An efficient photovoltaic modeling using an Adaptive Fractional-order Archimedes Optimization Algorithm: Validation with partial shading conditions
Detecting the maximum power point in the photovoltaic (PV) system under normal and shaded weather conditions with high accuracy is vital to save the harvested power. Providing a robust model that emulates the physical behavior of a combination of particular solar modules is the core of designing a r...
Uložené v:
| Vydané v: | Solar energy Ročník 236; s. 26 - 50 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Elsevier Ltd
01.04.2022
Pergamon Press Inc |
| Predmet: | |
| ISSN: | 0038-092X, 1471-1257 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Detecting the maximum power point in the photovoltaic (PV) system under normal and shaded weather conditions with high accuracy is vital to save the harvested power. Providing a robust model that emulates the physical behavior of a combination of particular solar modules is the core of designing a reliable PV system. As the PV models’ parameters are not provided in the manufacturing datasheets, there is a persistent need to introduce an efficient and competent tool that provides the optimal parameters of the PV models. Therefore, this paper presents a novel strategy depending on a novel fractional calculus-based optimization technique to detect the optimal parameters of the PV models. The identified parameters globally fulfilled all tested shading conditions of different types and configurations of PV modules, strings, and arrays to verify the optimizer reliability and efficiency. A novel optimization algorithm called an Adaptive Fractional-order Archimedes Optimization Algorithm (A-FAOA) is proposed to identify the single and double diode model parameters for several PV solar cells/modules under various environmental conditions. The proposed algorithm uses a fractional-calculus memory perspective to enhance the exploration stage of the basic Archimedes Optimization Algorithm. In addition, the two-dimensional-Henon map is adopted in the algorithm to tune its parameters adaptively in an attempt to achieve a smooth transition between the exploration and exploitation phases. The developed technique is tested on several experimental datasets for several PV cells/modules under diverse environmental conditions. The proposed algorithm is compared with the recent literature based on statistical analysis and non-parametric tests. Moreover, the fitting curves and the values of error at the maximum power points are provided to demonstrate the superiority of the proposed method. For further evaluation of the reliability of the identified parameters, several PV systems based on the studied modules are implemented under uniform and partial shading conditions to affirm the accuracy of the identified parameters in representing a complete connected system under several environmental phenomena. The considered PV systems include three different strings (3x1, 6x1, 9x1) and three different arrays (3 × 2, 6 × 3, 9 × 9). High accuracy, robust performance, and minor deviation between the experimental and estimated curves are evident in the results.
•Proposing an optimal modeling of a large integrated PV array system.•Proposing a novel strategy to detect the optimal parameters of the photovoltaic models.•Proposing a new Adaptive Fractional-order Archimedes Optimization Algorithm (A-FAOA).•Optimizing single and double diode model parameters for several photovoltaic solar cells/modules.•Considering different partial shading condition in this large system. |
|---|---|
| AbstractList | Detecting the maximum power point in the photovoltaic (PV) system under normal and shaded weather conditions with high accuracy is vital to save the harvested power. Providing a robust model that emulates the physical behavior of a combination of particular solar modules is the core of designing a reliable PV system. As the PV models' parameters are not provided in the manufacturing datasheets, there is a persistent need to introduce an efficient and competent tool that provides the optimal parameters of the PV models. Therefore, this paper presents a novel strategy depending on a novel fractional calculus-based optimization technique to detect the optimal parameters of the PV models. The identified parameters globally fulfilled all tested shading conditions of different types and configurations of PV modules, strings, and arrays to verify the optimizer reliability and efficiency. A novel optimization algorithm called an Adaptive Fractional-order Archimedes Optimization Algorithm (A-FAOA) is proposed to identify the single and double diode model parameters for several PV solar cells/modules under various environmental conditions. The proposed algorithm uses a fractional-calculus memory perspective to enhance the exploration stage of the basic Archimedes Optimization Algorithm. In addition, the two-dimensional-Henon map is adopted in the algorithm to tune its parameters adaptively in an attempt to achieve a smooth transition between the exploration and exploitation phases. The developed technique is tested on several experimental datasets for several PV cells/modules under diverse environmental conditions. The proposed algorithm is compared with the recent literature based on statistical analysis and non-parametric tests. Moreover, the fitting curves and the values of error at the maximum power points are provided to demonstrate the superiority of the proposed method. For further evaluation of the reliability of the identified parameters, several PV systems based on the studied modules are implemented under uniform and partial shading conditions to affirm the accuracy of the identified parameters in representing a complete connected system under several environmental phenomena. The considered PV systems include three different strings (3x1, 6x1, 9x1) and three different arrays (3 x 2,6 x 3, 9 x 9). High accuracy, robust performance, and minor deviation between the experimental and estimated curves are evident in the results. Detecting the maximum power point in the photovoltaic (PV) system under normal and shaded weather conditions with high accuracy is vital to save the harvested power. Providing a robust model that emulates the physical behavior of a combination of particular solar modules is the core of designing a reliable PV system. As the PV models’ parameters are not provided in the manufacturing datasheets, there is a persistent need to introduce an efficient and competent tool that provides the optimal parameters of the PV models. Therefore, this paper presents a novel strategy depending on a novel fractional calculus-based optimization technique to detect the optimal parameters of the PV models. The identified parameters globally fulfilled all tested shading conditions of different types and configurations of PV modules, strings, and arrays to verify the optimizer reliability and efficiency. A novel optimization algorithm called an Adaptive Fractional-order Archimedes Optimization Algorithm (A-FAOA) is proposed to identify the single and double diode model parameters for several PV solar cells/modules under various environmental conditions. The proposed algorithm uses a fractional-calculus memory perspective to enhance the exploration stage of the basic Archimedes Optimization Algorithm. In addition, the two-dimensional-Henon map is adopted in the algorithm to tune its parameters adaptively in an attempt to achieve a smooth transition between the exploration and exploitation phases. The developed technique is tested on several experimental datasets for several PV cells/modules under diverse environmental conditions. The proposed algorithm is compared with the recent literature based on statistical analysis and non-parametric tests. Moreover, the fitting curves and the values of error at the maximum power points are provided to demonstrate the superiority of the proposed method. For further evaluation of the reliability of the identified parameters, several PV systems based on the studied modules are implemented under uniform and partial shading conditions to affirm the accuracy of the identified parameters in representing a complete connected system under several environmental phenomena. The considered PV systems include three different strings (3x1, 6x1, 9x1) and three different arrays (3 × 2, 6 × 3, 9 × 9). High accuracy, robust performance, and minor deviation between the experimental and estimated curves are evident in the results. •Proposing an optimal modeling of a large integrated PV array system.•Proposing a novel strategy to detect the optimal parameters of the photovoltaic models.•Proposing a new Adaptive Fractional-order Archimedes Optimization Algorithm (A-FAOA).•Optimizing single and double diode model parameters for several photovoltaic solar cells/modules.•Considering different partial shading condition in this large system. |
| Author | Yousri, Dalia Mirjalili, Seyedali Shaker, Yomna Allam, Dalia |
| Author_xml | – sequence: 1 givenname: Dalia surname: Yousri fullname: Yousri, Dalia email: day01@fayoum.edu.eg organization: Department of Electrical Engineering, Faculty of Engineering, Fayoum University, Fayoum, Egypt – sequence: 2 givenname: Yomna orcidid: 0000-0002-8476-2883 surname: Shaker fullname: Shaker, Yomna email: y.shaker@ustf.ac.ae organization: Department of Electrical Engineering, Faculty of Engineering, Fayoum University, Fayoum, Egypt – sequence: 3 givenname: Seyedali surname: Mirjalili fullname: Mirjalili, Seyedali email: ali.mirjalili@gmail.com organization: Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Fortitude Valley, Brisbane, Australia – sequence: 4 givenname: Dalia surname: Allam fullname: Allam, Dalia email: dfa00@fayoum.edu.eg organization: Department of Electrical Engineering, Faculty of Engineering, Fayoum University, Fayoum, Egypt |
| BookMark | eNqFkc1q3DAQx0VJIZu0jxAQ9GxX0tqW3B6KCU1bCOTShtyELI2zWmTJlbQb2tfoC1fu5tRLLhLM_wPmNxfozAcPCF1RUlNCu_f7OgUHHmLNCKM1ZTXptq_QhjacVpS1_AxtCNmKivTs4RxdpLQnhHIq-Ab9GTyGabLags942YUcjsFlZTWegwFn_SM-pPVVHg9GLdkeAd9EpbMNXrkqRAMRD1Hv7AwGEr4rltn-VquOB_cYos27-QO-V86a0_SpTPCiYrbK4bRTZu3XwRu7yukNej0pl-Dt83-Jftx8_n79tbq9-_Lterit9FY0uRJUq37qDBeam3Yiio3QNSNMnHdUC6EEGVVf5H5k7SRAC9p0VBmjhR5J32wv0btT7xLDzwOkLPfhEMtSSbKuo62gnJHiak8uHUNKESa5RDur-EtSIlf-ci-f-cuVv6RMFv4l9_G_nLb53_45KuteTH86paEAONqipvVEGoyNoLM0wb7Q8BdSE6v8 |
| CitedBy_id | crossref_primary_10_1142_S2811034X25500042 crossref_primary_10_1007_s11831_022_09876_8 crossref_primary_10_3390_su15010509 crossref_primary_10_1016_j_enconman_2023_117621 crossref_primary_10_1109_TIM_2025_3551857 crossref_primary_10_1016_j_renene_2024_120388 crossref_primary_10_3390_en18092221 crossref_primary_10_1002_gch2_202300355 crossref_primary_10_1109_ACCESS_2022_3174555 crossref_primary_10_3390_fractalfract6070348 crossref_primary_10_3389_fenrg_2022_1011887 crossref_primary_10_1007_s00542_024_05801_0 crossref_primary_10_1007_s12145_022_00825_4 crossref_primary_10_1016_j_epsr_2023_109742 |
| Cites_doi | 10.1016/j.solener.2020.07.077 10.1016/j.enconman.2020.113018 10.1016/j.energy.2020.116979 10.1016/j.knosys.2020.105889 10.1016/j.enconman.2021.113971 10.1016/j.engappai.2020.104105 10.1016/j.enconman.2017.04.054 10.1016/j.enconman.2020.113388 10.1016/j.enconman.2016.09.085 10.1016/j.asoc.2020.107052 10.1016/j.solener.2014.09.043 10.1016/j.apenergy.2018.06.010 10.1038/s41598-020-71294-2 10.1016/j.enconman.2020.112904 10.1016/j.engappai.2020.103662 10.1016/j.apenergy.2019.01.008 10.1016/j.enconman.2020.113048 10.1016/j.enconman.2015.05.074 10.1016/j.enconman.2019.112450 10.1016/j.enconman.2020.113279 10.1016/j.enconman.2019.112443 10.1007/s11071-009-9649-y 10.1155/2013/362619 10.1016/j.solener.2019.10.093 10.1016/j.solener.2018.06.092 10.1016/j.solener.2020.06.108 10.1016/j.engappai.2021.104193 10.1016/j.solmat.2014.07.016 10.1016/j.solmat.2015.09.003 10.1002/er.5747 10.1016/j.enconman.2021.114269 10.1080/01425918608909835 10.1016/j.solener.2020.09.080 10.1016/j.enconman.2020.112990 10.1016/j.enconman.2018.08.053 10.1016/j.enconman.2020.113522 10.1016/j.enconman.2020.113491 10.1016/j.enconman.2018.12.022 10.1016/j.enconman.2020.112764 10.1016/j.enconman.2020.112615 10.1016/j.solener.2020.08.079 10.1016/j.rser.2016.03.049 10.1016/j.enconman.2020.112509 10.1016/j.solener.2017.10.063 10.1016/j.apenergy.2015.05.035 10.3390/en11051060 10.1016/j.enconman.2019.112243 10.1007/s11760-012-0316-2 10.1016/j.enconman.2016.06.052 |
| ContentType | Journal Article |
| Copyright | 2021 Copyright Pergamon Press Inc. Apr 1, 2022 |
| Copyright_xml | – notice: 2021 – notice: Copyright Pergamon Press Inc. Apr 1, 2022 |
| DBID | AAYXX CITATION 7SP 7ST 8FD C1K FR3 KR7 L7M SOI |
| DOI | 10.1016/j.solener.2021.12.063 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1471-1257 |
| EndPage | 50 |
| ExternalDocumentID | 10_1016_j_solener_2021_12_063 S0038092X21011129 |
| GroupedDBID | --K --M -ET -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABMAC ABXRA ABYKQ ACDAQ ACGFS ACGOD ACIWK ACRLP ADBBV ADEZE ADHUB AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BKOMP BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA H~9 IHE J1W JARJE KOM LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ RXW SDF SDG SDP SES SPC SPCBC SSM SSR SSZ T5K TAE TN5 WH7 XPP YNT ZMT ~02 ~G- ~KM ~S- 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ NEJ R2- SAC SEW UKR VOH WUQ XOL ZY4 ~A~ ~HD 7SP 7ST 8FD AGCQF C1K FR3 KR7 L7M SOI |
| ID | FETCH-LOGICAL-c384t-81ca9f6d78c7d5f0a2be64bef7761c88a80ba9d789b25f8ec81461addc8cb0943 |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000792758500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0038-092X |
| IngestDate | Wed Aug 13 11:04:56 EDT 2025 Sat Nov 29 07:29:43 EST 2025 Tue Nov 18 22:16:54 EST 2025 Fri Feb 23 02:41:46 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Single diode PV model PV parameters estimation Double diode PV model Artificial Intelligence Partial shading Archimedes Optimization Algorithm Fractional calculus Optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c384t-81ca9f6d78c7d5f0a2be64bef7761c88a80ba9d789b25f8ec81461addc8cb0943 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8476-2883 |
| OpenAccessLink | http://hdl.handle.net/10072/418686 |
| PQID | 2661581720 |
| PQPubID | 9393 |
| PageCount | 25 |
| ParticipantIDs | proquest_journals_2661581720 crossref_primary_10_1016_j_solener_2021_12_063 crossref_citationtrail_10_1016_j_solener_2021_12_063 elsevier_sciencedirect_doi_10_1016_j_solener_2021_12_063 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 2022-04-00 20220401 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Solar energy |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Pergamon Press Inc |
| Publisher_xml | – name: Elsevier Ltd – name: Pergamon Press Inc |
| References | Jordehi (b19) 2016; 129 Yousri, Rezk, Fathy (b46) 2020; 44 Yousri, Abd Elaziz, Oliva, Abualigah, Al-qaness, Ewees (b41) 2020; 223 Podlubny (b30) 1998 Yousri, Mirjalili (b44) 2020; 92 Jordehi (b20) 2017 Chin, Salam (b10) 2019; 194 Ma, Ting, Man, Zhang, Guan, Wong (b27) 2013; 2013 Yousri, Abd Elaziz, Abualigah, Oliva, Al-Qaness, Ewees (b39) 2021; 101 Liang, Qiao, Yuan, Yu, Qu, Ge, Li, Chen (b25) 2020; 207 Beigi, Maroosi (b9) 2018; 171 Xiong, Zhang, Shi, Zhu, Yuan, Tan (b38) 2020; 206 Xiong, Zhang, Shi, He (b37) 2018; 174 Yousri, Allam, Eteiba, Suganthan (b42) 2019; 182 Easwarakhanthan, Bottin, Bouhouch, Boutrit (b13) 1986; 4 Tossa, Soro, Azoumah, Yamegueu (b35) 2014; 110 Alam, Yousri, Eteiba (b6) 2015; 101 Yousri, Mirjalili, Machado, Thanikanti, Fathy (b45) 2021; 100 Zhang, Jin, Zhao, Yang (b52) 2020; 208 Long, Cai, Jiao, Xu, Wu (b26) 2020; 203 Pires, Machado, de Moura Oliveira, Cunha, Mendes (b29) 2010; 61 Al-Subhi (b5) 2020; 209 Wang, Zhao, Heidari, Chen (b36) 2020; 211 Elbaset, Ali, Abd-El Sattar (b15) 2014; 130 Fathy, Rezk, Yousri (b16) 2020; 207 Jordehi (b18) 2016; 61 Abdel-Basset, El-Shahat, Chakrabortty, Ryan (b3) 2021; 227 Li, Gu, Gong, Ning (b24) 2020; 205 Chin, Salam, Ishaque (b11) 2015; 154 Kang, Yao, Jin, Yang, Duong (b22) 2018; 11 Yousri, Abd Elaziz, Mirjalili (b40) 2020 Yu, Chen, Wang, Wang (b48) 2017; 145 Yousri, Fathy, Rezk, Babu, Berber (b43) 2021; 243 Abd Elaziz, Yousri, Al-qaness, AbdelAty, Radwan, Ewees (b2) 2021; 98 Jordehi (b21) 2018; 159 Couceiro, Rocha, Ferreira, Machado (b12) 2012; 6 Rizk-Allah, El-Fergany (b32) 2020; 226 El-Hameed, Elkholy, El-Fergany (b14) 2020; 219 Yu, Liang, Qu, Cheng, Wang (b49) 2018; 226 Kermadi, Chin, Mekhilef, Salam (b23) 2020; 208 Barth, Jovanovic, Ahzi, Khaleel (b8) 2016; 148 Yu, Qu, Yue, Ge, Chen, Liang (b50) 2019; 237 Nunes, Silva, Pombo, Mariano, Calado (b28) 2020; 225 Yousri, Thanikanti, Allam, Ramachandaramurthy, Eteiba (b47) 2020; 195 Satpathy, Sharma (b34) 2020; 219 Qais, Hasanien, Alghuwainem (b31) 2020; 214 Zhang, Heidari, Wang, Zhang, Chen, Li (b51) 2020; 211 Hashim, Hussain, Houssein, Mabrouk, Al-Atabany (b17) 2020 Abd Elaziz, Thanikanti, Ibrahim, Lu, Nastasi, Alotaibi, Hossain, Yousri (b1) 2021; 236 Agwa, El-Fergany, Maksoud (b4) 2020; 217 Sahlol, Yousri, Ewees, Al-Qaness, Damasevicius, Abd Elaziz (b33) 2020; 10 Allam, Yousri, Eteiba (b7) 2016; 123 Abd Elaziz (10.1016/j.solener.2021.12.063_b2) 2021; 98 Xiong (10.1016/j.solener.2021.12.063_b38) 2020; 206 Sahlol (10.1016/j.solener.2021.12.063_b33) 2020; 10 Jordehi (10.1016/j.solener.2021.12.063_b19) 2016; 129 Barth (10.1016/j.solener.2021.12.063_b8) 2016; 148 Jordehi (10.1016/j.solener.2021.12.063_b18) 2016; 61 Jordehi (10.1016/j.solener.2021.12.063_b20) 2017 Abdel-Basset (10.1016/j.solener.2021.12.063_b3) 2021; 227 Couceiro (10.1016/j.solener.2021.12.063_b12) 2012; 6 Easwarakhanthan (10.1016/j.solener.2021.12.063_b13) 1986; 4 Ma (10.1016/j.solener.2021.12.063_b27) 2013; 2013 Xiong (10.1016/j.solener.2021.12.063_b37) 2018; 174 Yousri (10.1016/j.solener.2021.12.063_b39) 2021; 101 Tossa (10.1016/j.solener.2021.12.063_b35) 2014; 110 Yu (10.1016/j.solener.2021.12.063_b50) 2019; 237 Allam (10.1016/j.solener.2021.12.063_b7) 2016; 123 Long (10.1016/j.solener.2021.12.063_b26) 2020; 203 Yousri (10.1016/j.solener.2021.12.063_b46) 2020; 44 Satpathy (10.1016/j.solener.2021.12.063_b34) 2020; 219 Yousri (10.1016/j.solener.2021.12.063_b43) 2021; 243 Chin (10.1016/j.solener.2021.12.063_b11) 2015; 154 Zhang (10.1016/j.solener.2021.12.063_b51) 2020; 211 Podlubny (10.1016/j.solener.2021.12.063_b30) 1998 Abd Elaziz (10.1016/j.solener.2021.12.063_b1) 2021; 236 Beigi (10.1016/j.solener.2021.12.063_b9) 2018; 171 Zhang (10.1016/j.solener.2021.12.063_b52) 2020; 208 Qais (10.1016/j.solener.2021.12.063_b31) 2020; 214 Yousri (10.1016/j.solener.2021.12.063_b40) 2020 Li (10.1016/j.solener.2021.12.063_b24) 2020; 205 Nunes (10.1016/j.solener.2021.12.063_b28) 2020; 225 Elbaset (10.1016/j.solener.2021.12.063_b15) 2014; 130 Kermadi (10.1016/j.solener.2021.12.063_b23) 2020; 208 Yousri (10.1016/j.solener.2021.12.063_b42) 2019; 182 Rizk-Allah (10.1016/j.solener.2021.12.063_b32) 2020; 226 Kang (10.1016/j.solener.2021.12.063_b22) 2018; 11 Yousri (10.1016/j.solener.2021.12.063_b44) 2020; 92 Alam (10.1016/j.solener.2021.12.063_b6) 2015; 101 Al-Subhi (10.1016/j.solener.2021.12.063_b5) 2020; 209 Hashim (10.1016/j.solener.2021.12.063_b17) 2020 Yu (10.1016/j.solener.2021.12.063_b49) 2018; 226 Yousri (10.1016/j.solener.2021.12.063_b45) 2021; 100 Agwa (10.1016/j.solener.2021.12.063_b4) 2020; 217 Wang (10.1016/j.solener.2021.12.063_b36) 2020; 211 Fathy (10.1016/j.solener.2021.12.063_b16) 2020; 207 Jordehi (10.1016/j.solener.2021.12.063_b21) 2018; 159 Chin (10.1016/j.solener.2021.12.063_b10) 2019; 194 Yousri (10.1016/j.solener.2021.12.063_b47) 2020; 195 Yu (10.1016/j.solener.2021.12.063_b48) 2017; 145 Liang (10.1016/j.solener.2021.12.063_b25) 2020; 207 Pires (10.1016/j.solener.2021.12.063_b29) 2010; 61 Yousri (10.1016/j.solener.2021.12.063_b41) 2020; 223 El-Hameed (10.1016/j.solener.2021.12.063_b14) 2020; 219 |
| References_xml | – volume: 219 year: 2020 ident: b34 article-title: Parametric indicators for partial shading and fault prediction in photovoltaic arrays with various interconnection topologies publication-title: Energy Convers. Manage. – volume: 243 year: 2021 ident: b43 article-title: A reliable approach for modeling the photovoltaic system under partial shading conditions using three diode model and hybrid marine predators-slime mould algorithm publication-title: Energy Convers. Manage. – volume: 61 start-page: 295 year: 2010 end-page: 301 ident: b29 article-title: Particle swarm optimization with fractional-order velocity publication-title: Nonlinear Dynam. – year: 1998 ident: b30 article-title: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, Vol. 198 – volume: 225 year: 2020 ident: b28 article-title: Multiswarm spiral leader particle swarm optimisation algorithm for pv parameter identification publication-title: Energy Convers. Manage. – volume: 61 start-page: 354 year: 2016 end-page: 371 ident: b18 article-title: Parameter estimation of solar photovoltaic (pv) cells: A review publication-title: Renew. Sustain. Energy Rev. – volume: 208 start-page: 753 year: 2020 end-page: 765 ident: b23 article-title: A fast and accurate generalized analytical approach for pv arrays modeling under partial shading conditions publication-title: Sol. Energy – volume: 226 year: 2020 ident: b32 article-title: Conscious neighborhood scheme-based laplacian barnacles mating algorithm for parameters optimization of photovoltaic single-and double-diode models publication-title: Energy Convers. Manage. – volume: 171 start-page: 435 year: 2018 end-page: 446 ident: b9 article-title: Parameter identification for solar cells and module using a hybrid firefly and pattern search algorithms publication-title: Sol. Energy – volume: 11 start-page: 1060 year: 2018 ident: b22 article-title: A novel improved cuckoo search algorithm for parameter estimation of photovoltaic (pv) models publication-title: Energies – volume: 101 year: 2021 ident: b39 article-title: Covid-19 x-ray images classification based on enhanced fractional-order cuckoo search optimizer using heavy-tailed distributions publication-title: Appl. Soft Comput. – volume: 227 start-page: 113491 year: 2021 ident: b3 article-title: Parameter estimation of photovoltaic models using an improved marine predators algorithm publication-title: Energy Convers. Manage. – volume: 207 start-page: 305 year: 2020 end-page: 316 ident: b16 article-title: A robust global mppt to mitigate partial shading of triple-junction solar cell-based system using manta ray foraging optimization algorithm publication-title: Sol. Energy – volume: 110 start-page: 543 year: 2014 end-page: 560 ident: b35 article-title: A new approach to estimate the performance and energy productivity of photovoltaic modules in real operating conditions publication-title: Sol. Energy – volume: 211 start-page: 503 year: 2020 end-page: 521 ident: b36 article-title: Evaluation of constraint in photovoltaic models by exploiting an enhanced ant lion optimizer publication-title: Sol. Energy – volume: 236 start-page: 113971 year: 2021 ident: b1 article-title: Enhanced marine predators algorithm for identifying static and dynamic photovoltaic models parameters publication-title: Energy Convers. Manage. – volume: 174 start-page: 388 year: 2018 end-page: 405 ident: b37 article-title: Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm publication-title: Energy Convers. Manage. – volume: 194 start-page: 656 year: 2019 end-page: 670 ident: b10 article-title: Coyote optimization algorithm for the parameter extraction of photovoltaic cells publication-title: Sol. Energy – volume: 223 year: 2020 ident: b41 article-title: Reliable applied objective for identifying simple and detailed photovoltaic models using modern metaheuristics: Comparative study publication-title: Energy Convers. Manage. – volume: 211 year: 2020 ident: b51 article-title: Orthogonal nelder-mead moth flame method for parameters identification of photovoltaic modules publication-title: Energy Convers. Manage. – volume: 207 year: 2020 ident: b25 article-title: Evolutionary multi-task optimization for parameters extraction of photovoltaic models publication-title: Energy Convers. Manage. – volume: 205 year: 2020 ident: b24 article-title: An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models publication-title: Energy Convers. Manage. – volume: 100 year: 2021 ident: b45 article-title: Efficient fractional-order modified harris hawks optimizer for proton exchange membrane fuel cell modeling publication-title: Eng. Appl. Artif. Intell. – volume: 92 year: 2020 ident: b44 article-title: Fractional-order cuckoo search algorithm for parameter identification of the fractional-order chaotic, chaotic with noise and hyper-chaotic financial systems publication-title: Eng. Appl. Artif. Intell. – volume: 182 start-page: 546 year: 2019 end-page: 563 ident: b42 article-title: Static and dynamic photovoltaic models’ parameters identification using chaotic heterogeneous comprehensive learning particle swarm optimizer variants publication-title: Energy Convers. Manage. – volume: 6 start-page: 343 year: 2012 end-page: 350 ident: b12 article-title: Introducing the fractional-order darwinian pso publication-title: Signal Image Video Process. – year: 2020 ident: b40 article-title: Fractional-order calculus-based flower pollination algorithm with local search for global optimization and image segmentation publication-title: Knowl.-Based Syst. – volume: 2013 year: 2013 ident: b27 article-title: Parameter estimation of photovoltaic models via cuckoo search publication-title: J. Appl. Math. – volume: 214 year: 2020 ident: b31 article-title: Transient search optimization for electrical parameters estimation of photovoltaic module based on datasheet values publication-title: Energy Convers. Manage. – volume: 226 start-page: 408 year: 2018 end-page: 422 ident: b49 article-title: Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models publication-title: Appl. Energy – volume: 237 start-page: 241 year: 2019 end-page: 257 ident: b50 article-title: A performance-guided jaya algorithm for parameters identification of photovoltaic cell and module publication-title: Appl. Energy – volume: 208 year: 2020 ident: b52 article-title: Backtracking search algorithm with lévy flight for estimating parameters of photovoltaic models publication-title: Energy Convers. Manage. – start-page: 37 year: 2017 end-page: 42 ident: b20 article-title: Gravitational search algorithm with linearly decreasing gravitational constant for parameter estimation of photovoltaic cells publication-title: 2017 IEEE Congress on Evolutionary Computation (CEC) – volume: 219 year: 2020 ident: b14 article-title: Three-diode model for characterization of industrial solar generating units using manta-rays foraging optimizer: Analysis and validations publication-title: Energy Convers. Manage. – volume: 130 start-page: 442 year: 2014 end-page: 455 ident: b15 article-title: Novel seven-parameter model for photovoltaic modules publication-title: Sol. Energy Mater. Sol. Cells – volume: 44 start-page: 11302 year: 2020 end-page: 11322 ident: b46 article-title: Identifying the parameters of different configurations of photovoltaic models based on recent artificial ecosystem-based optimization approach publication-title: Int. J. Energy Res. – volume: 98 start-page: 104105 year: 2021 ident: b2 article-title: A grunwald–letnikov based manta ray foraging optimizer for global optimization and image segmentation publication-title: Eng. Appl. Artif. Intell. – volume: 148 start-page: 87 year: 2016 end-page: 98 ident: b8 article-title: Pv panel single and double diode models: Optimization of the parameters and temperature dependence publication-title: Sol. Energy Mater. Sol. Cells – volume: 203 year: 2020 ident: b26 article-title: A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models publication-title: Energy Convers. Manage. – volume: 209 start-page: 245 year: 2020 end-page: 257 ident: b5 article-title: Parameters estimation of photovoltaic cells using simple and efficient mathematical models publication-title: Sol. Energy – volume: 10 start-page: 1 year: 2020 end-page: 15 ident: b33 article-title: Covid-19 image classification using deep features and fractional-order marine predators algorithm publication-title: Sci. Rep. – volume: 101 start-page: 410 year: 2015 end-page: 422 ident: b6 article-title: Flower pollination algorithm based solar pv parameter estimation publication-title: Energy Convers. Manage. – volume: 154 start-page: 500 year: 2015 end-page: 519 ident: b11 article-title: Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review publication-title: Appl. Energy – volume: 206 year: 2020 ident: b38 article-title: Winner-leading competitive swarm optimizer with dynamic gaussian mutation for parameter extraction of solar photovoltaic models publication-title: Energy Convers. Manage. – volume: 145 start-page: 233 year: 2017 end-page: 246 ident: b48 article-title: Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization publication-title: Energy Convers. Manage. – volume: 123 start-page: 535 year: 2016 end-page: 548 ident: b7 article-title: Parameters extraction of the three diode model for the multi-crystalline solar cell/module using moth-flame optimization algorithm publication-title: Energy Convers. Manage. – volume: 217 start-page: 112990 year: 2020 ident: b4 article-title: Electrical characterization of photovoltaic modules using farmland fertility optimizer publication-title: Energy Convers. Manage. – volume: 195 year: 2020 ident: b47 article-title: Fractional chaotic ensemble particle swarm optimizer for identifying the single, double, and three diode photovoltaic models’ parameters publication-title: Energy – volume: 129 start-page: 262 year: 2016 end-page: 274 ident: b19 article-title: Time varying acceleration coefficients particle swarm optimisation (tvacpso): A new optimisation algorithm for estimating parameters of pv cells and modules publication-title: Energy Convers. Manage. – start-page: 1 year: 2020 end-page: 21 ident: b17 article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems publication-title: Appl. Intell. – volume: 159 start-page: 78 year: 2018 end-page: 87 ident: b21 article-title: Enhanced leader particle swarm optimisation (elpso): An efficient algorithm for parameter estimation of photovoltaic (pv) cells and modules publication-title: Sol. Energy – volume: 4 start-page: 1 year: 1986 end-page: 12 ident: b13 article-title: Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers publication-title: Int. J. Sol. Energy – volume: 208 start-page: 753 year: 2020 ident: 10.1016/j.solener.2021.12.063_b23 article-title: A fast and accurate generalized analytical approach for pv arrays modeling under partial shading conditions publication-title: Sol. Energy doi: 10.1016/j.solener.2020.07.077 – volume: 219 year: 2020 ident: 10.1016/j.solener.2021.12.063_b34 article-title: Parametric indicators for partial shading and fault prediction in photovoltaic arrays with various interconnection topologies publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.113018 – volume: 195 year: 2020 ident: 10.1016/j.solener.2021.12.063_b47 article-title: Fractional chaotic ensemble particle swarm optimizer for identifying the single, double, and three diode photovoltaic models’ parameters publication-title: Energy doi: 10.1016/j.energy.2020.116979 – year: 2020 ident: 10.1016/j.solener.2021.12.063_b40 article-title: Fractional-order calculus-based flower pollination algorithm with local search for global optimization and image segmentation publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105889 – volume: 236 start-page: 113971 year: 2021 ident: 10.1016/j.solener.2021.12.063_b1 article-title: Enhanced marine predators algorithm for identifying static and dynamic photovoltaic models parameters publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2021.113971 – volume: 98 start-page: 104105 year: 2021 ident: 10.1016/j.solener.2021.12.063_b2 article-title: A grunwald–letnikov based manta ray foraging optimizer for global optimization and image segmentation publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.104105 – volume: 145 start-page: 233 year: 2017 ident: 10.1016/j.solener.2021.12.063_b48 article-title: Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.04.054 – volume: 225 year: 2020 ident: 10.1016/j.solener.2021.12.063_b28 article-title: Multiswarm spiral leader particle swarm optimisation algorithm for pv parameter identification publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.113388 – volume: 129 start-page: 262 year: 2016 ident: 10.1016/j.solener.2021.12.063_b19 article-title: Time varying acceleration coefficients particle swarm optimisation (tvacpso): A new optimisation algorithm for estimating parameters of pv cells and modules publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2016.09.085 – volume: 101 year: 2021 ident: 10.1016/j.solener.2021.12.063_b39 article-title: Covid-19 x-ray images classification based on enhanced fractional-order cuckoo search optimizer using heavy-tailed distributions publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.107052 – volume: 110 start-page: 543 year: 2014 ident: 10.1016/j.solener.2021.12.063_b35 article-title: A new approach to estimate the performance and energy productivity of photovoltaic modules in real operating conditions publication-title: Sol. Energy doi: 10.1016/j.solener.2014.09.043 – volume: 226 start-page: 408 year: 2018 ident: 10.1016/j.solener.2021.12.063_b49 article-title: Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.06.010 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.solener.2021.12.063_b33 article-title: Covid-19 image classification using deep features and fractional-order marine predators algorithm publication-title: Sci. Rep. doi: 10.1038/s41598-020-71294-2 – volume: 214 year: 2020 ident: 10.1016/j.solener.2021.12.063_b31 article-title: Transient search optimization for electrical parameters estimation of photovoltaic module based on datasheet values publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.112904 – volume: 92 year: 2020 ident: 10.1016/j.solener.2021.12.063_b44 article-title: Fractional-order cuckoo search algorithm for parameter identification of the fractional-order chaotic, chaotic with noise and hyper-chaotic financial systems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103662 – volume: 237 start-page: 241 year: 2019 ident: 10.1016/j.solener.2021.12.063_b50 article-title: A performance-guided jaya algorithm for parameters identification of photovoltaic cell and module publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.008 – volume: 219 year: 2020 ident: 10.1016/j.solener.2021.12.063_b14 article-title: Three-diode model for characterization of industrial solar generating units using manta-rays foraging optimizer: Analysis and validations publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.113048 – start-page: 1 year: 2020 ident: 10.1016/j.solener.2021.12.063_b17 article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems publication-title: Appl. Intell. – volume: 101 start-page: 410 year: 2015 ident: 10.1016/j.solener.2021.12.063_b6 article-title: Flower pollination algorithm based solar pv parameter estimation publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2015.05.074 – volume: 206 year: 2020 ident: 10.1016/j.solener.2021.12.063_b38 article-title: Winner-leading competitive swarm optimizer with dynamic gaussian mutation for parameter extraction of solar photovoltaic models publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2019.112450 – start-page: 37 year: 2017 ident: 10.1016/j.solener.2021.12.063_b20 article-title: Gravitational search algorithm with linearly decreasing gravitational constant for parameter estimation of photovoltaic cells – volume: 223 year: 2020 ident: 10.1016/j.solener.2021.12.063_b41 article-title: Reliable applied objective for identifying simple and detailed photovoltaic models using modern metaheuristics: Comparative study publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.113279 – volume: 205 year: 2020 ident: 10.1016/j.solener.2021.12.063_b24 article-title: An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2019.112443 – volume: 61 start-page: 295 issue: 1–2 year: 2010 ident: 10.1016/j.solener.2021.12.063_b29 article-title: Particle swarm optimization with fractional-order velocity publication-title: Nonlinear Dynam. doi: 10.1007/s11071-009-9649-y – volume: 2013 year: 2013 ident: 10.1016/j.solener.2021.12.063_b27 article-title: Parameter estimation of photovoltaic models via cuckoo search publication-title: J. Appl. Math. doi: 10.1155/2013/362619 – volume: 194 start-page: 656 year: 2019 ident: 10.1016/j.solener.2021.12.063_b10 article-title: Coyote optimization algorithm for the parameter extraction of photovoltaic cells publication-title: Sol. Energy doi: 10.1016/j.solener.2019.10.093 – volume: 171 start-page: 435 year: 2018 ident: 10.1016/j.solener.2021.12.063_b9 article-title: Parameter identification for solar cells and module using a hybrid firefly and pattern search algorithms publication-title: Sol. Energy doi: 10.1016/j.solener.2018.06.092 – volume: 207 start-page: 305 year: 2020 ident: 10.1016/j.solener.2021.12.063_b16 article-title: A robust global mppt to mitigate partial shading of triple-junction solar cell-based system using manta ray foraging optimization algorithm publication-title: Sol. Energy doi: 10.1016/j.solener.2020.06.108 – volume: 100 year: 2021 ident: 10.1016/j.solener.2021.12.063_b45 article-title: Efficient fractional-order modified harris hawks optimizer for proton exchange membrane fuel cell modeling publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104193 – volume: 130 start-page: 442 year: 2014 ident: 10.1016/j.solener.2021.12.063_b15 article-title: Novel seven-parameter model for photovoltaic modules publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2014.07.016 – volume: 148 start-page: 87 year: 2016 ident: 10.1016/j.solener.2021.12.063_b8 article-title: Pv panel single and double diode models: Optimization of the parameters and temperature dependence publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2015.09.003 – volume: 44 start-page: 11302 issue: 14 year: 2020 ident: 10.1016/j.solener.2021.12.063_b46 article-title: Identifying the parameters of different configurations of photovoltaic models based on recent artificial ecosystem-based optimization approach publication-title: Int. J. Energy Res. doi: 10.1002/er.5747 – volume: 243 year: 2021 ident: 10.1016/j.solener.2021.12.063_b43 article-title: A reliable approach for modeling the photovoltaic system under partial shading conditions using three diode model and hybrid marine predators-slime mould algorithm publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2021.114269 – volume: 4 start-page: 1 issue: 1 year: 1986 ident: 10.1016/j.solener.2021.12.063_b13 article-title: Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers publication-title: Int. J. Sol. Energy doi: 10.1080/01425918608909835 – volume: 211 start-page: 503 year: 2020 ident: 10.1016/j.solener.2021.12.063_b36 article-title: Evaluation of constraint in photovoltaic models by exploiting an enhanced ant lion optimizer publication-title: Sol. Energy doi: 10.1016/j.solener.2020.09.080 – volume: 217 start-page: 112990 year: 2020 ident: 10.1016/j.solener.2021.12.063_b4 article-title: Electrical characterization of photovoltaic modules using farmland fertility optimizer publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.112990 – volume: 174 start-page: 388 year: 2018 ident: 10.1016/j.solener.2021.12.063_b37 article-title: Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.08.053 – volume: 226 year: 2020 ident: 10.1016/j.solener.2021.12.063_b32 article-title: Conscious neighborhood scheme-based laplacian barnacles mating algorithm for parameters optimization of photovoltaic single-and double-diode models publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.113522 – volume: 227 start-page: 113491 year: 2021 ident: 10.1016/j.solener.2021.12.063_b3 article-title: Parameter estimation of photovoltaic models using an improved marine predators algorithm publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.113491 – volume: 182 start-page: 546 year: 2019 ident: 10.1016/j.solener.2021.12.063_b42 article-title: Static and dynamic photovoltaic models’ parameters identification using chaotic heterogeneous comprehensive learning particle swarm optimizer variants publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.12.022 – volume: 211 year: 2020 ident: 10.1016/j.solener.2021.12.063_b51 article-title: Orthogonal nelder-mead moth flame method for parameters identification of photovoltaic modules publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.112764 – volume: 208 year: 2020 ident: 10.1016/j.solener.2021.12.063_b52 article-title: Backtracking search algorithm with lévy flight for estimating parameters of photovoltaic models publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.112615 – volume: 209 start-page: 245 year: 2020 ident: 10.1016/j.solener.2021.12.063_b5 article-title: Parameters estimation of photovoltaic cells using simple and efficient mathematical models publication-title: Sol. Energy doi: 10.1016/j.solener.2020.08.079 – volume: 61 start-page: 354 year: 2016 ident: 10.1016/j.solener.2021.12.063_b18 article-title: Parameter estimation of solar photovoltaic (pv) cells: A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.03.049 – volume: 207 year: 2020 ident: 10.1016/j.solener.2021.12.063_b25 article-title: Evolutionary multi-task optimization for parameters extraction of photovoltaic models publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.112509 – year: 1998 ident: 10.1016/j.solener.2021.12.063_b30 – volume: 159 start-page: 78 year: 2018 ident: 10.1016/j.solener.2021.12.063_b21 article-title: Enhanced leader particle swarm optimisation (elpso): An efficient algorithm for parameter estimation of photovoltaic (pv) cells and modules publication-title: Sol. Energy doi: 10.1016/j.solener.2017.10.063 – volume: 154 start-page: 500 year: 2015 ident: 10.1016/j.solener.2021.12.063_b11 article-title: Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.05.035 – volume: 11 start-page: 1060 issue: 5 year: 2018 ident: 10.1016/j.solener.2021.12.063_b22 article-title: A novel improved cuckoo search algorithm for parameter estimation of photovoltaic (pv) models publication-title: Energies doi: 10.3390/en11051060 – volume: 203 year: 2020 ident: 10.1016/j.solener.2021.12.063_b26 article-title: A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2019.112243 – volume: 6 start-page: 343 issue: 3 year: 2012 ident: 10.1016/j.solener.2021.12.063_b12 article-title: Introducing the fractional-order darwinian pso publication-title: Signal Image Video Process. doi: 10.1007/s11760-012-0316-2 – volume: 123 start-page: 535 year: 2016 ident: 10.1016/j.solener.2021.12.063_b7 article-title: Parameters extraction of the three diode model for the multi-crystalline solar cell/module using moth-flame optimization algorithm publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2016.06.052 |
| SSID | ssj0017187 |
| Score | 2.4513125 |
| Snippet | Detecting the maximum power point in the photovoltaic (PV) system under normal and shaded weather conditions with high accuracy is vital to save the harvested... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 26 |
| SubjectTerms | Accuracy Adaptive algorithms Algorithms Archimedes Optimization Algorithm Arrays Artificial Intelligence Curve fitting Double diode PV model Environmental conditions Fractional calculus Mathematical models Maximum power Optimization Optimization algorithms Optimization techniques Parameter identification Partial shading Photovoltaic cells Photovoltaics PV parameters estimation Reliability analysis Robustness Shading Single diode PV model Solar cells Solar energy Statistical analysis Strings Weather |
| Title | An efficient photovoltaic modeling using an Adaptive Fractional-order Archimedes Optimization Algorithm: Validation with partial shading conditions |
| URI | https://dx.doi.org/10.1016/j.solener.2021.12.063 https://www.proquest.com/docview/2661581720 |
| Volume | 236 |
| WOSCitedRecordID | wos000792758500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1471-1257 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017187 issn: 0038-092X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMcEE9RKGgPiEvkYjt-rLlZKBGgkFZqisJptd6siSPXMbFbld_Bb-J_MfuwnVSFwoGLk6y9jpX5MjM7-80MQq9SnhBHyJKzDrctMAGJlXjcszh3iKzunfi6SNIknE7JfB4d93o_m1yYizwsCnJ5GZX_VdQwBsKWqbP_IO72pjAA70HocASxw_GvBB8XkqSRqUTHQblc12vQQDXLuO56I0MD55VOTRzEC1Yq7tB4oxMcWG6pYpwDVZEWLKWoBkdwyZlJ1xzE-df1JquXKr7_GZx43ZNJx3NL-TgyAWWpmPmS0r7IuojgqskIlsxXoZIOt5RO1eS851lrKk6WzLA-vqzPinb4U7ZZwWU6s_tEfBcL-NRCNzcg7-5kohqwIO7IMBKHx_AIstuSJqLsckLlZqZlR6oLO5gwrbfBxlrgq4Xbit0d7qjm4FqLoYMXq8NK0iCErBDrOipAbPTuToXu6REdn04mdDaaz16X3yzZvExu8ptOLrfQnhv6EemjvfjDaP6x3c4CB0AXbzVP3qWSvbn2m3_nJF1xF5QPNLuP7pnFC4416B6gnigeortbJS0foR9xgVv44W344QZ-WMEPswI38MNX4Yc7-OFt-OEWfm9xBz4swYcN-LABH-7A9xidjkezd-8t0_jD4kPi1RZxOIvSYBESHi781GZuIgIvEWkYBg4nhBE7YRGcjhLXT4ngMo7tgKXmhCeSKvsE9Yt1IZ4ibAthp6BzgmHAPEfYyTBNPRdePcK4F4l95DW_NOWmKr5szpLThv64okZAVAqIOi4FAe2jw3ZaqcvC3DSBNGKkxrfVPisFIN409aAROzV6pqLSr_YJrD7sZ38-_Rzd6f5fB6hfb87FC3SbX9RZtXlpgPoLlHHYbw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+photovoltaic+modeling+using+an+Adaptive+Fractional-order+Archimedes+Optimization+Algorithm%3A+Validation+with+partial+shading+conditions&rft.jtitle=Solar+energy&rft.au=Yousri%2C+Dalia&rft.au=Shaker%2C+Yomna&rft.au=Mirjalili%2C+Seyedali&rft.au=Allam%2C+Dalia&rft.date=2022-04-01&rft.pub=Pergamon+Press+Inc&rft.issn=0038-092X&rft.eissn=1471-1257&rft.volume=236&rft.spage=26&rft_id=info:doi/10.1016%2Fj.solener.2021.12.063&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon |