonius wind turbine/rotor shear stress turbulent flow urban areas Wind energy wind speed wind turbines |
| Title | Blade shape optimization of the Savonius wind turbine using a genetic algorithm |
| URI | https://dx.doi.org/10.1016/j.apenergy.2018.01.029 https://www.proquest.com/docview/2067288134 |
| Volume | 213 |
| WOSCitedRecordID | wos000425576900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLbQlAMcUClUFAoyErcqIc7m52OBQQVBAbVIc4ucxKGtpsloMqn683lesohFBSEu0Yw1djx-n58_228h5AVyVCWYYh7ICrxY5aknRZl6VSzKIA9yXrHKJJvgx8ewWIjPzuO6NekEeF3D9bVY_VdRYxkKW7vO_oW4h0axAD-j0PGJYsfnHwn-1VKW6qA9kyt10KBCuHSelr01wIm8wnncabc2bTzZrXNNNDtzZiB1RmVlYrguvzXr883Z5ZS99pRVGYfBiWWAvbn3P_rjwajNhu1_GIqOzNHpG_-LPz1pYDCaWtnjr94FZrQ3Mm5XQerpbZhdUKwWBR5qLQpTNRuyaKIomY2v6dZcZoNU_6TO7cnChY8jZv6YNsUDG2ZVjAvYYFZ4ojuj-4J6Sl834q54K-SJgBnZOnw3X7wf1ujQBezsOz_xHf_1235HW35YwA0rOd0m99x2gh5aGNwnt1S9Q-5OgkzukN356MuIP3XKvH1APhmkUIMUOkUKbSqKSKE9UqhGCnVIoQYpVFKHFDog5SH5-nZ--vrIc_k1vCKCeONBpVioOCiJJDbOFQSVJryylDzCGaXKNMyFTJgEmRSSQwUcRFohAeRpXAkZ7ZJZ3dTqEaER7gIUsulQAMQiSPNQ4VcIi4SBygO5R5J--LLCBZ_XOVCWWW9leJH1w57pYc8ClmFre-TlUG9lw6_cWEP00skcibTkMENQ3Vj3eS_ODLWsvjqTtWq6NtNJDkIAFsWP_6H9J-TOOK_2yWyz7tRTcru42py362cOo98BHXKkPw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blade+shape+optimization+of+the+Savonius+wind+turbine+using+a+genetic+algorithm&rft.jtitle=Applied+energy&rft.au=Chan%2C+C.M.&rft.au=Bai%2C+H.L.&rft.au=He%2C+D.Q.&rft.date=2018-03-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=213&rft.spage=148&rft.epage=157&rft_id=info:doi/10.1016%2Fj.apenergy.2018.01.029&rft.externalDocID=S0306261918300291 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |