Blade shape optimization of the Savonius wind turbine using a genetic algorithm

•GA is incorporated into CFD for the optimization of Savonius wind turbine’s blades.•33% improvement in power coefficient is observed for turbine with optimal blades.•Turbine with optimal blades outperforms conventional one at a wide range of TSR. The Savonius wind turbine is one of the best candida...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied energy Ročník 213; s. 148 - 157
Hlavní autori: Chan, C.M., Bai, H.L., He, D.Q.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.03.2018
Predmet:
ISSN:0306-2619, 1872-9118
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •GA is incorporated into CFD for the optimization of Savonius wind turbine’s blades.•33% improvement in power coefficient is observed for turbine with optimal blades.•Turbine with optimal blades outperforms conventional one at a wide range of TSR. The Savonius wind turbine is one of the best candidates for harvesting wind energy in an urban environment, due to unique features such as compactness, simple assembly, low noise level, self-starting ability at low wind speed, and low cost. However, the conventional Savonius wind turbine with semicircular blades has a relatively low power coefficient. This work focuses on optimizing the shape of the blade of the Savonius wind turbine to further improve its power coefficient. An evolutionary-based genetic algorithm (GA) is incorporated into computational fluid dynamics (CFD) simulations, thereby coupling blade geometry definition with mesh generation and fitness function evaluation in an iterative process. Three variable points along the blade cross-section are used to define the geometry of the blade arc, and the objective function of GA is set to maximize the power coefficient. Two-dimensional flow around the wind turbine is modeled by the shear-stress transport (SST) k-ω turbulence model and solved through the finite-volume method in ANSYS Fluent. Three GA optimization runs with different population and genetic operations have been carried out to provide the optimal shape of the blade of the Savonius turbine. Compared to the wind turbine with semicircular blades, the wind turbine with optimal blades and a tip speed ratio (TSR) of 0.8 achieved significant improvement (up to 33%) on the time-averaged power coefficient. In addition, the Savonius turbine with optimal blades outperformed the one with semicircular blades at a wide range of TSR (= 0.6–1.2), suggesting that the Savonius wind turbine with optimal blades has great potential to be applied in the real urban environment. The aerodynamic forces and flow structures pertaining to both wind turbines with optimal and semicircular blades are compared and discussed, to improve our understanding on their underlying mechanisms and to further improve their performance.
AbstractList The Savonius wind turbine is one of the best candidates for harvesting wind energy in an urban environment, due to unique features such as compactness, simple assembly, low noise level, self-starting ability at low wind speed, and low cost. However, the conventional Savonius wind turbine with semicircular blades has a relatively low power coefficient. This work focuses on optimizing the shape of the blade of the Savonius wind turbine to further improve its power coefficient. An evolutionary-based genetic algorithm (GA) is incorporated into computational fluid dynamics (CFD) simulations, thereby coupling blade geometry definition with mesh generation and fitness function evaluation in an iterative process. Three variable points along the blade cross-section are used to define the geometry of the blade arc, and the objective function of GA is set to maximize the power coefficient. Two-dimensional flow around the wind turbine is modeled by the shear-stress transport (SST) k-ω turbulence model and solved through the finite-volume method in ANSYS Fluent. Three GA optimization runs with different population and genetic operations have been carried out to provide the optimal shape of the blade of the Savonius turbine. Compared to the wind turbine with semicircular blades, the wind turbine with optimal blades and a tip speed ratio (TSR) of 0.8 achieved significant improvement (up to 33%) on the time-averaged power coefficient. In addition, the Savonius turbine with optimal blades outperformed the one with semicircular blades at a wide range of TSR (= 0.6–1.2), suggesting that the Savonius wind turbine with optimal blades has great potential to be applied in the real urban environment. The aerodynamic forces and flow structures pertaining to both wind turbines with optimal and semicircular blades are compared and discussed, to improve our understanding on their underlying mechanisms and to further improve their performance.
•GA is incorporated into CFD for the optimization of Savonius wind turbine’s blades.•33% improvement in power coefficient is observed for turbine with optimal blades.•Turbine with optimal blades outperforms conventional one at a wide range of TSR. The Savonius wind turbine is one of the best candidates for harvesting wind energy in an urban environment, due to unique features such as compactness, simple assembly, low noise level, self-starting ability at low wind speed, and low cost. However, the conventional Savonius wind turbine with semicircular blades has a relatively low power coefficient. This work focuses on optimizing the shape of the blade of the Savonius wind turbine to further improve its power coefficient. An evolutionary-based genetic algorithm (GA) is incorporated into computational fluid dynamics (CFD) simulations, thereby coupling blade geometry definition with mesh generation and fitness function evaluation in an iterative process. Three variable points along the blade cross-section are used to define the geometry of the blade arc, and the objective function of GA is set to maximize the power coefficient. Two-dimensional flow around the wind turbine is modeled by the shear-stress transport (SST) k-ω turbulence model and solved through the finite-volume method in ANSYS Fluent. Three GA optimization runs with different population and genetic operations have been carried out to provide the optimal shape of the blade of the Savonius turbine. Compared to the wind turbine with semicircular blades, the wind turbine with optimal blades and a tip speed ratio (TSR) of 0.8 achieved significant improvement (up to 33%) on the time-averaged power coefficient. In addition, the Savonius turbine with optimal blades outperformed the one with semicircular blades at a wide range of TSR (= 0.6–1.2), suggesting that the Savonius wind turbine with optimal blades has great potential to be applied in the real urban environment. The aerodynamic forces and flow structures pertaining to both wind turbines with optimal and semicircular blades are compared and discussed, to improve our understanding on their underlying mechanisms and to further improve their performance.
Author Bai, H.L.
He, D.Q.
Chan, C.M.
Author_xml – sequence: 1
  givenname: C.M.
  surname: Chan
  fullname: Chan, C.M.
– sequence: 2
  givenname: H.L.
  surname: Bai
  fullname: Bai, H.L.
  email: hongleibai@ust.hk
– sequence: 3
  givenname: D.Q.
  surname: He
  fullname: He, D.Q.
BookMark eNqFkDFvFDEQRi0UJC6Bv4Bc0uwy473YXokCiIBEipQCqK057-ydT3v2YXuDwq9nw0FDk2qa772R3rk4iymyEK8RWgTUb_ctHTly3j60CtC2gC2o_plYoTWq6RHtmVhBB7pRGvsX4ryUPQAoVLASdx8nGliW3eKQ6VjDIfyiGlKUaZR1x_Ir3acY5iJ_hjjIOudNiCznEuJWktwuj2vwkqZtyqHuDi_F85Gmwq_-3gvx_fOnb1fXze3dl5urD7eN7-y6NnZkVGwsk1FmvWELI2hUNJDpFAAPWm16ukSydOnJ2NEa2-tRY2f0euypuxBvTt5jTj9mLtUdQvE8TRQ5zcUp0EZZi916merT1OdUSubRHXM4UH5wCO6xoNu7fwXdY0EH6JaCC_juP9CH-idOzRSmp_H3J5yXDveBsys-cPQ8hMy-uiGFpxS_AYQllD0
CitedBy_id crossref_primary_10_1016_j_apenergy_2020_115045
crossref_primary_10_1016_j_enconman_2018_08_025
crossref_primary_10_1016_j_oceaneng_2023_116279
crossref_primary_10_1007_s10494_023_00459_6
crossref_primary_10_1007_s11804_024_00473_8
crossref_primary_10_1016_j_jpowsour_2019_05_089
crossref_primary_10_1007_s12667_021_00428_w
crossref_primary_10_1016_j_oceaneng_2024_117086
crossref_primary_10_1088_1742_6596_1700_1_012051
crossref_primary_10_3390_wind5030018
crossref_primary_10_1007_s11356_022_22399_w
crossref_primary_10_3390_dynamics5010008
crossref_primary_10_1016_j_renene_2024_120115
crossref_primary_10_1007_s00158_022_03415_6
crossref_primary_10_1016_j_jobe_2024_109818
crossref_primary_10_1016_j_energy_2024_132224
crossref_primary_10_1016_j_renene_2020_07_099
crossref_primary_10_1177_09576509221098480
crossref_primary_10_1002_sstr_202500280
crossref_primary_10_1016_j_seta_2019_100534
crossref_primary_10_1108_MMMS_12_2019_0224
crossref_primary_10_1016_j_nxener_2025_100346
crossref_primary_10_1016_j_jclepro_2019_02_237
crossref_primary_10_3390_su14105918
crossref_primary_10_1016_j_seta_2023_103382
crossref_primary_10_1016_j_oceaneng_2019_106229
crossref_primary_10_1016_j_energy_2019_07_144
crossref_primary_10_1016_j_rser_2022_112531
crossref_primary_10_1080_15567036_2023_2226096
crossref_primary_10_1016_j_renene_2021_05_086
crossref_primary_10_1177_0309524X221150491
crossref_primary_10_1007_s40430_025_05691_x
crossref_primary_10_1016_j_enconman_2022_115679
crossref_primary_10_1088_1757_899X_399_1_012015
crossref_primary_10_1016_j_compstruct_2024_118825
crossref_primary_10_1177_0309524X19862760
crossref_primary_10_1007_s40747_021_00292_2
crossref_primary_10_1177_00368504211013227
crossref_primary_10_1016_j_renene_2025_122647
crossref_primary_10_1007_s12667_020_00387_8
crossref_primary_10_1080_15435075_2023_2220372
crossref_primary_10_3390_su12156017
crossref_primary_10_1007_s10915_021_01499_8
crossref_primary_10_1016_j_ress_2024_110654
crossref_primary_10_3390_en13102636
crossref_primary_10_1002_we_2776
crossref_primary_10_1007_s12046_023_02176_2
crossref_primary_10_3390_app12168037
crossref_primary_10_1016_j_energy_2018_06_072
crossref_primary_10_1016_j_ijft_2025_101077
crossref_primary_10_1016_j_jclepro_2020_120012
crossref_primary_10_1007_s00158_018_2110_4
crossref_primary_10_1016_j_renene_2020_05_038
crossref_primary_10_1080_15435075_2021_1947821
crossref_primary_10_1080_15567036_2022_2088898
crossref_primary_10_1016_j_renene_2022_10_021
crossref_primary_10_1177_0309524X231217726
crossref_primary_10_1016_j_renene_2019_02_044
crossref_primary_10_1016_j_ijhydene_2021_11_119
crossref_primary_10_1016_j_renene_2025_123208
crossref_primary_10_1016_j_energy_2020_117064
crossref_primary_10_3390_en15207629
crossref_primary_10_3390_pr10112278
crossref_primary_10_3390_su15118848
crossref_primary_10_3390_en13092311
crossref_primary_10_1016_j_seppur_2021_120130
crossref_primary_10_3390_app12147018
crossref_primary_10_3390_app9132679
crossref_primary_10_1177_0309524X241239983
crossref_primary_10_1016_j_apenergy_2019_01_056
crossref_primary_10_1016_j_enconman_2024_118569
crossref_primary_10_1016_j_matpr_2021_09_226
crossref_primary_10_1016_j_enconman_2024_118722
crossref_primary_10_1016_j_heliyon_2024_e40799
crossref_primary_10_1016_j_energy_2018_11_026
crossref_primary_10_1016_j_taml_2020_01_034
crossref_primary_10_3390_pr11051473
crossref_primary_10_1016_j_energy_2025_135738
crossref_primary_10_1016_j_oceaneng_2023_115690
crossref_primary_10_3390_su13010410
crossref_primary_10_1016_j_seta_2020_100871
crossref_primary_10_1016_j_energy_2023_126952
crossref_primary_10_1088_1755_1315_1074_1_012011
crossref_primary_10_1016_j_apenergy_2018_07_084
crossref_primary_10_3390_pr12061094
crossref_primary_10_1007_s11581_022_04751_9
crossref_primary_10_1007_s40430_023_04351_2
crossref_primary_10_1016_j_renene_2020_10_119
crossref_primary_10_1016_j_jhazmat_2019_121769
crossref_primary_10_3390_su14169816
crossref_primary_10_1007_s40997_020_00410_4
crossref_primary_10_1155_er_7548518
crossref_primary_10_32604_ee_2023_042287
crossref_primary_10_1016_j_oceaneng_2021_110400
crossref_primary_10_1016_j_matpr_2021_02_231
crossref_primary_10_1016_j_oceaneng_2023_115418
crossref_primary_10_1016_j_renene_2021_04_097
crossref_primary_10_1002_cjce_23498
crossref_primary_10_1016_j_apenergy_2020_116069
crossref_primary_10_1080_14484846_2020_1714364
crossref_primary_10_1016_j_renene_2019_06_013
crossref_primary_10_3390_en14071962
crossref_primary_10_1016_j_enconman_2024_118469
crossref_primary_10_1109_ACCESS_2020_2966268
crossref_primary_10_1016_j_enconman_2023_117637
crossref_primary_10_1038_s41598_025_88544_w
crossref_primary_10_1007_s11831_021_09589_4
crossref_primary_10_1016_j_scitotenv_2019_135029
crossref_primary_10_1177_0309524X211072868
crossref_primary_10_3390_en17215348
crossref_primary_10_1088_1742_6596_1618_4_042007
crossref_primary_10_1007_s00158_022_03391_x
crossref_primary_10_1016_j_jclepro_2023_138789
crossref_primary_10_1007_s10462_019_09768_7
crossref_primary_10_1016_j_sna_2023_114535
crossref_primary_10_1016_j_energy_2020_117772
crossref_primary_10_1088_1361_6439_abde91
crossref_primary_10_1109_TVT_2023_3267500
crossref_primary_10_1016_j_jocs_2021_101388
crossref_primary_10_1016_j_enconman_2021_114109
crossref_primary_10_1016_j_energy_2020_117659
crossref_primary_10_1016_j_oceaneng_2023_115086
crossref_primary_10_1016_j_enconman_2018_10_012
crossref_primary_10_3390_app11136198
crossref_primary_10_1016_j_egyr_2022_05_244
crossref_primary_10_1080_15567036_2023_2180114
crossref_primary_10_1061__ASCE_EY_1943_7897_0000741
crossref_primary_10_1016_j_jweia_2022_104903
crossref_primary_10_1016_j_egyr_2022_09_062
crossref_primary_10_3390_en15010225
crossref_primary_10_1016_j_heliyon_2023_e15672
crossref_primary_10_3390_en12132543
crossref_primary_10_1007_s40430_023_04474_6
crossref_primary_10_1016_j_energy_2019_07_008
crossref_primary_10_1016_j_jup_2021_101197
crossref_primary_10_1088_1757_899X_881_1_012154
crossref_primary_10_1016_j_rser_2022_112314
crossref_primary_10_3390_en15238808
crossref_primary_10_1016_j_energy_2023_127172
crossref_primary_10_5194_ms_12_875_2021
crossref_primary_10_1186_s10033_024_01077_7
crossref_primary_10_35633_inmateh_76_25
crossref_primary_10_1016_j_egyr_2022_02_065
crossref_primary_10_1016_j_renene_2020_08_145
crossref_primary_10_1007_s13369_022_07424_x
crossref_primary_10_3390_app13095584
crossref_primary_10_1063_5_0273363
crossref_primary_10_34133_space_0309
Cites_doi 10.1016/j.apenergy.2016.07.072
10.1016/j.renene.2017.10.067
10.1016/j.renene.2017.06.020
10.1016/j.enconman.2008.08.021
10.1016/j.rser.2005.08.004
10.1016/j.renene.2010.04.007
10.1016/j.enconman.2016.05.044
10.1016/j.energy.2014.11.023
10.1016/j.rser.2013.03.060
10.1016/j.apenergy.2011.03.025
10.1016/j.jweia.2015.01.003
10.1016/j.energy.2015.06.023
10.1016/j.rser.2012.02.056
10.1016/j.energy.2013.10.094
10.1016/j.rser.2013.07.049
10.1016/j.enconman.2010.06.070
10.1016/j.apenergy.2014.10.022
10.1016/j.apenergy.2008.09.019
10.1016/j.renene.2013.06.009
10.1016/j.rser.2014.05.053
10.1016/j.apenergy.2014.12.043
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2018.01.029
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 157
ExternalDocumentID 10_1016_j_apenergy_2018_01_029
S0306261918300291
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c384t-8fe12e78ea7274be80f0612ada73200ed62b9a51a8a5ca78f87896f613764f9a3
ISICitedReferencesCount 188
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000425576900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Thu Oct 02 05:12:54 EDT 2025
Tue Nov 18 22:32:22 EST 2025
Sat Nov 29 07:20:35 EST 2025
Fri Feb 23 02:31:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Genetic algorithm optimization
Wind energy
Savonius wind turbine/rotor
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-8fe12e78ea7274be80f0612ada73200ed62b9a51a8a5ca78f87896f613764f9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2067288134
PQPubID 24069
PageCount 10
ParticipantIDs proquest_miscellaneous_2067288134
crossref_primary_10_1016_j_apenergy_2018_01_029
crossref_citationtrail_10_1016_j_apenergy_2018_01_029
elsevier_sciencedirect_doi_10_1016_j_apenergy_2018_01_029
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Akwa, Vielmo, Petry (b0015) 2012; 16
Roy, Saha (b0065) 2015; 137
Tian, Mao, Zhang, Li (b0085) 2018; 117
Roy, Saha (b0110) 2013; 24
Driss, Mlayeh, Driss, Driss, Maaloul, Abid (b0055) 2015; 89
Tartuferi, D’Alessandro, Montelpare, Ricci (b0060) 2015; 79
Herbert, Iniyan, Sreevalsan, Rajapandian (b0005) 2007; 11
Roy, Ducoin (b0070) 2016; 121
Petkovic, Cojbasic, Nikolic (b0090) 2013; 28
Ishugah, Li, Wang, Kiplagat (b0010) 2014; 37
Petkovic, Cojbasic, Nikolic, Shamshirband, Kiah, Anuar (b0095) 2014; 64
Kacprzak, Liskiewicz, Sobczak (b0050) 2013; 60
Mohamed, Janiga, Pap, Thévenin (b0045) 2011; 52
Goldberg (b0105) 1989
Golecha, Eldho, Prabhu (b0030) 2011; 88
Chehouri, Younes, Ilinca, Perron (b0100) 2015; 142
Yang, Huang, Yeh (b0075) 2016; 179
El-Askary, Nasef, AbdEL-hamid, Gad (b0025) 2015; 139
Kamoji, Kedare, Prabhu (b0040) 2009; 86
Altan, Atılgan (b0020) 2008; 49
Mohamed, Janiga, Pap, Thévenin (b0035) 2010; 35
Kumar, Saini (b0080) 2017; 113
Tartuferi (10.1016/j.apenergy.2018.01.029_b0060) 2015; 79
Kamoji (10.1016/j.apenergy.2018.01.029_b0040) 2009; 86
Petkovic (10.1016/j.apenergy.2018.01.029_b0095) 2014; 64
Roy (10.1016/j.apenergy.2018.01.029_b0110) 2013; 24
Herbert (10.1016/j.apenergy.2018.01.029_b0005) 2007; 11
Goldberg (10.1016/j.apenergy.2018.01.029_b0105) 1989
Yang (10.1016/j.apenergy.2018.01.029_b0075) 2016; 179
Ishugah (10.1016/j.apenergy.2018.01.029_b0010) 2014; 37
Tian (10.1016/j.apenergy.2018.01.029_b0085) 2018; 117
Kacprzak (10.1016/j.apenergy.2018.01.029_b0050) 2013; 60
Petkovic (10.1016/j.apenergy.2018.01.029_b0090) 2013; 28
Chehouri (10.1016/j.apenergy.2018.01.029_b0100) 2015; 142
Akwa (10.1016/j.apenergy.2018.01.029_b0015) 2012; 16
Altan (10.1016/j.apenergy.2018.01.029_b0020) 2008; 49
Mohamed (10.1016/j.apenergy.2018.01.029_b0035) 2010; 35
Driss (10.1016/j.apenergy.2018.01.029_b0055) 2015; 89
Mohamed (10.1016/j.apenergy.2018.01.029_b0045) 2011; 52
Kumar (10.1016/j.apenergy.2018.01.029_b0080) 2017; 113
Golecha (10.1016/j.apenergy.2018.01.029_b0030) 2011; 88
Roy (10.1016/j.apenergy.2018.01.029_b0065) 2015; 137
Roy (10.1016/j.apenergy.2018.01.029_b0070) 2016; 121
El-Askary (10.1016/j.apenergy.2018.01.029_b0025) 2015; 139
References_xml – volume: 28
  start-page: 91
  year: 2013
  end-page: 195
  ident: b0090
  article-title: Adaptive neuro-fuzzy approach for wind turbine power coefficient estimation
  publication-title: Renew Sustain Energy Rev
– volume: 64
  start-page: 868
  year: 2014
  end-page: 874
  ident: b0095
  article-title: Adaptive neuro-fuzzy maximal power extraction of wind turbine with continously variable transmission
  publication-title: Energy
– volume: 60
  start-page: 578
  year: 2013
  end-page: 585
  ident: b0050
  article-title: Numerical investigation of conventional and modified Savonius wind turbines
  publication-title: Renew Energy
– volume: 142
  start-page: 361
  year: 2015
  end-page: 388
  ident: b0100
  article-title: Review of performance optimization techniques applied to wind turbines
  publication-title: Appl Energy
– volume: 49
  start-page: 3425
  year: 2008
  end-page: 3432
  ident: b0020
  article-title: An experimental and numerical study on the improvement of the performance of Savonius wind rotor
  publication-title: Energy Convers Manage
– volume: 113
  start-page: 461
  year: 2017
  end-page: 478
  ident: b0080
  article-title: Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades
  publication-title: Renew Energy
– volume: 37
  start-page: 613
  year: 2014
  end-page: 626
  ident: b0010
  article-title: Advances in wind energy resource exploitation in urban environment: a review
  publication-title: Renew Sustain Energy Rev
– volume: 179
  start-page: 875
  year: 2016
  end-page: 887
  ident: b0075
  article-title: Performance investigation of an innovative vertical axis turbine consisting of deflectable blades
  publication-title: Appl Energy
– volume: 16
  start-page: 3054
  year: 2012
  end-page: 3064
  ident: b0015
  article-title: A review on the performance of Savonius wind turbines
  publication-title: Renew Sustain Energy Rev
– volume: 139
  start-page: 8
  year: 2015
  end-page: 15
  ident: b0025
  article-title: Harvesting wind energy for improving performance of Savonius turbine
  publication-title: J Wind Eng Ind Aerodyn
– volume: 24
  start-page: 73
  year: 2013
  end-page: 83
  ident: b0110
  article-title: Review on the numerical investigations into the design and development of Savonius wind rotors
  publication-title: Renew Sustain Energy Rev
– volume: 89
  start-page: 708
  year: 2015
  end-page: 729
  ident: b0055
  article-title: Study of the bucket design effect on the turbulent flow around unconventional Savonius wind rotors
  publication-title: Energy
– volume: 35
  start-page: 2618
  year: 2010
  end-page: 2626
  ident: b0035
  article-title: Optimization of Savonius turbines using an obstacle shielding the returning blade
  publication-title: Renew Energy
– volume: 79
  start-page: 371
  year: 2015
  end-page: 384
  ident: b0060
  article-title: Enhancement of Savonius wind rotor aerodynamic performance: a computational study of new blade shapes and curtain systems
  publication-title: Energy
– year: 1989
  ident: b0105
  article-title: Genetic Algoriths in Search, Optimization, and Maching Learning
– volume: 117
  start-page: 287
  year: 2018
  end-page: 299
  ident: b0085
  article-title: Shape optimization of a Savonius wind rotor with different convec and concave sides
  publication-title: Renew Energy
– volume: 88
  start-page: 3207
  year: 2011
  end-page: 3217
  ident: b0030
  article-title: Influence of the deflector plate on the performance of modified Savonius water turbine
  publication-title: Appl Energy
– volume: 52
  start-page: 236
  year: 2011
  end-page: 242
  ident: b0045
  article-title: Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade
  publication-title: Energy Convers Manage
– volume: 86
  start-page: 1064
  year: 2009
  end-page: 1073
  ident: b0040
  article-title: Experimental investigations on single stage modified Savonius rotor
  publication-title: Appl Energy
– volume: 121
  start-page: 281
  year: 2016
  end-page: 296
  ident: b0070
  article-title: Unsteady analysis on the instantaneous forces and moment arms acting on a novel Savonius-style wind turbine
  publication-title: Energy Convers Manage
– volume: 137
  start-page: 117
  year: 2015
  end-page: 125
  ident: b0065
  article-title: Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine
  publication-title: Appl Energy
– volume: 11
  start-page: 1117
  year: 2007
  end-page: 1145
  ident: b0005
  article-title: A review of wind energy technologies
  publication-title: Renew Sustain Energy Rev
– volume: 179
  start-page: 875
  year: 2016
  ident: 10.1016/j.apenergy.2018.01.029_b0075
  article-title: Performance investigation of an innovative vertical axis turbine consisting of deflectable blades
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.07.072
– volume: 117
  start-page: 287
  year: 2018
  ident: 10.1016/j.apenergy.2018.01.029_b0085
  article-title: Shape optimization of a Savonius wind rotor with different convec and concave sides
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.10.067
– volume: 113
  start-page: 461
  year: 2017
  ident: 10.1016/j.apenergy.2018.01.029_b0080
  article-title: Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.06.020
– volume: 49
  start-page: 3425
  issue: 12
  year: 2008
  ident: 10.1016/j.apenergy.2018.01.029_b0020
  article-title: An experimental and numerical study on the improvement of the performance of Savonius wind rotor
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2008.08.021
– volume: 11
  start-page: 1117
  issue: 6
  year: 2007
  ident: 10.1016/j.apenergy.2018.01.029_b0005
  article-title: A review of wind energy technologies
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2005.08.004
– volume: 35
  start-page: 2618
  issue: 11
  year: 2010
  ident: 10.1016/j.apenergy.2018.01.029_b0035
  article-title: Optimization of Savonius turbines using an obstacle shielding the returning blade
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2010.04.007
– volume: 121
  start-page: 281
  year: 2016
  ident: 10.1016/j.apenergy.2018.01.029_b0070
  article-title: Unsteady analysis on the instantaneous forces and moment arms acting on a novel Savonius-style wind turbine
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.05.044
– volume: 79
  start-page: 371
  year: 2015
  ident: 10.1016/j.apenergy.2018.01.029_b0060
  article-title: Enhancement of Savonius wind rotor aerodynamic performance: a computational study of new blade shapes and curtain systems
  publication-title: Energy
  doi: 10.1016/j.energy.2014.11.023
– volume: 24
  start-page: 73
  year: 2013
  ident: 10.1016/j.apenergy.2018.01.029_b0110
  article-title: Review on the numerical investigations into the design and development of Savonius wind rotors
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.03.060
– volume: 88
  start-page: 3207
  issue: 9
  year: 2011
  ident: 10.1016/j.apenergy.2018.01.029_b0030
  article-title: Influence of the deflector plate on the performance of modified Savonius water turbine
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.03.025
– volume: 139
  start-page: 8
  year: 2015
  ident: 10.1016/j.apenergy.2018.01.029_b0025
  article-title: Harvesting wind energy for improving performance of Savonius turbine
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2015.01.003
– volume: 89
  start-page: 708
  year: 2015
  ident: 10.1016/j.apenergy.2018.01.029_b0055
  article-title: Study of the bucket design effect on the turbulent flow around unconventional Savonius wind rotors
  publication-title: Energy
  doi: 10.1016/j.energy.2015.06.023
– volume: 16
  start-page: 3054
  issue: 5
  year: 2012
  ident: 10.1016/j.apenergy.2018.01.029_b0015
  article-title: A review on the performance of Savonius wind turbines
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2012.02.056
– volume: 64
  start-page: 868
  year: 2014
  ident: 10.1016/j.apenergy.2018.01.029_b0095
  article-title: Adaptive neuro-fuzzy maximal power extraction of wind turbine with continously variable transmission
  publication-title: Energy
  doi: 10.1016/j.energy.2013.10.094
– volume: 28
  start-page: 91
  year: 2013
  ident: 10.1016/j.apenergy.2018.01.029_b0090
  article-title: Adaptive neuro-fuzzy approach for wind turbine power coefficient estimation
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.07.049
– volume: 52
  start-page: 236
  issue: 1
  year: 2011
  ident: 10.1016/j.apenergy.2018.01.029_b0045
  article-title: Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2010.06.070
– volume: 137
  start-page: 117
  year: 2015
  ident: 10.1016/j.apenergy.2018.01.029_b0065
  article-title: Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.10.022
– volume: 86
  start-page: 1064
  issue: 7–8
  year: 2009
  ident: 10.1016/j.apenergy.2018.01.029_b0040
  article-title: Experimental investigations on single stage modified Savonius rotor
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.09.019
– year: 1989
  ident: 10.1016/j.apenergy.2018.01.029_b0105
– volume: 60
  start-page: 578
  year: 2013
  ident: 10.1016/j.apenergy.2018.01.029_b0050
  article-title: Numerical investigation of conventional and modified Savonius wind turbines
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2013.06.009
– volume: 37
  start-page: 613
  year: 2014
  ident: 10.1016/j.apenergy.2018.01.029_b0010
  article-title: Advances in wind energy resource exploitation in urban environment: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.05.053
– volume: 142
  start-page: 361
  year: 2015
  ident: 10.1016/j.apenergy.2018.01.029_b0100
  article-title: Review of performance optimization techniques applied to wind turbines
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.12.043
SSID ssj0002120
Score 2.6046782
Snippet •GA is incorporated into CFD for the optimization of Savonius wind turbine’s blades.•33% improvement in power coefficient is observed for turbine with optimal...
The Savonius wind turbine is one of the best candidates for harvesting wind energy in an urban environment, due to unique features such as compactness, simple...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 148
SubjectTerms algorithms
blades
equipment design
Genetic algorithm optimization
Savonius wind turbine/rotor
shear stress
turbulent flow
urban areas
Wind energy
wind speed
wind turbines
Title Blade shape optimization of the Savonius wind turbine using a genetic algorithm
URI https://dx.doi.org/10.1016/j.apenergy.2018.01.029
https://www.proquest.com/docview/2067288134
Volume 213
WOSCitedRecordID wos000425576900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgy4EeEBQqWigyErcqIXayiX0sdFFBUEAUaW-W4zi01TZZbTZVfz5jx06i8ig9cIkiK7aczOfxl_E8EHpFlTbuXzLIkpwGCU9IwBTTQawlkFstiaKlLTaRHR-z-Zx_cQkVGltOIKsqdnXFl_9V1NAGwjahs7cQdz8oNMA9CB2uIHa4_pPg3yxkofebU7nU-zUohAsXaem9Ab7JS1jHrQlrM86T7So3RLO1NgNpKiprm8N18aNena1PL8bs1VNWbQMGR54B3cl9-CkcDKNdNezwY990ZE2nh-HXcGxpIGxwtfIRVlEamD-usfakJB7pP9KlzXRbKelyT_-ipTuDwXkIH8LO13jYsS57Kh_2JX8Wf2276p0IvX_aufDjCDOOiIiAce6iDZpNOZugjYP3s_mHfnumLlenf5lR2PjvZ_QnxnJt77aE5OQheuD-JPBBh4BH6I6uttDmKL_kFtqeDWGM8KjT481j9NmCBFuQ4DFIcF1iAAn2IMEGJNiBBFuQYIkdSHAPkifo-7vZydujwJXWCFTMknXASk2ozmAxAn9Ncs2i0nBdWcgshsWki5TmXE6JZHKqZMZKljGelsD9sjQpuYy30aSqK_0UYUpJFCtCUxmVCS1VXkgNoyeMK1bEhd5BU__5hHJ55035k4X4uwB30Ou-37LLvHJjD-6lIxx_7HihAODd2PelF6cABWtOzWSl67YRpr4BZYzEye6tZ_QM3R8W0nM0Wa9avYfuqcv1WbN64ZD5E-lcoVI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blade+shape+optimization+of+the+Savonius+wind+turbine+using+a+genetic+algorithm&rft.jtitle=Applied+energy&rft.au=Chan%2C+C.M.&rft.au=Bai%2C+H.L.&rft.au=He%2C+D.Q.&rft.date=2018-03-01&rft.issn=0306-2619&rft.volume=213&rft.spage=148&rft.epage=157&rft_id=info:doi/10.1016%2Fj.apenergy.2018.01.029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2018_01_029
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon