An efficient photovoltaic modeling using an Adaptive Fractional-order Archimedes Optimization Algorithm: Validation with partial shading conditions

Detecting the maximum power point in the photovoltaic (PV) system under normal and shaded weather conditions with high accuracy is vital to save the harvested power. Providing a robust model that emulates the physical behavior of a combination of particular solar modules is the core of designing a r...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Solar energy Ročník 236; s. 26 - 50
Hlavní autori: Yousri, Dalia, Shaker, Yomna, Mirjalili, Seyedali, Allam, Dalia
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Elsevier Ltd 01.04.2022
Pergamon Press Inc
Predmet:
ISSN:0038-092X, 1471-1257
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Detecting the maximum power point in the photovoltaic (PV) system under normal and shaded weather conditions with high accuracy is vital to save the harvested power. Providing a robust model that emulates the physical behavior of a combination of particular solar modules is the core of designing a reliable PV system. As the PV models’ parameters are not provided in the manufacturing datasheets, there is a persistent need to introduce an efficient and competent tool that provides the optimal parameters of the PV models. Therefore, this paper presents a novel strategy depending on a novel fractional calculus-based optimization technique to detect the optimal parameters of the PV models. The identified parameters globally fulfilled all tested shading conditions of different types and configurations of PV modules, strings, and arrays to verify the optimizer reliability and efficiency. A novel optimization algorithm called an Adaptive Fractional-order Archimedes Optimization Algorithm (A-FAOA) is proposed to identify the single and double diode model parameters for several PV solar cells/modules under various environmental conditions. The proposed algorithm uses a fractional-calculus memory perspective to enhance the exploration stage of the basic Archimedes Optimization Algorithm. In addition, the two-dimensional-Henon map is adopted in the algorithm to tune its parameters adaptively in an attempt to achieve a smooth transition between the exploration and exploitation phases. The developed technique is tested on several experimental datasets for several PV cells/modules under diverse environmental conditions. The proposed algorithm is compared with the recent literature based on statistical analysis and non-parametric tests. Moreover, the fitting curves and the values of error at the maximum power points are provided to demonstrate the superiority of the proposed method. For further evaluation of the reliability of the identified parameters, several PV systems based on the studied modules are implemented under uniform and partial shading conditions to affirm the accuracy of the identified parameters in representing a complete connected system under several environmental phenomena. The considered PV systems include three different strings (3x1, 6x1, 9x1) and three different arrays (3 × 2, 6 × 3, 9 × 9). High accuracy, robust performance, and minor deviation between the experimental and estimated curves are evident in the results. •Proposing an optimal modeling of a large integrated PV array system.•Proposing a novel strategy to detect the optimal parameters of the photovoltaic models.•Proposing a new Adaptive Fractional-order Archimedes Optimization Algorithm (A-FAOA).•Optimizing single and double diode model parameters for several photovoltaic solar cells/modules.•Considering different partial shading condition in this large system.
AbstractList Detecting the maximum power point in the photovoltaic (PV) system under normal and shaded weather conditions with high accuracy is vital to save the harvested power. Providing a robust model that emulates the physical behavior of a combination of particular solar modules is the core of designing a reliable PV system. As the PV models' parameters are not provided in the manufacturing datasheets, there is a persistent need to introduce an efficient and competent tool that provides the optimal parameters of the PV models. Therefore, this paper presents a novel strategy depending on a novel fractional calculus-based optimization technique to detect the optimal parameters of the PV models. The identified parameters globally fulfilled all tested shading conditions of different types and configurations of PV modules, strings, and arrays to verify the optimizer reliability and efficiency. A novel optimization algorithm called an Adaptive Fractional-order Archimedes Optimization Algorithm (A-FAOA) is proposed to identify the single and double diode model parameters for several PV solar cells/modules under various environmental conditions. The proposed algorithm uses a fractional-calculus memory perspective to enhance the exploration stage of the basic Archimedes Optimization Algorithm. In addition, the two-dimensional-Henon map is adopted in the algorithm to tune its parameters adaptively in an attempt to achieve a smooth transition between the exploration and exploitation phases. The developed technique is tested on several experimental datasets for several PV cells/modules under diverse environmental conditions. The proposed algorithm is compared with the recent literature based on statistical analysis and non-parametric tests. Moreover, the fitting curves and the values of error at the maximum power points are provided to demonstrate the superiority of the proposed method. For further evaluation of the reliability of the identified parameters, several PV systems based on the studied modules are implemented under uniform and partial shading conditions to affirm the accuracy of the identified parameters in representing a complete connected system under several environmental phenomena. The considered PV systems include three different strings (3x1, 6x1, 9x1) and three different arrays (3 x 2,6 x 3, 9 x 9). High accuracy, robust performance, and minor deviation between the experimental and estimated curves are evident in the results.
Detecting the maximum power point in the photovoltaic (PV) system under normal and shaded weather conditions with high accuracy is vital to save the harvested power. Providing a robust model that emulates the physical behavior of a combination of particular solar modules is the core of designing a reliable PV system. As the PV models’ parameters are not provided in the manufacturing datasheets, there is a persistent need to introduce an efficient and competent tool that provides the optimal parameters of the PV models. Therefore, this paper presents a novel strategy depending on a novel fractional calculus-based optimization technique to detect the optimal parameters of the PV models. The identified parameters globally fulfilled all tested shading conditions of different types and configurations of PV modules, strings, and arrays to verify the optimizer reliability and efficiency. A novel optimization algorithm called an Adaptive Fractional-order Archimedes Optimization Algorithm (A-FAOA) is proposed to identify the single and double diode model parameters for several PV solar cells/modules under various environmental conditions. The proposed algorithm uses a fractional-calculus memory perspective to enhance the exploration stage of the basic Archimedes Optimization Algorithm. In addition, the two-dimensional-Henon map is adopted in the algorithm to tune its parameters adaptively in an attempt to achieve a smooth transition between the exploration and exploitation phases. The developed technique is tested on several experimental datasets for several PV cells/modules under diverse environmental conditions. The proposed algorithm is compared with the recent literature based on statistical analysis and non-parametric tests. Moreover, the fitting curves and the values of error at the maximum power points are provided to demonstrate the superiority of the proposed method. For further evaluation of the reliability of the identified parameters, several PV systems based on the studied modules are implemented under uniform and partial shading conditions to affirm the accuracy of the identified parameters in representing a complete connected system under several environmental phenomena. The considered PV systems include three different strings (3x1, 6x1, 9x1) and three different arrays (3 × 2, 6 × 3, 9 × 9). High accuracy, robust performance, and minor deviation between the experimental and estimated curves are evident in the results. •Proposing an optimal modeling of a large integrated PV array system.•Proposing a novel strategy to detect the optimal parameters of the photovoltaic models.•Proposing a new Adaptive Fractional-order Archimedes Optimization Algorithm (A-FAOA).•Optimizing single and double diode model parameters for several photovoltaic solar cells/modules.•Considering different partial shading condition in this large system.
Author Yousri, Dalia
Mirjalili, Seyedali
Shaker, Yomna
Allam, Dalia
Author_xml – sequence: 1
  givenname: Dalia
  surname: Yousri
  fullname: Yousri, Dalia
  email: day01@fayoum.edu.eg
  organization: Department of Electrical Engineering, Faculty of Engineering, Fayoum University, Fayoum, Egypt
– sequence: 2
  givenname: Yomna
  orcidid: 0000-0002-8476-2883
  surname: Shaker
  fullname: Shaker, Yomna
  email: y.shaker@ustf.ac.ae
  organization: Department of Electrical Engineering, Faculty of Engineering, Fayoum University, Fayoum, Egypt
– sequence: 3
  givenname: Seyedali
  surname: Mirjalili
  fullname: Mirjalili, Seyedali
  email: ali.mirjalili@gmail.com
  organization: Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Fortitude Valley, Brisbane, Australia
– sequence: 4
  givenname: Dalia
  surname: Allam
  fullname: Allam, Dalia
  email: dfa00@fayoum.edu.eg
  organization: Department of Electrical Engineering, Faculty of Engineering, Fayoum University, Fayoum, Egypt
BookMark eNqFkc1q3DAQx0VJIZu0jxAQ9GxX0tqW3B6KCU1bCOTShtyELI2zWmTJlbQb2tfoC1fu5tRLLhLM_wPmNxfozAcPCF1RUlNCu_f7OgUHHmLNCKM1ZTXptq_QhjacVpS1_AxtCNmKivTs4RxdpLQnhHIq-Ab9GTyGabLags942YUcjsFlZTWegwFn_SM-pPVVHg9GLdkeAd9EpbMNXrkqRAMRD1Hv7AwGEr4rltn-VquOB_cYos27-QO-V86a0_SpTPCiYrbK4bRTZu3XwRu7yukNej0pl-Dt83-Jftx8_n79tbq9-_Lterit9FY0uRJUq37qDBeam3Yiio3QNSNMnHdUC6EEGVVf5H5k7SRAC9p0VBmjhR5J32wv0btT7xLDzwOkLPfhEMtSSbKuo62gnJHiak8uHUNKESa5RDur-EtSIlf-ci-f-cuVv6RMFv4l9_G_nLb53_45KuteTH86paEAONqipvVEGoyNoLM0wb7Q8BdSE6v8
CitedBy_id crossref_primary_10_1142_S2811034X25500042
crossref_primary_10_1007_s11831_022_09876_8
crossref_primary_10_3390_su15010509
crossref_primary_10_1016_j_enconman_2023_117621
crossref_primary_10_1109_TIM_2025_3551857
crossref_primary_10_1016_j_renene_2024_120388
crossref_primary_10_3390_en18092221
crossref_primary_10_1002_gch2_202300355
crossref_primary_10_1109_ACCESS_2022_3174555
crossref_primary_10_3390_fractalfract6070348
crossref_primary_10_3389_fenrg_2022_1011887
crossref_primary_10_1007_s00542_024_05801_0
crossref_primary_10_1007_s12145_022_00825_4
crossref_primary_10_1016_j_epsr_2023_109742
Cites_doi 10.1016/j.solener.2020.07.077
10.1016/j.enconman.2020.113018
10.1016/j.energy.2020.116979
10.1016/j.knosys.2020.105889
10.1016/j.enconman.2021.113971
10.1016/j.engappai.2020.104105
10.1016/j.enconman.2017.04.054
10.1016/j.enconman.2020.113388
10.1016/j.enconman.2016.09.085
10.1016/j.asoc.2020.107052
10.1016/j.solener.2014.09.043
10.1016/j.apenergy.2018.06.010
10.1038/s41598-020-71294-2
10.1016/j.enconman.2020.112904
10.1016/j.engappai.2020.103662
10.1016/j.apenergy.2019.01.008
10.1016/j.enconman.2020.113048
10.1016/j.enconman.2015.05.074
10.1016/j.enconman.2019.112450
10.1016/j.enconman.2020.113279
10.1016/j.enconman.2019.112443
10.1007/s11071-009-9649-y
10.1155/2013/362619
10.1016/j.solener.2019.10.093
10.1016/j.solener.2018.06.092
10.1016/j.solener.2020.06.108
10.1016/j.engappai.2021.104193
10.1016/j.solmat.2014.07.016
10.1016/j.solmat.2015.09.003
10.1002/er.5747
10.1016/j.enconman.2021.114269
10.1080/01425918608909835
10.1016/j.solener.2020.09.080
10.1016/j.enconman.2020.112990
10.1016/j.enconman.2018.08.053
10.1016/j.enconman.2020.113522
10.1016/j.enconman.2020.113491
10.1016/j.enconman.2018.12.022
10.1016/j.enconman.2020.112764
10.1016/j.enconman.2020.112615
10.1016/j.solener.2020.08.079
10.1016/j.rser.2016.03.049
10.1016/j.enconman.2020.112509
10.1016/j.solener.2017.10.063
10.1016/j.apenergy.2015.05.035
10.3390/en11051060
10.1016/j.enconman.2019.112243
10.1007/s11760-012-0316-2
10.1016/j.enconman.2016.06.052
ContentType Journal Article
Copyright 2021
Copyright Pergamon Press Inc. Apr 1, 2022
Copyright_xml – notice: 2021
– notice: Copyright Pergamon Press Inc. Apr 1, 2022
DBID AAYXX
CITATION
7SP
7ST
8FD
C1K
FR3
KR7
L7M
SOI
DOI 10.1016/j.solener.2021.12.063
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1471-1257
EndPage 50
ExternalDocumentID 10_1016_j_solener_2021_12_063
S0038092X21011129
GroupedDBID --K
--M
-ET
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACGOD
ACIWK
ACRLP
ADBBV
ADEZE
ADHUB
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BKOMP
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SSR
SSZ
T5K
TAE
TN5
WH7
XPP
YNT
ZMT
~02
~G-
~KM
~S-
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
NEJ
R2-
SAC
SEW
UKR
VOH
WUQ
XOL
ZY4
~A~
~HD
7SP
7ST
8FD
AGCQF
C1K
FR3
KR7
L7M
SOI
ID FETCH-LOGICAL-c384t-81ca9f6d78c7d5f0a2be64bef7761c88a80ba9d789b25f8ec81461addc8cb0943
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000792758500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0038-092X
IngestDate Wed Aug 13 11:04:56 EDT 2025
Sat Nov 29 07:29:43 EST 2025
Tue Nov 18 22:16:54 EST 2025
Fri Feb 23 02:41:46 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Single diode PV model
PV parameters estimation
Double diode PV model
Artificial Intelligence
Partial shading
Archimedes Optimization Algorithm
Fractional calculus
Optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-81ca9f6d78c7d5f0a2be64bef7761c88a80ba9d789b25f8ec81461addc8cb0943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8476-2883
OpenAccessLink http://hdl.handle.net/10072/418686
PQID 2661581720
PQPubID 9393
PageCount 25
ParticipantIDs proquest_journals_2661581720
crossref_primary_10_1016_j_solener_2021_12_063
crossref_citationtrail_10_1016_j_solener_2021_12_063
elsevier_sciencedirect_doi_10_1016_j_solener_2021_12_063
PublicationCentury 2000
PublicationDate 2022-04-01
2022-04-00
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Solar energy
PublicationYear 2022
Publisher Elsevier Ltd
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
References Jordehi (b19) 2016; 129
Yousri, Rezk, Fathy (b46) 2020; 44
Yousri, Abd Elaziz, Oliva, Abualigah, Al-qaness, Ewees (b41) 2020; 223
Podlubny (b30) 1998
Yousri, Mirjalili (b44) 2020; 92
Jordehi (b20) 2017
Chin, Salam (b10) 2019; 194
Ma, Ting, Man, Zhang, Guan, Wong (b27) 2013; 2013
Yousri, Abd Elaziz, Abualigah, Oliva, Al-Qaness, Ewees (b39) 2021; 101
Liang, Qiao, Yuan, Yu, Qu, Ge, Li, Chen (b25) 2020; 207
Beigi, Maroosi (b9) 2018; 171
Xiong, Zhang, Shi, Zhu, Yuan, Tan (b38) 2020; 206
Xiong, Zhang, Shi, He (b37) 2018; 174
Yousri, Allam, Eteiba, Suganthan (b42) 2019; 182
Easwarakhanthan, Bottin, Bouhouch, Boutrit (b13) 1986; 4
Tossa, Soro, Azoumah, Yamegueu (b35) 2014; 110
Alam, Yousri, Eteiba (b6) 2015; 101
Yousri, Mirjalili, Machado, Thanikanti, Fathy (b45) 2021; 100
Zhang, Jin, Zhao, Yang (b52) 2020; 208
Long, Cai, Jiao, Xu, Wu (b26) 2020; 203
Pires, Machado, de Moura Oliveira, Cunha, Mendes (b29) 2010; 61
Al-Subhi (b5) 2020; 209
Wang, Zhao, Heidari, Chen (b36) 2020; 211
Elbaset, Ali, Abd-El Sattar (b15) 2014; 130
Fathy, Rezk, Yousri (b16) 2020; 207
Jordehi (b18) 2016; 61
Abdel-Basset, El-Shahat, Chakrabortty, Ryan (b3) 2021; 227
Li, Gu, Gong, Ning (b24) 2020; 205
Chin, Salam, Ishaque (b11) 2015; 154
Kang, Yao, Jin, Yang, Duong (b22) 2018; 11
Yousri, Abd Elaziz, Mirjalili (b40) 2020
Yu, Chen, Wang, Wang (b48) 2017; 145
Yousri, Fathy, Rezk, Babu, Berber (b43) 2021; 243
Abd Elaziz, Yousri, Al-qaness, AbdelAty, Radwan, Ewees (b2) 2021; 98
Jordehi (b21) 2018; 159
Couceiro, Rocha, Ferreira, Machado (b12) 2012; 6
Rizk-Allah, El-Fergany (b32) 2020; 226
El-Hameed, Elkholy, El-Fergany (b14) 2020; 219
Yu, Liang, Qu, Cheng, Wang (b49) 2018; 226
Kermadi, Chin, Mekhilef, Salam (b23) 2020; 208
Barth, Jovanovic, Ahzi, Khaleel (b8) 2016; 148
Yu, Qu, Yue, Ge, Chen, Liang (b50) 2019; 237
Nunes, Silva, Pombo, Mariano, Calado (b28) 2020; 225
Yousri, Thanikanti, Allam, Ramachandaramurthy, Eteiba (b47) 2020; 195
Satpathy, Sharma (b34) 2020; 219
Qais, Hasanien, Alghuwainem (b31) 2020; 214
Zhang, Heidari, Wang, Zhang, Chen, Li (b51) 2020; 211
Hashim, Hussain, Houssein, Mabrouk, Al-Atabany (b17) 2020
Abd Elaziz, Thanikanti, Ibrahim, Lu, Nastasi, Alotaibi, Hossain, Yousri (b1) 2021; 236
Agwa, El-Fergany, Maksoud (b4) 2020; 217
Sahlol, Yousri, Ewees, Al-Qaness, Damasevicius, Abd Elaziz (b33) 2020; 10
Allam, Yousri, Eteiba (b7) 2016; 123
Abd Elaziz (10.1016/j.solener.2021.12.063_b2) 2021; 98
Xiong (10.1016/j.solener.2021.12.063_b38) 2020; 206
Sahlol (10.1016/j.solener.2021.12.063_b33) 2020; 10
Jordehi (10.1016/j.solener.2021.12.063_b19) 2016; 129
Barth (10.1016/j.solener.2021.12.063_b8) 2016; 148
Jordehi (10.1016/j.solener.2021.12.063_b18) 2016; 61
Jordehi (10.1016/j.solener.2021.12.063_b20) 2017
Abdel-Basset (10.1016/j.solener.2021.12.063_b3) 2021; 227
Couceiro (10.1016/j.solener.2021.12.063_b12) 2012; 6
Easwarakhanthan (10.1016/j.solener.2021.12.063_b13) 1986; 4
Ma (10.1016/j.solener.2021.12.063_b27) 2013; 2013
Xiong (10.1016/j.solener.2021.12.063_b37) 2018; 174
Yousri (10.1016/j.solener.2021.12.063_b39) 2021; 101
Tossa (10.1016/j.solener.2021.12.063_b35) 2014; 110
Yu (10.1016/j.solener.2021.12.063_b50) 2019; 237
Allam (10.1016/j.solener.2021.12.063_b7) 2016; 123
Long (10.1016/j.solener.2021.12.063_b26) 2020; 203
Yousri (10.1016/j.solener.2021.12.063_b46) 2020; 44
Satpathy (10.1016/j.solener.2021.12.063_b34) 2020; 219
Yousri (10.1016/j.solener.2021.12.063_b43) 2021; 243
Chin (10.1016/j.solener.2021.12.063_b11) 2015; 154
Zhang (10.1016/j.solener.2021.12.063_b51) 2020; 211
Podlubny (10.1016/j.solener.2021.12.063_b30) 1998
Abd Elaziz (10.1016/j.solener.2021.12.063_b1) 2021; 236
Beigi (10.1016/j.solener.2021.12.063_b9) 2018; 171
Zhang (10.1016/j.solener.2021.12.063_b52) 2020; 208
Qais (10.1016/j.solener.2021.12.063_b31) 2020; 214
Yousri (10.1016/j.solener.2021.12.063_b40) 2020
Li (10.1016/j.solener.2021.12.063_b24) 2020; 205
Nunes (10.1016/j.solener.2021.12.063_b28) 2020; 225
Elbaset (10.1016/j.solener.2021.12.063_b15) 2014; 130
Kermadi (10.1016/j.solener.2021.12.063_b23) 2020; 208
Yousri (10.1016/j.solener.2021.12.063_b42) 2019; 182
Rizk-Allah (10.1016/j.solener.2021.12.063_b32) 2020; 226
Kang (10.1016/j.solener.2021.12.063_b22) 2018; 11
Yousri (10.1016/j.solener.2021.12.063_b44) 2020; 92
Alam (10.1016/j.solener.2021.12.063_b6) 2015; 101
Al-Subhi (10.1016/j.solener.2021.12.063_b5) 2020; 209
Hashim (10.1016/j.solener.2021.12.063_b17) 2020
Yu (10.1016/j.solener.2021.12.063_b49) 2018; 226
Yousri (10.1016/j.solener.2021.12.063_b45) 2021; 100
Agwa (10.1016/j.solener.2021.12.063_b4) 2020; 217
Wang (10.1016/j.solener.2021.12.063_b36) 2020; 211
Fathy (10.1016/j.solener.2021.12.063_b16) 2020; 207
Jordehi (10.1016/j.solener.2021.12.063_b21) 2018; 159
Chin (10.1016/j.solener.2021.12.063_b10) 2019; 194
Yousri (10.1016/j.solener.2021.12.063_b47) 2020; 195
Yu (10.1016/j.solener.2021.12.063_b48) 2017; 145
Liang (10.1016/j.solener.2021.12.063_b25) 2020; 207
Pires (10.1016/j.solener.2021.12.063_b29) 2010; 61
Yousri (10.1016/j.solener.2021.12.063_b41) 2020; 223
El-Hameed (10.1016/j.solener.2021.12.063_b14) 2020; 219
References_xml – volume: 219
  year: 2020
  ident: b34
  article-title: Parametric indicators for partial shading and fault prediction in photovoltaic arrays with various interconnection topologies
  publication-title: Energy Convers. Manage.
– volume: 243
  year: 2021
  ident: b43
  article-title: A reliable approach for modeling the photovoltaic system under partial shading conditions using three diode model and hybrid marine predators-slime mould algorithm
  publication-title: Energy Convers. Manage.
– volume: 61
  start-page: 295
  year: 2010
  end-page: 301
  ident: b29
  article-title: Particle swarm optimization with fractional-order velocity
  publication-title: Nonlinear Dynam.
– year: 1998
  ident: b30
  article-title: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, Vol. 198
– volume: 225
  year: 2020
  ident: b28
  article-title: Multiswarm spiral leader particle swarm optimisation algorithm for pv parameter identification
  publication-title: Energy Convers. Manage.
– volume: 61
  start-page: 354
  year: 2016
  end-page: 371
  ident: b18
  article-title: Parameter estimation of solar photovoltaic (pv) cells: A review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 208
  start-page: 753
  year: 2020
  end-page: 765
  ident: b23
  article-title: A fast and accurate generalized analytical approach for pv arrays modeling under partial shading conditions
  publication-title: Sol. Energy
– volume: 226
  year: 2020
  ident: b32
  article-title: Conscious neighborhood scheme-based laplacian barnacles mating algorithm for parameters optimization of photovoltaic single-and double-diode models
  publication-title: Energy Convers. Manage.
– volume: 171
  start-page: 435
  year: 2018
  end-page: 446
  ident: b9
  article-title: Parameter identification for solar cells and module using a hybrid firefly and pattern search algorithms
  publication-title: Sol. Energy
– volume: 11
  start-page: 1060
  year: 2018
  ident: b22
  article-title: A novel improved cuckoo search algorithm for parameter estimation of photovoltaic (pv) models
  publication-title: Energies
– volume: 101
  year: 2021
  ident: b39
  article-title: Covid-19 x-ray images classification based on enhanced fractional-order cuckoo search optimizer using heavy-tailed distributions
  publication-title: Appl. Soft Comput.
– volume: 227
  start-page: 113491
  year: 2021
  ident: b3
  article-title: Parameter estimation of photovoltaic models using an improved marine predators algorithm
  publication-title: Energy Convers. Manage.
– volume: 207
  start-page: 305
  year: 2020
  end-page: 316
  ident: b16
  article-title: A robust global mppt to mitigate partial shading of triple-junction solar cell-based system using manta ray foraging optimization algorithm
  publication-title: Sol. Energy
– volume: 110
  start-page: 543
  year: 2014
  end-page: 560
  ident: b35
  article-title: A new approach to estimate the performance and energy productivity of photovoltaic modules in real operating conditions
  publication-title: Sol. Energy
– volume: 211
  start-page: 503
  year: 2020
  end-page: 521
  ident: b36
  article-title: Evaluation of constraint in photovoltaic models by exploiting an enhanced ant lion optimizer
  publication-title: Sol. Energy
– volume: 236
  start-page: 113971
  year: 2021
  ident: b1
  article-title: Enhanced marine predators algorithm for identifying static and dynamic photovoltaic models parameters
  publication-title: Energy Convers. Manage.
– volume: 174
  start-page: 388
  year: 2018
  end-page: 405
  ident: b37
  article-title: Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm
  publication-title: Energy Convers. Manage.
– volume: 194
  start-page: 656
  year: 2019
  end-page: 670
  ident: b10
  article-title: Coyote optimization algorithm for the parameter extraction of photovoltaic cells
  publication-title: Sol. Energy
– volume: 223
  year: 2020
  ident: b41
  article-title: Reliable applied objective for identifying simple and detailed photovoltaic models using modern metaheuristics: Comparative study
  publication-title: Energy Convers. Manage.
– volume: 211
  year: 2020
  ident: b51
  article-title: Orthogonal nelder-mead moth flame method for parameters identification of photovoltaic modules
  publication-title: Energy Convers. Manage.
– volume: 207
  year: 2020
  ident: b25
  article-title: Evolutionary multi-task optimization for parameters extraction of photovoltaic models
  publication-title: Energy Convers. Manage.
– volume: 205
  year: 2020
  ident: b24
  article-title: An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models
  publication-title: Energy Convers. Manage.
– volume: 100
  year: 2021
  ident: b45
  article-title: Efficient fractional-order modified harris hawks optimizer for proton exchange membrane fuel cell modeling
  publication-title: Eng. Appl. Artif. Intell.
– volume: 92
  year: 2020
  ident: b44
  article-title: Fractional-order cuckoo search algorithm for parameter identification of the fractional-order chaotic, chaotic with noise and hyper-chaotic financial systems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 182
  start-page: 546
  year: 2019
  end-page: 563
  ident: b42
  article-title: Static and dynamic photovoltaic models’ parameters identification using chaotic heterogeneous comprehensive learning particle swarm optimizer variants
  publication-title: Energy Convers. Manage.
– volume: 6
  start-page: 343
  year: 2012
  end-page: 350
  ident: b12
  article-title: Introducing the fractional-order darwinian pso
  publication-title: Signal Image Video Process.
– year: 2020
  ident: b40
  article-title: Fractional-order calculus-based flower pollination algorithm with local search for global optimization and image segmentation
  publication-title: Knowl.-Based Syst.
– volume: 2013
  year: 2013
  ident: b27
  article-title: Parameter estimation of photovoltaic models via cuckoo search
  publication-title: J. Appl. Math.
– volume: 214
  year: 2020
  ident: b31
  article-title: Transient search optimization for electrical parameters estimation of photovoltaic module based on datasheet values
  publication-title: Energy Convers. Manage.
– volume: 226
  start-page: 408
  year: 2018
  end-page: 422
  ident: b49
  article-title: Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models
  publication-title: Appl. Energy
– volume: 237
  start-page: 241
  year: 2019
  end-page: 257
  ident: b50
  article-title: A performance-guided jaya algorithm for parameters identification of photovoltaic cell and module
  publication-title: Appl. Energy
– volume: 208
  year: 2020
  ident: b52
  article-title: Backtracking search algorithm with lévy flight for estimating parameters of photovoltaic models
  publication-title: Energy Convers. Manage.
– start-page: 37
  year: 2017
  end-page: 42
  ident: b20
  article-title: Gravitational search algorithm with linearly decreasing gravitational constant for parameter estimation of photovoltaic cells
  publication-title: 2017 IEEE Congress on Evolutionary Computation (CEC)
– volume: 219
  year: 2020
  ident: b14
  article-title: Three-diode model for characterization of industrial solar generating units using manta-rays foraging optimizer: Analysis and validations
  publication-title: Energy Convers. Manage.
– volume: 130
  start-page: 442
  year: 2014
  end-page: 455
  ident: b15
  article-title: Novel seven-parameter model for photovoltaic modules
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 44
  start-page: 11302
  year: 2020
  end-page: 11322
  ident: b46
  article-title: Identifying the parameters of different configurations of photovoltaic models based on recent artificial ecosystem-based optimization approach
  publication-title: Int. J. Energy Res.
– volume: 98
  start-page: 104105
  year: 2021
  ident: b2
  article-title: A grunwald–letnikov based manta ray foraging optimizer for global optimization and image segmentation
  publication-title: Eng. Appl. Artif. Intell.
– volume: 148
  start-page: 87
  year: 2016
  end-page: 98
  ident: b8
  article-title: Pv panel single and double diode models: Optimization of the parameters and temperature dependence
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 203
  year: 2020
  ident: b26
  article-title: A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models
  publication-title: Energy Convers. Manage.
– volume: 209
  start-page: 245
  year: 2020
  end-page: 257
  ident: b5
  article-title: Parameters estimation of photovoltaic cells using simple and efficient mathematical models
  publication-title: Sol. Energy
– volume: 10
  start-page: 1
  year: 2020
  end-page: 15
  ident: b33
  article-title: Covid-19 image classification using deep features and fractional-order marine predators algorithm
  publication-title: Sci. Rep.
– volume: 101
  start-page: 410
  year: 2015
  end-page: 422
  ident: b6
  article-title: Flower pollination algorithm based solar pv parameter estimation
  publication-title: Energy Convers. Manage.
– volume: 154
  start-page: 500
  year: 2015
  end-page: 519
  ident: b11
  article-title: Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review
  publication-title: Appl. Energy
– volume: 206
  year: 2020
  ident: b38
  article-title: Winner-leading competitive swarm optimizer with dynamic gaussian mutation for parameter extraction of solar photovoltaic models
  publication-title: Energy Convers. Manage.
– volume: 145
  start-page: 233
  year: 2017
  end-page: 246
  ident: b48
  article-title: Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization
  publication-title: Energy Convers. Manage.
– volume: 123
  start-page: 535
  year: 2016
  end-page: 548
  ident: b7
  article-title: Parameters extraction of the three diode model for the multi-crystalline solar cell/module using moth-flame optimization algorithm
  publication-title: Energy Convers. Manage.
– volume: 217
  start-page: 112990
  year: 2020
  ident: b4
  article-title: Electrical characterization of photovoltaic modules using farmland fertility optimizer
  publication-title: Energy Convers. Manage.
– volume: 195
  year: 2020
  ident: b47
  article-title: Fractional chaotic ensemble particle swarm optimizer for identifying the single, double, and three diode photovoltaic models’ parameters
  publication-title: Energy
– volume: 129
  start-page: 262
  year: 2016
  end-page: 274
  ident: b19
  article-title: Time varying acceleration coefficients particle swarm optimisation (tvacpso): A new optimisation algorithm for estimating parameters of pv cells and modules
  publication-title: Energy Convers. Manage.
– start-page: 1
  year: 2020
  end-page: 21
  ident: b17
  article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems
  publication-title: Appl. Intell.
– volume: 159
  start-page: 78
  year: 2018
  end-page: 87
  ident: b21
  article-title: Enhanced leader particle swarm optimisation (elpso): An efficient algorithm for parameter estimation of photovoltaic (pv) cells and modules
  publication-title: Sol. Energy
– volume: 4
  start-page: 1
  year: 1986
  end-page: 12
  ident: b13
  article-title: Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers
  publication-title: Int. J. Sol. Energy
– volume: 208
  start-page: 753
  year: 2020
  ident: 10.1016/j.solener.2021.12.063_b23
  article-title: A fast and accurate generalized analytical approach for pv arrays modeling under partial shading conditions
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.07.077
– volume: 219
  year: 2020
  ident: 10.1016/j.solener.2021.12.063_b34
  article-title: Parametric indicators for partial shading and fault prediction in photovoltaic arrays with various interconnection topologies
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.113018
– volume: 195
  year: 2020
  ident: 10.1016/j.solener.2021.12.063_b47
  article-title: Fractional chaotic ensemble particle swarm optimizer for identifying the single, double, and three diode photovoltaic models’ parameters
  publication-title: Energy
  doi: 10.1016/j.energy.2020.116979
– year: 2020
  ident: 10.1016/j.solener.2021.12.063_b40
  article-title: Fractional-order calculus-based flower pollination algorithm with local search for global optimization and image segmentation
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105889
– volume: 236
  start-page: 113971
  year: 2021
  ident: 10.1016/j.solener.2021.12.063_b1
  article-title: Enhanced marine predators algorithm for identifying static and dynamic photovoltaic models parameters
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2021.113971
– volume: 98
  start-page: 104105
  year: 2021
  ident: 10.1016/j.solener.2021.12.063_b2
  article-title: A grunwald–letnikov based manta ray foraging optimizer for global optimization and image segmentation
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.104105
– volume: 145
  start-page: 233
  year: 2017
  ident: 10.1016/j.solener.2021.12.063_b48
  article-title: Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.04.054
– volume: 225
  year: 2020
  ident: 10.1016/j.solener.2021.12.063_b28
  article-title: Multiswarm spiral leader particle swarm optimisation algorithm for pv parameter identification
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.113388
– volume: 129
  start-page: 262
  year: 2016
  ident: 10.1016/j.solener.2021.12.063_b19
  article-title: Time varying acceleration coefficients particle swarm optimisation (tvacpso): A new optimisation algorithm for estimating parameters of pv cells and modules
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2016.09.085
– volume: 101
  year: 2021
  ident: 10.1016/j.solener.2021.12.063_b39
  article-title: Covid-19 x-ray images classification based on enhanced fractional-order cuckoo search optimizer using heavy-tailed distributions
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.107052
– volume: 110
  start-page: 543
  year: 2014
  ident: 10.1016/j.solener.2021.12.063_b35
  article-title: A new approach to estimate the performance and energy productivity of photovoltaic modules in real operating conditions
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.09.043
– volume: 226
  start-page: 408
  year: 2018
  ident: 10.1016/j.solener.2021.12.063_b49
  article-title: Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.06.010
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.solener.2021.12.063_b33
  article-title: Covid-19 image classification using deep features and fractional-order marine predators algorithm
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-71294-2
– volume: 214
  year: 2020
  ident: 10.1016/j.solener.2021.12.063_b31
  article-title: Transient search optimization for electrical parameters estimation of photovoltaic module based on datasheet values
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.112904
– volume: 92
  year: 2020
  ident: 10.1016/j.solener.2021.12.063_b44
  article-title: Fractional-order cuckoo search algorithm for parameter identification of the fractional-order chaotic, chaotic with noise and hyper-chaotic financial systems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103662
– volume: 237
  start-page: 241
  year: 2019
  ident: 10.1016/j.solener.2021.12.063_b50
  article-title: A performance-guided jaya algorithm for parameters identification of photovoltaic cell and module
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.008
– volume: 219
  year: 2020
  ident: 10.1016/j.solener.2021.12.063_b14
  article-title: Three-diode model for characterization of industrial solar generating units using manta-rays foraging optimizer: Analysis and validations
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.113048
– start-page: 1
  year: 2020
  ident: 10.1016/j.solener.2021.12.063_b17
  article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems
  publication-title: Appl. Intell.
– volume: 101
  start-page: 410
  year: 2015
  ident: 10.1016/j.solener.2021.12.063_b6
  article-title: Flower pollination algorithm based solar pv parameter estimation
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2015.05.074
– volume: 206
  year: 2020
  ident: 10.1016/j.solener.2021.12.063_b38
  article-title: Winner-leading competitive swarm optimizer with dynamic gaussian mutation for parameter extraction of solar photovoltaic models
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2019.112450
– start-page: 37
  year: 2017
  ident: 10.1016/j.solener.2021.12.063_b20
  article-title: Gravitational search algorithm with linearly decreasing gravitational constant for parameter estimation of photovoltaic cells
– volume: 223
  year: 2020
  ident: 10.1016/j.solener.2021.12.063_b41
  article-title: Reliable applied objective for identifying simple and detailed photovoltaic models using modern metaheuristics: Comparative study
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.113279
– volume: 205
  year: 2020
  ident: 10.1016/j.solener.2021.12.063_b24
  article-title: An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2019.112443
– volume: 61
  start-page: 295
  issue: 1–2
  year: 2010
  ident: 10.1016/j.solener.2021.12.063_b29
  article-title: Particle swarm optimization with fractional-order velocity
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-009-9649-y
– volume: 2013
  year: 2013
  ident: 10.1016/j.solener.2021.12.063_b27
  article-title: Parameter estimation of photovoltaic models via cuckoo search
  publication-title: J. Appl. Math.
  doi: 10.1155/2013/362619
– volume: 194
  start-page: 656
  year: 2019
  ident: 10.1016/j.solener.2021.12.063_b10
  article-title: Coyote optimization algorithm for the parameter extraction of photovoltaic cells
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.10.093
– volume: 171
  start-page: 435
  year: 2018
  ident: 10.1016/j.solener.2021.12.063_b9
  article-title: Parameter identification for solar cells and module using a hybrid firefly and pattern search algorithms
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.06.092
– volume: 207
  start-page: 305
  year: 2020
  ident: 10.1016/j.solener.2021.12.063_b16
  article-title: A robust global mppt to mitigate partial shading of triple-junction solar cell-based system using manta ray foraging optimization algorithm
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.06.108
– volume: 100
  year: 2021
  ident: 10.1016/j.solener.2021.12.063_b45
  article-title: Efficient fractional-order modified harris hawks optimizer for proton exchange membrane fuel cell modeling
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104193
– volume: 130
  start-page: 442
  year: 2014
  ident: 10.1016/j.solener.2021.12.063_b15
  article-title: Novel seven-parameter model for photovoltaic modules
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2014.07.016
– volume: 148
  start-page: 87
  year: 2016
  ident: 10.1016/j.solener.2021.12.063_b8
  article-title: Pv panel single and double diode models: Optimization of the parameters and temperature dependence
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2015.09.003
– volume: 44
  start-page: 11302
  issue: 14
  year: 2020
  ident: 10.1016/j.solener.2021.12.063_b46
  article-title: Identifying the parameters of different configurations of photovoltaic models based on recent artificial ecosystem-based optimization approach
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.5747
– volume: 243
  year: 2021
  ident: 10.1016/j.solener.2021.12.063_b43
  article-title: A reliable approach for modeling the photovoltaic system under partial shading conditions using three diode model and hybrid marine predators-slime mould algorithm
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2021.114269
– volume: 4
  start-page: 1
  issue: 1
  year: 1986
  ident: 10.1016/j.solener.2021.12.063_b13
  article-title: Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers
  publication-title: Int. J. Sol. Energy
  doi: 10.1080/01425918608909835
– volume: 211
  start-page: 503
  year: 2020
  ident: 10.1016/j.solener.2021.12.063_b36
  article-title: Evaluation of constraint in photovoltaic models by exploiting an enhanced ant lion optimizer
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.09.080
– volume: 217
  start-page: 112990
  year: 2020
  ident: 10.1016/j.solener.2021.12.063_b4
  article-title: Electrical characterization of photovoltaic modules using farmland fertility optimizer
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.112990
– volume: 174
  start-page: 388
  year: 2018
  ident: 10.1016/j.solener.2021.12.063_b37
  article-title: Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.08.053
– volume: 226
  year: 2020
  ident: 10.1016/j.solener.2021.12.063_b32
  article-title: Conscious neighborhood scheme-based laplacian barnacles mating algorithm for parameters optimization of photovoltaic single-and double-diode models
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.113522
– volume: 227
  start-page: 113491
  year: 2021
  ident: 10.1016/j.solener.2021.12.063_b3
  article-title: Parameter estimation of photovoltaic models using an improved marine predators algorithm
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.113491
– volume: 182
  start-page: 546
  year: 2019
  ident: 10.1016/j.solener.2021.12.063_b42
  article-title: Static and dynamic photovoltaic models’ parameters identification using chaotic heterogeneous comprehensive learning particle swarm optimizer variants
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.12.022
– volume: 211
  year: 2020
  ident: 10.1016/j.solener.2021.12.063_b51
  article-title: Orthogonal nelder-mead moth flame method for parameters identification of photovoltaic modules
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.112764
– volume: 208
  year: 2020
  ident: 10.1016/j.solener.2021.12.063_b52
  article-title: Backtracking search algorithm with lévy flight for estimating parameters of photovoltaic models
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.112615
– volume: 209
  start-page: 245
  year: 2020
  ident: 10.1016/j.solener.2021.12.063_b5
  article-title: Parameters estimation of photovoltaic cells using simple and efficient mathematical models
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.08.079
– volume: 61
  start-page: 354
  year: 2016
  ident: 10.1016/j.solener.2021.12.063_b18
  article-title: Parameter estimation of solar photovoltaic (pv) cells: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.03.049
– volume: 207
  year: 2020
  ident: 10.1016/j.solener.2021.12.063_b25
  article-title: Evolutionary multi-task optimization for parameters extraction of photovoltaic models
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.112509
– year: 1998
  ident: 10.1016/j.solener.2021.12.063_b30
– volume: 159
  start-page: 78
  year: 2018
  ident: 10.1016/j.solener.2021.12.063_b21
  article-title: Enhanced leader particle swarm optimisation (elpso): An efficient algorithm for parameter estimation of photovoltaic (pv) cells and modules
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.10.063
– volume: 154
  start-page: 500
  year: 2015
  ident: 10.1016/j.solener.2021.12.063_b11
  article-title: Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.05.035
– volume: 11
  start-page: 1060
  issue: 5
  year: 2018
  ident: 10.1016/j.solener.2021.12.063_b22
  article-title: A novel improved cuckoo search algorithm for parameter estimation of photovoltaic (pv) models
  publication-title: Energies
  doi: 10.3390/en11051060
– volume: 203
  year: 2020
  ident: 10.1016/j.solener.2021.12.063_b26
  article-title: A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2019.112243
– volume: 6
  start-page: 343
  issue: 3
  year: 2012
  ident: 10.1016/j.solener.2021.12.063_b12
  article-title: Introducing the fractional-order darwinian pso
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-012-0316-2
– volume: 123
  start-page: 535
  year: 2016
  ident: 10.1016/j.solener.2021.12.063_b7
  article-title: Parameters extraction of the three diode model for the multi-crystalline solar cell/module using moth-flame optimization algorithm
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2016.06.052
SSID ssj0017187
Score 2.4513125
Snippet Detecting the maximum power point in the photovoltaic (PV) system under normal and shaded weather conditions with high accuracy is vital to save the harvested...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 26
SubjectTerms Accuracy
Adaptive algorithms
Algorithms
Archimedes Optimization Algorithm
Arrays
Artificial Intelligence
Curve fitting
Double diode PV model
Environmental conditions
Fractional calculus
Mathematical models
Maximum power
Optimization
Optimization algorithms
Optimization techniques
Parameter identification
Partial shading
Photovoltaic cells
Photovoltaics
PV parameters estimation
Reliability analysis
Robustness
Shading
Single diode PV model
Solar cells
Solar energy
Statistical analysis
Strings
Weather
Title An efficient photovoltaic modeling using an Adaptive Fractional-order Archimedes Optimization Algorithm: Validation with partial shading conditions
URI https://dx.doi.org/10.1016/j.solener.2021.12.063
https://www.proquest.com/docview/2661581720
Volume 236
WOSCitedRecordID wos000792758500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1471-1257
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017187
  issn: 0038-092X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMcEE9RKGgPiEvkYjt-rLlZKBGgkFZqisJptd6siSPXMbFbld_Bb-J_MfuwnVSFwoGLk6y9jpX5MjM7-80MQq9SnhBHyJKzDrctMAGJlXjcszh3iKzunfi6SNIknE7JfB4d93o_m1yYizwsCnJ5GZX_VdQwBsKWqbP_IO72pjAA70HocASxw_GvBB8XkqSRqUTHQblc12vQQDXLuO56I0MD55VOTRzEC1Yq7tB4oxMcWG6pYpwDVZEWLKWoBkdwyZlJ1xzE-df1JquXKr7_GZx43ZNJx3NL-TgyAWWpmPmS0r7IuojgqskIlsxXoZIOt5RO1eS851lrKk6WzLA-vqzPinb4U7ZZwWU6s_tEfBcL-NRCNzcg7-5kohqwIO7IMBKHx_AIstuSJqLsckLlZqZlR6oLO5gwrbfBxlrgq4Xbit0d7qjm4FqLoYMXq8NK0iCErBDrOipAbPTuToXu6REdn04mdDaaz16X3yzZvExu8ptOLrfQnhv6EemjvfjDaP6x3c4CB0AXbzVP3qWSvbn2m3_nJF1xF5QPNLuP7pnFC4416B6gnigeortbJS0foR9xgVv44W344QZ-WMEPswI38MNX4Yc7-OFt-OEWfm9xBz4swYcN-LABH-7A9xidjkezd-8t0_jD4kPi1RZxOIvSYBESHi781GZuIgIvEWkYBg4nhBE7YRGcjhLXT4ngMo7tgKXmhCeSKvsE9Yt1IZ4ibAthp6BzgmHAPEfYyTBNPRdePcK4F4l95DW_NOWmKr5szpLThv64okZAVAqIOi4FAe2jw3ZaqcvC3DSBNGKkxrfVPisFIN409aAROzV6pqLSr_YJrD7sZ38-_Rzd6f5fB6hfb87FC3SbX9RZtXlpgPoLlHHYbw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+photovoltaic+modeling+using+an+Adaptive+Fractional-order+Archimedes+Optimization+Algorithm%3A+Validation+with+partial+shading+conditions&rft.jtitle=Solar+energy&rft.au=Yousri%2C+Dalia&rft.au=Shaker%2C+Yomna&rft.au=Mirjalili%2C+Seyedali&rft.au=Allam%2C+Dalia&rft.date=2022-04-01&rft.pub=Pergamon+Press+Inc&rft.issn=0038-092X&rft.eissn=1471-1257&rft.volume=236&rft.spage=26&rft_id=info:doi/10.1016%2Fj.solener.2021.12.063&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon