Bat algorithm for constrained optimization tasks

In this study, we use a new metaheuristic optimization algorithm, called bat algorithm (BA), to solve constraint optimization tasks. BA is verified using several classical benchmark constraint problems. For further validation, BA is applied to three benchmark constraint engineering problems reported...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications Jg. 22; H. 6; S. 1239 - 1255
Hauptverfasser: Gandomi, Amir Hossein, Yang, Xin-She, Alavi, Amir Hossein, Talatahari, Siamak
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer-Verlag 01.05.2013
Springer
Schlagworte:
ISSN:0941-0643, 1433-3058
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this study, we use a new metaheuristic optimization algorithm, called bat algorithm (BA), to solve constraint optimization tasks. BA is verified using several classical benchmark constraint problems. For further validation, BA is applied to three benchmark constraint engineering problems reported in the specialized literature. The performance of the bat algorithm is compared with various existing algorithms. The optimal solutions obtained by BA are found to be better than the best solutions provided by the existing methods. Finally, the unique search features used in BA are analyzed, and their implications for future research are discussed in detail.
AbstractList In this study, we use a new metaheuristic optimization algorithm, called bat algorithm (BA), to solve constraint optimization tasks. BA is verified using several classical benchmark constraint problems. For further validation, BA is applied to three benchmark constraint engineering problems reported in the specialized literature. The performance of the bat algorithm is compared with various existing algorithms. The optimal solutions obtained by BA are found to be better than the best solutions provided by the existing methods. Finally, the unique search features used in BA are analyzed, and their implications for future research are discussed in detail.
Author Yang, Xin-She
Gandomi, Amir Hossein
Alavi, Amir Hossein
Talatahari, Siamak
Author_xml – sequence: 1
  givenname: Amir Hossein
  surname: Gandomi
  fullname: Gandomi, Amir Hossein
  email: a.h.gandomi@gmail.com
  organization: Young Researchers Club, Central Tehran Branch, Islamic Azad University
– sequence: 2
  givenname: Xin-She
  surname: Yang
  fullname: Yang, Xin-She
  organization: Mathematics and Scientific Computing, National Physical Laboratory
– sequence: 3
  givenname: Amir Hossein
  surname: Alavi
  fullname: Alavi, Amir Hossein
  organization: Young Researchers Club, Mashhad Branch, Islamic Azad University
– sequence: 4
  givenname: Siamak
  surname: Talatahari
  fullname: Talatahari, Siamak
  organization: Marand Faculty of Engineering, University of Tabriz
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27623550$$DView record in Pascal Francis
BookMark eNp9kD1PwzAQhi0EEm3hB7BlYTSc4484I1R8SZVYYLYcxy4uqV3ZZoBfT0pgYeh0w73Pq7tnjo5DDBahCwJXBKC5zgC8JhhIjQnUErdHaEYYpZgCl8doBi0bt4LRUzTPeQMATEg-Q3CrS6WHdUy-vG0rF1NlYsglaR9sX8Vd8Vv_pYuPoSo6v-czdOL0kO3571yg1_u7l-UjXj0_PC1vVthQyQpuZN-J3khOWmC6dgQ666ixjAhmGTOiI66XpgUBQvRAed9w28megmuIbBhdoMupd6ez0YNLOhif1S75rU6fqm5ETTmHMddMOZNizsk6ZXz5uXf_w6AIqL0gNQlSoyC1F6TakST_yL_yQ0w9MXnMhrVNahM_UhhFHIC-AXakeP8
CitedBy_id crossref_primary_10_1007_s00366_020_00979_z
crossref_primary_10_1016_j_advengsoft_2022_103363
crossref_primary_10_1108_WJE_10_2020_0495
crossref_primary_10_1515_jisys_2015_0032
crossref_primary_10_1007_s00521_016_2799_1
crossref_primary_10_1061__ASCE_CP_1943_5487_0001042
crossref_primary_10_1007_s00521_019_04455_8
crossref_primary_10_3233_IDA_205455
crossref_primary_10_1007_s42235_023_00437_8
crossref_primary_10_1016_j_fluid_2013_09_066
crossref_primary_10_1108_COMPEL_01_2019_0010
crossref_primary_10_1007_s00521_015_1874_3
crossref_primary_10_1109_ACCESS_2022_3186308
crossref_primary_10_1109_TVT_2021_3124076
crossref_primary_10_1016_j_advengsoft_2015_11_004
crossref_primary_10_1007_s00521_020_05425_1
crossref_primary_10_1007_s12065_022_00714_1
crossref_primary_10_1016_j_eswa_2019_112945
crossref_primary_10_1007_s00366_018_0636_0
crossref_primary_10_1016_j_compstruc_2020_106395
crossref_primary_10_3390_app151810257
crossref_primary_10_1155_2020_4795793
crossref_primary_10_1007_s00366_016_0457_y
crossref_primary_10_1016_j_eswa_2022_117735
crossref_primary_10_1016_j_istruc_2022_11_118
crossref_primary_10_1007_s42107_021_00374_z
crossref_primary_10_1007_s10489_021_02980_5
crossref_primary_10_1007_s10489_021_03080_0
crossref_primary_10_1177_1729881417705969
crossref_primary_10_1016_j_cie_2020_106560
crossref_primary_10_1002_cpe_7906
crossref_primary_10_1007_s00366_018_00696_8
crossref_primary_10_1016_j_asoc_2022_108640
crossref_primary_10_1108_EC_07_2014_0158
crossref_primary_10_1007_s00500_018_3579_x
crossref_primary_10_1016_j_eswa_2015_04_026
crossref_primary_10_1016_j_knosys_2018_06_013
crossref_primary_10_1016_j_fluid_2015_05_037
crossref_primary_10_1016_j_apm_2020_12_021
crossref_primary_10_1111_coin_12209
crossref_primary_10_1007_s00521_013_1508_6
crossref_primary_10_1016_j_amc_2015_11_036
crossref_primary_10_3390_math8091415
crossref_primary_10_1016_j_bica_2016_09_003
crossref_primary_10_1016_j_matpr_2018_03_044
crossref_primary_10_1016_j_eswa_2021_115496
crossref_primary_10_1007_s00521_024_09514_3
crossref_primary_10_1155_2017_8342694
crossref_primary_10_1007_s10845_018_1419_6
crossref_primary_10_1016_j_eswa_2019_112838
crossref_primary_10_1007_s00521_014_1577_1
crossref_primary_10_1007_s40997_016_0066_9
crossref_primary_10_3390_sym14020331
crossref_primary_10_1145_3382772
crossref_primary_10_1016_j_compbiolchem_2017_08_015
crossref_primary_10_1007_s00366_021_01542_0
crossref_primary_10_3390_app9020265
crossref_primary_10_1093_jcde_qwab082
crossref_primary_10_3390_math10193466
crossref_primary_10_1007_s42235_017_0010_8
crossref_primary_10_1016_j_physa_2019_122687
crossref_primary_10_1109_ACCESS_2021_3113323
crossref_primary_10_1007_s10586_025_05134_1
crossref_primary_10_1016_j_engappai_2019_103457
crossref_primary_10_32604_cmc_2022_017789
crossref_primary_10_1007_s11042_022_13532_5
crossref_primary_10_1016_j_knosys_2019_07_007
crossref_primary_10_1016_j_jocs_2013_10_002
crossref_primary_10_1016_j_eswa_2021_116026
crossref_primary_10_3390_math8101749
crossref_primary_10_1007_s10489_018_1301_4
crossref_primary_10_1016_j_asoc_2021_108343
crossref_primary_10_1016_j_eswa_2019_05_035
crossref_primary_10_1109_ACCESS_2020_2994984
crossref_primary_10_1016_j_jcde_2017_12_006
crossref_primary_10_1364_AO_58_002226
crossref_primary_10_3390_biomimetics8060462
crossref_primary_10_1007_s00500_015_1646_0
crossref_primary_10_1007_s00366_021_01591_5
crossref_primary_10_1007_s13369_016_2270_8
crossref_primary_10_1016_j_asoc_2015_06_056
crossref_primary_10_1016_j_ijepes_2014_12_063
crossref_primary_10_1016_j_knosys_2021_107555
crossref_primary_10_1002_widm_1138
crossref_primary_10_1080_15502287_2018_1431735
crossref_primary_10_1007_s00521_022_07369_0
crossref_primary_10_1007_s13369_020_04896_7
crossref_primary_10_1080_00207721_2023_2293687
crossref_primary_10_1155_2014_237102
crossref_primary_10_1002_tal_1151
crossref_primary_10_1155_2014_878262
crossref_primary_10_1016_j_ins_2014_02_123
crossref_primary_10_1155_2019_1805198
crossref_primary_10_1016_j_advengsoft_2017_03_014
crossref_primary_10_1007_s12652_021_03372_w
crossref_primary_10_1007_s00500_017_2665_9
crossref_primary_10_1007_s00500_017_2952_5
crossref_primary_10_1016_j_datak_2022_102120
crossref_primary_10_1007_s00366_017_0562_6
crossref_primary_10_1007_s10845_022_01921_4
crossref_primary_10_1016_j_apm_2020_01_002
crossref_primary_10_3390_math10193604
crossref_primary_10_1016_j_bspc_2023_105681
crossref_primary_10_1016_j_knosys_2014_07_025
crossref_primary_10_1155_2013_742653
crossref_primary_10_1109_TASE_2019_2909866
crossref_primary_10_1007_s00521_015_1978_9
crossref_primary_10_1007_s11063_015_9465_y
crossref_primary_10_3390_math10132211
crossref_primary_10_1016_j_seta_2021_101310
crossref_primary_10_1016_j_soildyn_2016_10_019
crossref_primary_10_3390_biomimetics8050441
crossref_primary_10_1007_s00500_023_09147_z
crossref_primary_10_1007_s00521_019_04039_6
crossref_primary_10_1108_MMMS_07_2015_0035
crossref_primary_10_3390_mca23010014
crossref_primary_10_1049_iet_spr_2016_0010
crossref_primary_10_1007_s12206_015_0730_9
crossref_primary_10_1016_j_omega_2017_12_003
crossref_primary_10_1007_s42452_020_1993_z
crossref_primary_10_1007_s00500_019_03806_w
crossref_primary_10_1111_exsy_13170
crossref_primary_10_1007_s00521_013_1485_9
crossref_primary_10_1007_s11227_024_06817_z
crossref_primary_10_1007_s00500_022_07283_6
crossref_primary_10_1007_s10916_018_1092_5
crossref_primary_10_1007_s10489_019_01558_6
crossref_primary_10_1016_j_asoc_2016_12_003
crossref_primary_10_1111_exsy_12779
crossref_primary_10_1016_j_engappai_2017_10_024
crossref_primary_10_1016_j_future_2020_03_055
crossref_primary_10_1080_0305215X_2018_1461853
crossref_primary_10_1007_s00521_016_2476_4
crossref_primary_10_1007_s13369_018_3188_0
crossref_primary_10_1155_2016_6097484
crossref_primary_10_1007_s10489_021_02510_3
crossref_primary_10_1016_j_eswa_2018_03_015
crossref_primary_10_1007_s00521_021_06747_4
crossref_primary_10_1007_s00500_019_04410_8
crossref_primary_10_1007_s10489_020_01947_2
crossref_primary_10_1016_j_rineng_2025_106256
crossref_primary_10_2166_ws_2022_010
crossref_primary_10_1177_01423312241284316
crossref_primary_10_1007_s40747_017_0050_z
crossref_primary_10_1007_s10586_021_03247_x
crossref_primary_10_1016_j_seppur_2023_124689
crossref_primary_10_1016_j_engappai_2013_11_008
crossref_primary_10_1155_2014_630280
crossref_primary_10_1155_2013_125625
crossref_primary_10_1016_j_apm_2018_03_005
crossref_primary_10_1007_s11277_019_06752_w
crossref_primary_10_3390_math13091500
crossref_primary_10_1016_j_apm_2015_10_040
crossref_primary_10_1080_15325008_2021_1910381
crossref_primary_10_1109_ACCESS_2025_3525603
crossref_primary_10_1007_s11276_022_02982_2
crossref_primary_10_1007_s00521_017_3252_9
crossref_primary_10_1080_02533839_2020_1838949
crossref_primary_10_1109_ACCESS_2022_3146374
crossref_primary_10_1007_s10462_022_10173_w
crossref_primary_10_1016_j_neucom_2014_07_034
crossref_primary_10_1016_j_eswa_2023_122830
crossref_primary_10_1007_s10479_018_3110_x
crossref_primary_10_1109_ACCESS_2024_3390670
crossref_primary_10_1007_s00521_014_1624_y
crossref_primary_10_1007_s11063_015_9463_0
crossref_primary_10_1016_j_advengsoft_2013_10_003
crossref_primary_10_1007_s10462_017_9559_1
crossref_primary_10_1016_j_asoc_2015_08_052
crossref_primary_10_1007_s00521_013_1471_2
crossref_primary_10_1016_j_eswa_2016_04_018
crossref_primary_10_1007_s00500_020_04853_4
crossref_primary_10_1016_j_egypro_2019_04_026
crossref_primary_10_1016_j_cja_2020_11_022
crossref_primary_10_1007_s00500_014_1502_7
crossref_primary_10_1016_j_dajour_2022_100125
crossref_primary_10_1155_2017_3498363
crossref_primary_10_1016_j_cma_2023_116097
crossref_primary_10_3390_pr9050859
crossref_primary_10_1007_s00521_018_3907_1
crossref_primary_10_1016_j_eswa_2014_04_015
crossref_primary_10_1016_j_apm_2019_03_031
crossref_primary_10_1016_j_knosys_2020_106552
crossref_primary_10_3390_ijms19103178
crossref_primary_10_1007_s00521_023_08229_1
crossref_primary_10_1016_j_cie_2019_106040
crossref_primary_10_1007_s00500_018_3381_9
crossref_primary_10_1007_s42107_022_00549_2
crossref_primary_10_1016_j_future_2019_02_028
crossref_primary_10_1093_jcde_qwac112
crossref_primary_10_1007_s12065_025_01052_8
crossref_primary_10_1260_1369_4332_18_7_1003
crossref_primary_10_3390_pr10020197
crossref_primary_10_1108_EC_11_2016_0408
crossref_primary_10_1016_j_swevo_2025_101891
crossref_primary_10_4018_IJEOE_2019070107
crossref_primary_10_1080_0305215X_2015_1076402
crossref_primary_10_1016_j_ijepes_2021_106800
crossref_primary_10_1016_j_neucom_2017_07_039
crossref_primary_10_1007_s00521_016_2308_6
crossref_primary_10_3390_math11112501
crossref_primary_10_1080_0954898X_2024_2367481
crossref_primary_10_1016_j_energy_2016_08_079
crossref_primary_10_1515_geo_2019_0031
crossref_primary_10_1007_s11042_021_11495_7
crossref_primary_10_1016_j_asoc_2016_09_030
crossref_primary_10_3390_a11050071
crossref_primary_10_1155_2015_194792
crossref_primary_10_1007_s00500_018_3586_y
crossref_primary_10_1007_s00366_020_01025_8
crossref_primary_10_1007_s12145_020_00443_y
crossref_primary_10_3390_electronics10050597
crossref_primary_10_3389_fenrg_2025_1625288
crossref_primary_10_3390_pr7090550
crossref_primary_10_1016_j_cie_2021_107408
crossref_primary_10_1109_TSMC_2015_2461188
crossref_primary_10_1016_j_asoc_2015_11_015
crossref_primary_10_1109_ACCESS_2021_3052800
crossref_primary_10_1007_s10845_020_01723_6
crossref_primary_10_1007_s11831_022_09817_5
crossref_primary_10_1007_s10772_019_09631_8
crossref_primary_10_1016_j_matcom_2022_12_022
crossref_primary_10_1007_s00521_019_04151_7
crossref_primary_10_1016_j_apm_2020_03_024
crossref_primary_10_1016_j_ins_2015_11_032
crossref_primary_10_1155_2022_7339647
crossref_primary_10_4028_www_scientific_net_AMM_635_637_270
crossref_primary_10_1007_s00500_015_1726_1
crossref_primary_10_1016_j_ijleo_2022_169731
crossref_primary_10_1155_2019_2981282
crossref_primary_10_1016_j_eswa_2022_117669
crossref_primary_10_1016_j_matpr_2020_04_679
crossref_primary_10_1109_ACCESS_2022_3173401
crossref_primary_10_1007_s11042_020_10255_3
crossref_primary_10_3390_jmse11081593
crossref_primary_10_1007_s10462_019_09704_9
crossref_primary_10_1016_j_jobe_2021_103848
crossref_primary_10_3390_math9182335
crossref_primary_10_1080_23302674_2024_2381828
crossref_primary_10_1155_2021_6639671
crossref_primary_10_1109_ACCESS_2019_2907289
crossref_primary_10_1016_j_compstruc_2016_01_008
crossref_primary_10_1016_j_neucom_2015_11_018
crossref_primary_10_1016_j_asoc_2022_108717
crossref_primary_10_1016_j_isatra_2019_12_001
crossref_primary_10_1007_s00521_016_2797_3
crossref_primary_10_1007_s42452_020_2426_8
crossref_primary_10_1093_jcde_qwae050
crossref_primary_10_1007_s00521_018_3785_6
crossref_primary_10_1155_2018_6421717
crossref_primary_10_5504_BBEQ_2013_0089
crossref_primary_10_1007_s00521_015_1914_z
crossref_primary_10_1016_j_asoc_2017_11_032
crossref_primary_10_1007_s43926_024_00059_4
crossref_primary_10_1016_j_isatra_2021_06_032
crossref_primary_10_1155_2013_325973
crossref_primary_10_1007_s00366_021_01571_9
crossref_primary_10_1016_j_istruc_2020_07_058
crossref_primary_10_3390_sym11111409
crossref_primary_10_1007_s13042_022_01656_x
crossref_primary_10_1080_19942060_2022_2098826
crossref_primary_10_3390_e23050628
crossref_primary_10_1007_s42235_022_00255_4
crossref_primary_10_1016_j_eswa_2016_10_050
crossref_primary_10_1371_journal_pone_0242612
crossref_primary_10_1007_s11071_020_06111_6
crossref_primary_10_1016_j_cma_2023_116582
crossref_primary_10_1007_s40997_023_00596_3
crossref_primary_10_1007_s12652_020_01777_7
crossref_primary_10_1007_s42235_023_00386_2
crossref_primary_10_1016_j_rineng_2025_104215
crossref_primary_10_1007_s11036_020_01565_9
crossref_primary_10_1016_j_asoc_2019_105686
crossref_primary_10_1016_j_eswa_2018_07_036
crossref_primary_10_55544_jrasb_4_2_21
crossref_primary_10_1016_j_knosys_2016_08_005
crossref_primary_10_1007_s00521_016_2665_1
crossref_primary_10_1108_EC_10_2012_0232
crossref_primary_10_4028_www_scientific_net_AMR_989_994_1646
crossref_primary_10_1016_j_jcde_2017_02_005
crossref_primary_10_1016_j_advengsoft_2022_103185
crossref_primary_10_1016_j_knosys_2019_104938
crossref_primary_10_1038_s41598_025_96559_6
crossref_primary_10_1007_s12530_023_09485_1
crossref_primary_10_1155_2013_392789
crossref_primary_10_1007_s13369_016_2222_3
crossref_primary_10_1016_j_knosys_2017_12_031
crossref_primary_10_1007_s12046_021_01572_w
crossref_primary_10_1007_s00366_021_01578_2
crossref_primary_10_3390_jeta3020017
crossref_primary_10_1016_j_asoc_2018_07_033
crossref_primary_10_1109_ACCESS_2020_3014309
crossref_primary_10_3390_s20102958
crossref_primary_10_1007_s10489_022_03743_6
crossref_primary_10_1016_j_apm_2018_06_036
crossref_primary_10_1109_ACCESS_2019_2929305
crossref_primary_10_1016_j_jkss_2014_09_001
crossref_primary_10_4018_IJAEC_2018100102
crossref_primary_10_4018_IJCINI_318651
crossref_primary_10_1007_s00500_021_05874_3
crossref_primary_10_1108_EC_04_2018_0181
crossref_primary_10_3390_pr10122606
crossref_primary_10_3390_app10186538
crossref_primary_10_1080_0305215X_2013_836640
crossref_primary_10_1155_2020_1287306
crossref_primary_10_1007_s00521_015_2037_2
crossref_primary_10_3390_sym11081049
crossref_primary_10_1007_s00500_022_07726_0
crossref_primary_10_4018_IJAMC_2019040102
crossref_primary_10_1016_j_engstruct_2017_07_004
crossref_primary_10_1016_j_asoc_2014_11_029
crossref_primary_10_1016_j_knosys_2021_106937
crossref_primary_10_56294_dm2023162
crossref_primary_10_1007_s00521_018_3676_x
crossref_primary_10_1007_s12065_019_00221_w
crossref_primary_10_1007_s42417_019_00149_6
crossref_primary_10_1016_j_neunet_2025_107430
crossref_primary_10_1155_2020_9495281
crossref_primary_10_1016_j_chaos_2024_115408
crossref_primary_10_1109_TMC_2024_3523281
Cites_doi 10.1109/CEC.2007.4424532
10.1287/opre.45.1.92
10.1016/S0965-9978(98)00021-0
10.1002/9780470496916
10.1093/oso/9780198540755.001.0001
10.1007/978-3-642-48320-2
10.1080/03081070701303470
10.1080/03052150701252664
10.1080/03052159708940992
10.1080/03052150410001704845
10.1007/978-3-642-00185-7_1
10.1162/evco.1999.7.1.19
10.1080/02630250008970288
10.1162/evco.1996.4.1.1
10.1109/TEVC.2005.846817
10.1080/03052150701364022
10.1109/TEVC.2003.814902
10.1016/S1474-0346(02)00011-3
10.1016/j.ins.2008.02.014
10.1016/j.camwa.2011.11.010
10.1016/j.engappai.2006.03.003
10.1007/978-3-662-03423-1_27
10.1080/03052159808941241
10.1109/CEC.2008.4630985
10.1007/s00707-009-0270-4
10.1002/nme.899
10.1080/03052150500066646
10.1080/03052150212723
10.1109/ICEC.1997.592352
10.1080/03052150108940941
10.1109/4235.873238
10.1016/S0045-7825(99)00389-8
10.1016/j.eswa.2008.02.039
10.1177/003754979406200405
10.1016/S0166-3615(99)00046-9
10.1016/j.cam.2008.12.017
10.1080/03052159508941353
10.1109/ICEC.1994.349995
10.1016/S0377-2217(96)00310-4
10.1016/j.cma.2005.05.014
10.1016/j.compstruc.2011.08.002
10.1080/03052150410001647966
10.1007/s10898-005-3693-z
10.1080/03052159508941187
10.1115/1.3438995
10.1002/nme.2904
10.1016/j.amc.2006.07.105
10.1016/j.aei.2005.09.001
10.1080/03052159108941075
10.1108/02644401211235834
10.1016/j.cma.2005.09.006
10.1080/03052150215719
10.1109/CEC.2006.1688315
10.1016/j.amc.2009.01.048
10.1016/j.eswa.2009.06.044
10.1080/03052150410001704854
10.2514/3.10834
10.1115/1.2912596
10.1115/DETC1988-0012
10.1007/s00366-011-0241-y
10.1080/03052150008941317
10.1016/j.cnsns.2012.05.010
ContentType Journal Article
Copyright Springer-Verlag London Limited 2012
2014 INIST-CNRS
Copyright_xml – notice: Springer-Verlag London Limited 2012
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1007/s00521-012-1028-9
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
Mathematics
EISSN 1433-3058
EndPage 1255
ExternalDocumentID 27623550
10_1007_s00521_012_1028_9
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
IQODW
ID FETCH-LOGICAL-c384t-78db6dc851904a2f10bef3ce4164e44c6b1fd8c906066d035d75eb8d30f718743
IEDL.DBID RSV
ISICitedReferencesCount 431
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000318003100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Mon Jul 21 09:13:29 EDT 2025
Sat Nov 29 08:02:25 EST 2025
Tue Nov 18 22:36:35 EST 2025
Fri Feb 21 02:34:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Constraint optimization
Metaheuristic algorithm
Bat algorithm
Engineering
Neural computation
Algorithm performance
Optimal solution
Optimization method
Benchmarks
Neural network
Algorithm
Constrained optimization
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c384t-78db6dc851904a2f10bef3ce4164e44c6b1fd8c906066d035d75eb8d30f718743
PageCount 17
ParticipantIDs pascalfrancis_primary_27623550
crossref_citationtrail_10_1007_s00521_012_1028_9
crossref_primary_10_1007_s00521_012_1028_9
springer_journals_10_1007_s00521_012_1028_9
PublicationCentury 2000
PublicationDate 2013-05-01
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2013
Publisher Springer-Verlag
Springer
Publisher_xml – name: Springer-Verlag
– name: Springer
References Deb K, Gene AS (1997) A robust optimal design technique for mechanical component design. Evolutionary Algorithms in Engineering Applications, Springer, pp 497–514.
GandomiAHYangX-SAlaviAHMixed variable structural optimization using firefly algorithmComput Struct20118923–242325233610.1016/j.compstruc.2011.08.002
MontesEMCoelloCACAn empirical study about the usefulness of evolution strategies to solve constrained optimization problemsInt J Gen Syst200837444347324408921219.9012910.1080/03081070701303470
AkhtarSTaiKRayTA socio-behavioral simulation model for engineering design optimizationEng Optim200234434135410.1080/03052150212723
HuangFZWangLHeQAn effective co-evolutionary differential evolution for constrained optimizationAppl Math Comput2007186134035623165191114.6506110.1016/j.amc.2006.07.105
Parsopoulos KE, Vrahatis MN (2005) Unified particle swarm optimization for solving constrained engineering optimization problems. In: Lecture notes in computer science (LNCS), vol 3612, pp 582–591
YangXSGandomiAHBat algorithm: a novel approach for global engineering optimizationEng Comput2012295464483
HomaifarALaiSHYQiXConstrained optimization via genetic algorithmsSimulation199462424225410.1177/003754979406200405
AragonVSEsquivelSCCoelloCCAA modified version of a T-cell algorithm for constrained optimization problemsInt J Numer Methods Eng2010843513781202.74128
Coello CAC, Montes EM (2001) Use of dominance-based tournament selection to handle constraints in genetic algorithms, In Intelligent Engineering Systems through Artificial Neural Networks (ANNIE2001), Vol. 11, ASME Press, St. Louis, Missouri, pp 177–182.
LiuJ-LNovel orthogonal simulated annealing with fractional factorial analysis to solve global optimization problemsEng Optim2005375499519215301610.1080/03052150500066646
RunarssonTPYaoXStochastic ranking for constrained evolutionary optimizationIEEE Trans Evol Comput20004328429410.1109/4235.873238
KozielSMichalewiczZEvolutionary algorithms, homomorphous mappings, and constrained parameter optimizationEvol Comput199971194410.1162/evco.1999.7.1.19
HeQWangLAn effective co-evolutionary particle swarm optimization for engineering optimization problemsEng Appl Artif Intell200620899910.1016/j.engappai.2006.03.003
ZhuaWAliMMSolving nonlinearly constrained global optimization problem via an auxiliary function methodJ Comput Appl Math2009230491503253234310.1016/j.cam.2008.12.017
ZhangMLuoWWangXDifferential evolution with dynamic stochastic selection for constrained optimizationInf Sci2008178153043307410.1016/j.ins.2008.02.014
Yang X-S (2008) Nature-inspired metaheuristic algorithms. Luniver Press, Bristol
TsaiJFLiHLHuNZGlobal optimization for signomial discrete programming problems in engineering designEng Optim200234661362210.1080/03052150215719
RayTSainiPEngineering design optimization using a swarm with an intelligent information sharing among individualsEng Optim200133373574810.1080/03052150108940941
CagninaLCEsquivelSCCoelloCACSolving engineering optimization problems with the simple constrained particle swarm optimizerInformatica2008323193261155.90482
DebKAn efficient constraint handling method for genetic algorithmsComput Methods Appl Mech Eng20001863113381028.9053310.1016/S0045-7825(99)00389-8
LiHLChouCTA global approach for nonlinear mixed discrete programming in design optimizationEng Optim19942210912210.1080/03052159308941328
Tessema B, Yen G (2006) A self adaptive penalty function based algorithm for constrained optimization. In: Proceedings 2006 IEEE congress on evolutionary computation, pp 246–253
HeSPrempainEWuQHAn improved particle swarm optimizer for mechanical design optimization problemsEng Optim2004365585605207290210.1080/03052150410001704854
GandomiAHYangXSTalatahariSDebSCoupled eagle strategy and differential evolution for unconstrained and constrained global optimizationComput Math Appl201263119120028634911238.9010910.1016/j.camwa.2011.11.010
KannanBKKramerSNAn augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical designJ Mech Des Trans1994116318320
Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: Gonzalez JR et al. (eds) Nature inspired cooperative strategies for optimization (NISCO 2010). Studies in computational intelligence, vol 284. Springer, Berlin, pp 65–74
Cortes NC, Trejo-Perez D, Coello CAC (2005) Handling constraints in global optimization using artificial immune system. In: Artificial immune systems, fourth international conference, ICARIS 2005, Banff, Canada. Lecture notes in computer science, vol 3627. Springer, Berlin, pp 234–247
Bernardino HS, Barbosa HJC, Lemonge ACC (2007) A hybrid genetic algorithm for constrained optimization problems in mechanical engineering. In: 2007 IEEE congress on evolutionary computation (CEC 2007), Singapore. IEEE Press, New York, pp 646–653
Yun YS (2005) Study on Adaptive hybrid genetic algorithm and its applications to engineering design problems. Waseda University, MSc Thesis
KavehATalatahariSA novel heuristic optimization method: charged system searchActa Mech20102132672890579517010.1007/s00707-009-0270-4
RagsdellKMPhillipsDTOptimal design of a class of welded structures using geometric programmingASME J Eng Ind19769831021102510.1115/1.3438995
AroraJSIntroduction to optimum design1989New YorkMcGraw-Hill
Hadj-AlouaneABBeanJCA genetic algorithm for the multiple-choice integer programOper Res1997459210114370750892.9013910.1287/opre.45.1.92
FuJFentonRGCleghornWLA mixed integer discrete continuous programming method and its application to engineering design optimizationEng Optim19911726328010.1080/03052159108941075
AmirjanovAThe development of a changing range genetic algorithmComput Methods Appl Mech Eng2006195c2495c2508220747910.1016/j.cma.2005.05.014
TalbiEMetaheuristics: from design to implementation2009HobokenWiley1190.90293
ShihCJLaiTKMixed-discrete fuzzy programming for nonlinear engineering optimizationEng Optim199523318719910.1080/03052159508941353
BelegunduADA study of mathematical programming methods for structural optimization1982IowaDepartment of Civil and Environmental Engineering, University of Iowa
CoelloCACBecerraRLEfficient evolutionary through the use of a cultural algorithmEng Optim20043621923610.1080/03052150410001647966
CoelloCACConstraint-handling in genetic algorithms through the use of dominance-based tournament selectionAdv Eng Inform200216319320310.1016/S1474-0346(02)00011-3
RayTLiewKMSociety and civilization: an optimization algorithm based on the simulation of social behaviorIEEE Trans Evol Comput20037438639610.1109/TEVC.2003.814902
Dos Santos Coelho LGaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problemsExpert Syst Appl201037216761683
CoelloCACHybridizing a genetic algorithm with an artificial immune system for global optimizationEng Optim2004365607634207290310.1080/03052150410001704845
VenkatramanSYenGGA generic framework for constrained optimization using genetic algorithmsIEEE Trans Evol Comput20059442443510.1109/TEVC.2005.846817
LeiteJPBToppingBHVImproved genetic operators for structural engineering optimizationAdv Eng Softw1998297–952956210.1016/S0965-9978(98)00021-0
MichalewiczZSchoenauerMEvolutionary algorithms for constrained parameter optimization problemsEvol Comput19964113210.1162/evco.1996.4.1.1
Yang X-S (2009) Harmony search as a metaheuristic algorithm. In: Geem ZW (ed) Music-inspired harmony search: theory and applications. Springer, New York, pp 1–14
CoelloCACUse of a self-adaptive penalty approach for engineering optimization problemsComput Ind200041211312710.1016/S0166-3615(99)00046-9
Gandomi AH, Alavi AH (2012) Krill Herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul. doi:10.1016/j.cnsns.2012.05.010
Montes EM, Ocaña BH (2008) Bacterial foraging for engineering design problems: preliminary results. In: Proceedings of the 4th Mexican congress on evolutionary computation (COMCEV’2008), pp 33–38, CIMAT, México, Oct 2008
CaiJThieraufGEvolution strategies in engineering optimizationEng Optim199729117719910.1080/03052159708940992
HockWSchittkowskiKTest examples for nonlinear programming codes1981BerlinSpringer0452.9003810.1007/978-3-642-48320-2
LeeKSGeemZWA new meta-heuristic algorithm for continues engineering optimization: harmony search theory and practiceComput Methods Appl Mech Eng20041943902393310.1016/j.cma.2004.09.007
RichardsonPBats2008LondonNatural History Museum
Michalewicz Z, Attia N (1994) Evolutionary optimization of constrained problems. In: Proceedings of the 3rd annual conf on evolutionary programming. World Scientific, pp 98–108
Barbosa HJC, Lemonge ACC (2002) An adaptive penalty scheme in genetic algorithms for constrained optimization problems. In: Langdon WB, Cantu-Paz E, Mathias K, Roy R, Davis D, Poli R, Balakrishnan K, Honavar V, Rudolph G, Wegener J, Bull L, Potter MA, Schultz AC, Miller JF, Burke E, Jonoska N (eds) Proceedings of the genetic and evolutionary computation conference (GECCO’2002). Morgan Kaufmann, San Francisco, pp 287–294
Cabrera JCF, Coello CAC (2007) Handling constraints in particle swarm optimization using a small population size. In: Alexander Gelbukh, Angel Fernando Kuri Morales (eds) MICAI 2007: advances in artificial intelligence, 6th international conference on artificial intelligence, lecture notes in artificial intelligence, vol 4827. Springer, Aguascalientes, Mexico, pp 41–51
AltringhamJDBats: biology and behavior1996OxfordOxford University Press
Atiqullah MirMRaoSSSimulated annealing and parallel processing: an implementation for constrained global design optimizationEng Optim2000325659685
LiHLChangCTAn approximate approach of global optimization for polynomial programming problemsEur J Oper Res1998107362563219041660943.9007910.1016/S0377-2217(96)00310-4
HedarAFukushimaMDerivative-free filter simulated annealing method for constrained continuous global optimizationJ Glob Optim20063552154922495471133.9042110.1007/s10898-005-3693-z
BecerraRLCoelloCACCultu
AD Belegundu (1028_CR83) 1982
EM Montes (1028_CR61) 2007; 39
ACC Lemonge (1028_CR54) 2004; 59
BK Kannan (1028_CR53) 1994; 116
CJ Shih (1028_CR66) 1995; 23
C Zhang (1028_CR71) 1993; 17
1028_CR52
Q He (1028_CR47) 2006; 20
1028_CR50
K Deb (1028_CR73) 2000; 186
S-F Hwang (1028_CR77) 2006; 20
S Koziel (1028_CR25) 1999; 7
1028_CR12
1028_CR11
LC Cagnina (1028_CR33) 2008; 32
Z Michalewicz (1028_CR16) 1996; 4
JPB Leite (1028_CR72) 1998; 29
1028_CR58
CAC Coello (1028_CR37) 2000; 41
CAC Coello (1028_CR84) 2004; 36
KS Lee (1028_CR8) 2004; 194
A Homaifar (1028_CR49) 1994; 62
AH Gandomi (1028_CR79) 2011; 89
HL Li (1028_CR56) 1994; 22
P Richardson (1028_CR14) 2008
HL Li (1028_CR55) 1998; 107
S Venkatraman (1028_CR28) 2005; 9
EM Montes (1028_CR59) 2008; 37
RL Becerra (1028_CR21) 2006; 195
1028_CR42
JN Siddall (1028_CR80) 1972
CAC Coello (1028_CR39) 2002; 16
J-L Liu (1028_CR76) 2005; 37
S Akhtar (1028_CR6) 2002; 34
1028_CR44
1028_CR43
M Zhang (1028_CR82) 2008; 178
A Amirjanov (1028_CR19) 2006; 195
TP Runarsson (1028_CR17) 2000; 4
W Zhua (1028_CR29) 2009; 230
JD Altringham (1028_CR13) 1996
1028_CR9
1028_CR1
K Deb (1028_CR74) 1991; 29
1028_CR4
1028_CR31
1028_CR75
1028_CR30
1028_CR7
S He (1028_CR48) 2004; 36
JS Arora (1028_CR2) 1989
1028_CR35
JF Tsai (1028_CR67) 2002; 34
AH Gandomi (1028_CR5) 2012; 63
1028_CR32
CAC Coello (1028_CR40) 2004; 36
E Talbi (1028_CR3) 2009
W Hock (1028_CR15) 1981
VS Aragon (1028_CR20) 2010; 84
T Ray (1028_CR63) 2003; 7
VV Litinetski (1028_CR57) 1998; 30
A Hedar (1028_CR18) 2006; 35
YL Hsu (1028_CR85) 2007; 39
SJ Wu (1028_CR68) 1995; 24
J Cai (1028_CR34) 1997; 29
FZ Huang (1028_CR51) 2007; 186
1028_CR60
AB Hadj-Alouane (1028_CR46) 1997; 45
1028_CR64
J Fu (1028_CR45) 1991; 17
CAC Coello (1028_CR41) 2004; 36
1028_CR62
1028_CR24
CAC Coello (1028_CR36) 1999; 1
1028_CR23
T Ray (1028_CR86) 2001; 33
1028_CR22
CAC Coello (1028_CR38) 2000; 17
E Sandgren (1028_CR65) 1990; 112
A Kaveh (1028_CR10) 2010; 213
1028_CR27
J Zhang (1028_CR78) 2009; 211
1028_CR26
KM Ragsdell (1028_CR81) 1976; 98
1028_CR69
E Zahara (1028_CR70) 2009; 36
References_xml – reference: Yang X-S (2009) Harmony search as a metaheuristic algorithm. In: Geem ZW (ed) Music-inspired harmony search: theory and applications. Springer, New York, pp 1–14
– reference: CoelloCACUse of a self-adaptive penalty approach for engineering optimization problemsComput Ind200041211312710.1016/S0166-3615(99)00046-9
– reference: SandgrenENonlinear integer and discrete programming in mechanical design optimizationASME J Mech Des1990112222322910.1115/1.2912596
– reference: Gandomi AH, Yang XS, Alavi AH (2012) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems, Eng Comput, in press. doi:10.1007/s00366-011-0241-y
– reference: CoelloCACSelf-adaptive penalties for GA based optimizationProc Congr Evol Comput19991573580
– reference: HsuYLLiuTCDeveloping a fuzzy proportional-derivative controller optimization engine for engineering design optimization problemsEng Optim2007396679700234070010.1080/03052150701252664
– reference: Hadj-AlouaneABBeanJCA genetic algorithm for the multiple-choice integer programOper Res1997459210114370750892.9013910.1287/opre.45.1.92
– reference: KozielSMichalewiczZEvolutionary algorithms, homomorphous mappings, and constrained parameter optimizationEvol Comput199971194410.1162/evco.1999.7.1.19
– reference: CaiJThieraufGEvolution strategies in engineering optimizationEng Optim199729117719910.1080/03052159708940992
– reference: SiddallJNAnalytical decision-making in engineering design1972Englewood CliffsPrentice-Hall
– reference: AmirjanovAThe development of a changing range genetic algorithmComput Methods Appl Mech Eng2006195c2495c2508220747910.1016/j.cma.2005.05.014
– reference: Montes EM, Ocaña BH (2008) Bacterial foraging for engineering design problems: preliminary results. In: Proceedings of the 4th Mexican congress on evolutionary computation (COMCEV’2008), pp 33–38, CIMAT, México, Oct 2008
– reference: Sandgren E (1988) Nonlinear integer and discrete programming in mechanical design. In: Proc ASME design technology conf, Kissimine, FL, pp 95–105
– reference: BecerraRLCoelloCACCultured differential evolution for constrained optimizationComput Methods Appl Mech Eng200619533–36430343221123.7403910.1016/j.cma.2005.09.006
– reference: Barbosa HJC, Lemonge ACC (2002) An adaptive penalty scheme in genetic algorithms for constrained optimization problems. In: Langdon WB, Cantu-Paz E, Mathias K, Roy R, Davis D, Poli R, Balakrishnan K, Honavar V, Rudolph G, Wegener J, Bull L, Potter MA, Schultz AC, Miller JF, Burke E, Jonoska N (eds) Proceedings of the genetic and evolutionary computation conference (GECCO’2002). Morgan Kaufmann, San Francisco, pp 287–294
– reference: HeQWangLAn effective co-evolutionary particle swarm optimization for engineering optimization problemsEng Appl Artif Intell200620899910.1016/j.engappai.2006.03.003
– reference: HeSPrempainEWuQHAn improved particle swarm optimizer for mechanical design optimization problemsEng Optim2004365585605207290210.1080/03052150410001704854
– reference: Gandomi AH, Alavi AH (2012) Krill Herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul. doi:10.1016/j.cnsns.2012.05.010
– reference: RichardsonPBats2008LondonNatural History Museum
– reference: CagninaLCEsquivelSCCoelloCACSolving engineering optimization problems with the simple constrained particle swarm optimizerInformatica2008323193261155.90482
– reference: TsaiJFLiHLHuNZGlobal optimization for signomial discrete programming problems in engineering designEng Optim200234661362210.1080/03052150215719
– reference: HockWSchittkowskiKTest examples for nonlinear programming codes1981BerlinSpringer0452.9003810.1007/978-3-642-48320-2
– reference: ShihCJLaiTKMixed-discrete fuzzy programming for nonlinear engineering optimizationEng Optim199523318719910.1080/03052159508941353
– reference: GandomiAHYangX-SAlaviAHMixed variable structural optimization using firefly algorithmComput Struct20118923–242325233610.1016/j.compstruc.2011.08.002
– reference: WuSJChowPTGenetic algorithms for nonlinear mixed discrete-integer optimization problems via meta-genetic parameter optimizationEng Optim19952413715910.1080/03052159508941187
– reference: Yun YS (2005) Study on Adaptive hybrid genetic algorithm and its applications to engineering design problems. Waseda University, MSc Thesis
– reference: HedarAFukushimaMDerivative-free filter simulated annealing method for constrained continuous global optimizationJ Glob Optim20063552154922495471133.9042110.1007/s10898-005-3693-z
– reference: Hu X, Eberhart RC, Shi Y (2003) Engineering optimization with particle swarm. In: Proc 2003 IEEE swarm intelligence symposium, pp 53–57
– reference: Bernardino HS, Barbosa HJC, Lemonge ACC (2006) Constraints handling in genetic algorithms via artificial immune systems. In: Genetic and evolutionary computation-GECCO 2006, genetic and evolutionary computation conference-Late Breaking Paper, Seattle, WA, USA
– reference: KannanBKKramerSNAn augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical designJ Mech Des Trans1994116318320
– reference: CoelloCACConstraint-handling in genetic algorithms through the use of dominance-based tournament selectionAdv Eng Inform200216319320310.1016/S1474-0346(02)00011-3
– reference: LiHLChouCTA global approach for nonlinear mixed discrete programming in design optimizationEng Optim19942210912210.1080/03052159308941328
– reference: VenkatramanSYenGGA generic framework for constrained optimization using genetic algorithmsIEEE Trans Evol Comput20059442443510.1109/TEVC.2005.846817
– reference: LiuJ-LNovel orthogonal simulated annealing with fractional factorial analysis to solve global optimization problemsEng Optim2005375499519215301610.1080/03052150500066646
– reference: MontesEMCoelloCACVelázquez-ReyesJMuñoz-DávilaLMultiple trial vectors in differential evolution for engineering designEng Optim2007395567589234450310.1080/03052150701364022
– reference: ZaharaEKaoYTHybrid Nelder–Mead simplex search and particle swarm optimization for constrained engineering design problemsExpert Syst Appl2009363880388610.1016/j.eswa.2008.02.039
– reference: Yang X-S (2008) Nature-inspired metaheuristic algorithms. Luniver Press, Bristol
– reference: AkhtarSTaiKRayTA socio-behavioral simulation model for engineering design optimizationEng Optim200234434135410.1080/03052150212723
– reference: KavehATalatahariSA novel heuristic optimization method: charged system searchActa Mech20102132672890579517010.1007/s00707-009-0270-4
– reference: Dos Santos Coelho LGaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problemsExpert Syst Appl201037216761683
– reference: CoelloCACCortésNCHybridizing a genetic algorithm with an artificial immune system for global optimizationEng Optim2004365607634207290310.1080/03052150410001704845
– reference: Joines J, Houck C (1994) On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GAs. In: Fogel D (ed) Proc first IEEE conf on evolutionary computation, Orlando, Florida. IEEE Press, pp 579–584
– reference: LemongeACCBarbosaHJCAn adaptive penalty scheme for genetic algorithms in structural optimizationInt J Numer Methods Eng2004597037361060.7458210.1002/nme.899
– reference: HwangS-FHeR-SA hybrid real-parameter genetic algorithm for function optimizationAdv Eng Inform20062072110.1016/j.aei.2005.09.001
– reference: CoelloCACConstraint-handling using an evolutionary multiobjective optimization techniqueCivil Eng Environ Syst20001731934610.1080/02630250008970288
– reference: TalbiEMetaheuristics: from design to implementation2009HobokenWiley1190.90293
– reference: FuJFentonRGCleghornWLA mixed integer discrete continuous programming method and its application to engineering design optimizationEng Optim19911726328010.1080/03052159108941075
– reference: HomaifarALaiSHYQiXConstrained optimization via genetic algorithmsSimulation199462424225410.1177/003754979406200405
– reference: GandomiAHYangXSTalatahariSDebSCoupled eagle strategy and differential evolution for unconstrained and constrained global optimizationComput Math Appl201263119120028634911238.9010910.1016/j.camwa.2011.11.010
– reference: Cortes NC, Trejo-Perez D, Coello CAC (2005) Handling constraints in global optimization using artificial immune system. In: Artificial immune systems, fourth international conference, ICARIS 2005, Banff, Canada. Lecture notes in computer science, vol 3627. Springer, Berlin, pp 234–247
– reference: Montes EM, Coello CAC (2003) A simple multimembered evolution strategy to solve constrained optimization problems, Technical Report EVOCINV-04-2003, Evolutionary Computation Group at CINVESTAV, Secci′on de Computaci′on, Departamento de Ingenierıa El′ectrica, CINVESTAV-IPN, Mexico DF, Mexico
– reference: MichalewiczZSchoenauerMEvolutionary algorithms for constrained parameter optimization problemsEvol Comput19964113210.1162/evco.1996.4.1.1
– reference: LitinetskiVVAbramzonBMMars—a multistart adaptive random search method for global constrained optimization in engineering applicationsEng Optim199830212515410.1080/03052159808941241
– reference: LeiteJPBToppingBHVImproved genetic operators for structural engineering optimizationAdv Eng Softw1998297–952956210.1016/S0965-9978(98)00021-0
– reference: LeeKSGeemZWA new meta-heuristic algorithm for continues engineering optimization: harmony search theory and practiceComput Methods Appl Mech Eng20041943902393310.1016/j.cma.2004.09.007
– reference: Tessema B, Yen G (2006) A self adaptive penalty function based algorithm for constrained optimization. In: Proceedings 2006 IEEE congress on evolutionary computation, pp 246–253
– reference: RunarssonTPYaoXStochastic ranking for constrained evolutionary optimizationIEEE Trans Evol Comput20004328429410.1109/4235.873238
– reference: Bernardino HS, Barbosa HJC, Lemonge ACC, Fonseca LG (2008) A new hybrid AIS-GA for constrained optimization problems in mechanical engineering. In: 2008 congress on evolutionary computation (CEC’2008), Hong Kong. IEEE Service Center, Piscataway, pp 1455–1462
– reference: ZhangMLuoWWangXDifferential evolution with dynamic stochastic selection for constrained optimizationInf Sci2008178153043307410.1016/j.ins.2008.02.014
– reference: Cao YJ, Wu QH. Mechanical design optimization by mixed variable evolutionary programming, In Proc 1997 Int Conf on Evolutionary Computation, Indianapolis; 1997, p. 443–446.
– reference: YangXSGandomiAHBat algorithm: a novel approach for global engineering optimizationEng Comput2012295464483
– reference: Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: Gonzalez JR et al. (eds) Nature inspired cooperative strategies for optimization (NISCO 2010). Studies in computational intelligence, vol 284. Springer, Berlin, pp 65–74
– reference: ZhuaWAliMMSolving nonlinearly constrained global optimization problem via an auxiliary function methodJ Comput Appl Math2009230491503253234310.1016/j.cam.2008.12.017
– reference: ZhangCWangHPMixed-discrete nonlinear optimization with simulated annealingEng Optim1993173263280
– reference: Coello CAC, Montes EM (2001) Use of dominance-based tournament selection to handle constraints in genetic algorithms, In Intelligent Engineering Systems through Artificial Neural Networks (ANNIE2001), Vol. 11, ASME Press, St. Louis, Missouri, pp 177–182.
– reference: Atiqullah MirMRaoSSSimulated annealing and parallel processing: an implementation for constrained global design optimizationEng Optim2000325659685
– reference: BelegunduADA study of mathematical programming methods for structural optimization1982IowaDepartment of Civil and Environmental Engineering, University of Iowa
– reference: ZhangJLiangCHuangYWuJYangSAn effective multiagent evolutionary algorithm integrating a novel roulette inversion operator for engineering optimizationAppl Math Comput200921139241625241681162.6535710.1016/j.amc.2009.01.048
– reference: AroraJSIntroduction to optimum design1989New YorkMcGraw-Hill
– reference: Michalewicz Z, Attia N (1994) Evolutionary optimization of constrained problems. In: Proceedings of the 3rd annual conf on evolutionary programming. World Scientific, pp 98–108
– reference: Bernardino HS, Barbosa HJC, Lemonge ACC (2007) A hybrid genetic algorithm for constrained optimization problems in mechanical engineering. In: 2007 IEEE congress on evolutionary computation (CEC 2007), Singapore. IEEE Press, New York, pp 646–653
– reference: AragonVSEsquivelSCCoelloCCAA modified version of a T-cell algorithm for constrained optimization problemsInt J Numer Methods Eng2010843513781202.74128
– reference: MontesEMCoelloCACAn empirical study about the usefulness of evolution strategies to solve constrained optimization problemsInt J Gen Syst200837444347324408921219.9012910.1080/03081070701303470
– reference: DebKAn efficient constraint handling method for genetic algorithmsComput Methods Appl Mech Eng20001863113381028.9053310.1016/S0045-7825(99)00389-8
– reference: LiHLChangCTAn approximate approach of global optimization for polynomial programming problemsEur J Oper Res1998107362563219041660943.9007910.1016/S0377-2217(96)00310-4
– reference: AltringhamJDBats: biology and behavior1996OxfordOxford University Press
– reference: Parsopoulos KE, Vrahatis MN (2005) Unified particle swarm optimization for solving constrained engineering optimization problems. In: Lecture notes in computer science (LNCS), vol 3612, pp 582–591
– reference: CoelloCACBecerraRLEfficient evolutionary through the use of a cultural algorithmEng Optim20043621923610.1080/03052150410001647966
– reference: RayTLiewKMSociety and civilization: an optimization algorithm based on the simulation of social behaviorIEEE Trans Evol Comput20037438639610.1109/TEVC.2003.814902
– reference: DebKOptimal design of a welded beam via genetic algorithmsAIAA J199129112013201510.2514/3.10834
– reference: RayTSainiPEngineering design optimization using a swarm with an intelligent information sharing among individualsEng Optim200133373574810.1080/03052150108940941
– reference: HuangFZWangLHeQAn effective co-evolutionary differential evolution for constrained optimizationAppl Math Comput2007186134035623165191114.6506110.1016/j.amc.2006.07.105
– reference: Cabrera JCF, Coello CAC (2007) Handling constraints in particle swarm optimization using a small population size. In: Alexander Gelbukh, Angel Fernando Kuri Morales (eds) MICAI 2007: advances in artificial intelligence, 6th international conference on artificial intelligence, lecture notes in artificial intelligence, vol 4827. Springer, Aguascalientes, Mexico, pp 41–51
– reference: Deb K, Gene AS (1997) A robust optimal design technique for mechanical component design. Evolutionary Algorithms in Engineering Applications, Springer, pp 497–514.
– reference: RagsdellKMPhillipsDTOptimal design of a class of welded structures using geometric programmingASME J Eng Ind19769831021102510.1115/1.3438995
– reference: CoelloCACHybridizing a genetic algorithm with an artificial immune system for global optimizationEng Optim2004365607634207290310.1080/03052150410001704845
– ident: 1028_CR31
  doi: 10.1109/CEC.2007.4424532
– volume: 1
  start-page: 573
  year: 1999
  ident: 1028_CR36
  publication-title: Proc Congr Evol Comput
– volume: 45
  start-page: 92
  year: 1997
  ident: 1028_CR46
  publication-title: Oper Res
  doi: 10.1287/opre.45.1.92
– volume: 29
  start-page: 529
  issue: 7–9
  year: 1998
  ident: 1028_CR72
  publication-title: Adv Eng Softw
  doi: 10.1016/S0965-9978(98)00021-0
– ident: 1028_CR24
– volume-title: Metaheuristics: from design to implementation
  year: 2009
  ident: 1028_CR3
  doi: 10.1002/9780470496916
– volume-title: Bats: biology and behavior
  year: 1996
  ident: 1028_CR13
  doi: 10.1093/oso/9780198540755.001.0001
– volume-title: Test examples for nonlinear programming codes
  year: 1981
  ident: 1028_CR15
  doi: 10.1007/978-3-642-48320-2
– volume: 37
  start-page: 443
  issue: 4
  year: 2008
  ident: 1028_CR59
  publication-title: Int J Gen Syst
  doi: 10.1080/03081070701303470
– volume: 39
  start-page: 679
  issue: 6
  year: 2007
  ident: 1028_CR85
  publication-title: Eng Optim
  doi: 10.1080/03052150701252664
– volume: 29
  start-page: 177
  issue: 1
  year: 1997
  ident: 1028_CR34
  publication-title: Eng Optim
  doi: 10.1080/03052159708940992
– volume: 36
  start-page: 607
  issue: 5
  year: 2004
  ident: 1028_CR40
  publication-title: Eng Optim
  doi: 10.1080/03052150410001704845
– ident: 1028_CR4
  doi: 10.1007/978-3-642-00185-7_1
– volume: 7
  start-page: 19
  issue: 1
  year: 1999
  ident: 1028_CR25
  publication-title: Evol Comput
  doi: 10.1162/evco.1999.7.1.19
– volume: 17
  start-page: 319
  year: 2000
  ident: 1028_CR38
  publication-title: Civil Eng Environ Syst
  doi: 10.1080/02630250008970288
– volume: 4
  start-page: 1
  issue: 1
  year: 1996
  ident: 1028_CR16
  publication-title: Evol Comput
  doi: 10.1162/evco.1996.4.1.1
– volume: 9
  start-page: 424
  issue: 4
  year: 2005
  ident: 1028_CR28
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2005.846817
– volume: 39
  start-page: 567
  issue: 5
  year: 2007
  ident: 1028_CR61
  publication-title: Eng Optim
  doi: 10.1080/03052150701364022
– volume: 7
  start-page: 386
  issue: 4
  year: 2003
  ident: 1028_CR63
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2003.814902
– volume-title: Analytical decision-making in engineering design
  year: 1972
  ident: 1028_CR80
– ident: 1028_CR30
– volume: 16
  start-page: 193
  issue: 3
  year: 2002
  ident: 1028_CR39
  publication-title: Adv Eng Inform
  doi: 10.1016/S1474-0346(02)00011-3
– ident: 1028_CR62
– volume: 178
  start-page: 3043
  issue: 15
  year: 2008
  ident: 1028_CR82
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2008.02.014
– volume: 63
  start-page: 191
  issue: 1
  year: 2012
  ident: 1028_CR5
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2011.11.010
– volume: 20
  start-page: 89
  year: 2006
  ident: 1028_CR47
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2006.03.003
– ident: 1028_CR43
  doi: 10.1007/978-3-662-03423-1_27
– volume: 30
  start-page: 125
  issue: 2
  year: 1998
  ident: 1028_CR57
  publication-title: Eng Optim
  doi: 10.1080/03052159808941241
– ident: 1028_CR69
– volume-title: Bats
  year: 2008
  ident: 1028_CR14
– ident: 1028_CR23
– ident: 1028_CR32
  doi: 10.1109/CEC.2008.4630985
– ident: 1028_CR50
– volume: 213
  start-page: 267
  year: 2010
  ident: 1028_CR10
  publication-title: Acta Mech
  doi: 10.1007/s00707-009-0270-4
– volume: 59
  start-page: 703
  year: 2004
  ident: 1028_CR54
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.899
– ident: 1028_CR58
– volume: 37
  start-page: 499
  issue: 5
  year: 2005
  ident: 1028_CR76
  publication-title: Eng Optim
  doi: 10.1080/03052150500066646
– volume: 34
  start-page: 341
  issue: 4
  year: 2002
  ident: 1028_CR6
  publication-title: Eng Optim
  doi: 10.1080/03052150212723
– ident: 1028_CR12
– ident: 1028_CR35
  doi: 10.1109/ICEC.1997.592352
– volume: 33
  start-page: 735
  issue: 3
  year: 2001
  ident: 1028_CR86
  publication-title: Eng Optim
  doi: 10.1080/03052150108940941
– volume: 4
  start-page: 284
  issue: 3
  year: 2000
  ident: 1028_CR17
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.873238
– volume: 186
  start-page: 311
  year: 2000
  ident: 1028_CR73
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(99)00389-8
– volume: 36
  start-page: 3880
  year: 2009
  ident: 1028_CR70
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.02.039
– volume: 62
  start-page: 242
  issue: 4
  year: 1994
  ident: 1028_CR49
  publication-title: Simulation
  doi: 10.1177/003754979406200405
– volume-title: Introduction to optimum design
  year: 1989
  ident: 1028_CR2
– volume: 41
  start-page: 113
  issue: 2
  year: 2000
  ident: 1028_CR37
  publication-title: Comput Ind
  doi: 10.1016/S0166-3615(99)00046-9
– ident: 1028_CR22
– ident: 1028_CR26
– volume: 230
  start-page: 491
  year: 2009
  ident: 1028_CR29
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2008.12.017
– volume: 194
  start-page: 3902
  year: 2004
  ident: 1028_CR8
  publication-title: Comput Methods Appl Mech Eng
– volume-title: A study of mathematical programming methods for structural optimization
  year: 1982
  ident: 1028_CR83
– volume: 23
  start-page: 187
  issue: 3
  year: 1995
  ident: 1028_CR66
  publication-title: Eng Optim
  doi: 10.1080/03052159508941353
– ident: 1028_CR52
  doi: 10.1109/ICEC.1994.349995
– volume: 107
  start-page: 625
  issue: 3
  year: 1998
  ident: 1028_CR55
  publication-title: Eur J Oper Res
  doi: 10.1016/S0377-2217(96)00310-4
– volume: 195
  start-page: c2495
  year: 2006
  ident: 1028_CR19
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2005.05.014
– volume: 89
  start-page: 2325
  issue: 23–24
  year: 2011
  ident: 1028_CR79
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2011.08.002
– volume: 36
  start-page: 219
  year: 2004
  ident: 1028_CR84
  publication-title: Eng Optim
  doi: 10.1080/03052150410001647966
– volume: 35
  start-page: 521
  year: 2006
  ident: 1028_CR18
  publication-title: J Glob Optim
  doi: 10.1007/s10898-005-3693-z
– ident: 1028_CR60
– volume: 32
  start-page: 319
  year: 2008
  ident: 1028_CR33
  publication-title: Informatica
– volume: 24
  start-page: 137
  year: 1995
  ident: 1028_CR68
  publication-title: Eng Optim
  doi: 10.1080/03052159508941187
– volume: 98
  start-page: 1021
  issue: 3
  year: 1976
  ident: 1028_CR81
  publication-title: ASME J Eng Ind
  doi: 10.1115/1.3438995
– volume: 84
  start-page: 351
  year: 2010
  ident: 1028_CR20
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.2904
– volume: 186
  start-page: 340
  issue: 1
  year: 2007
  ident: 1028_CR51
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2006.07.105
– volume: 20
  start-page: 7
  year: 2006
  ident: 1028_CR77
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2005.09.001
– volume: 17
  start-page: 263
  year: 1991
  ident: 1028_CR45
  publication-title: Eng Optim
  doi: 10.1080/03052159108941075
– ident: 1028_CR9
  doi: 10.1108/02644401211235834
– volume: 195
  start-page: 4303
  issue: 33–36
  year: 2006
  ident: 1028_CR21
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2005.09.006
– volume: 34
  start-page: 613
  issue: 6
  year: 2002
  ident: 1028_CR67
  publication-title: Eng Optim
  doi: 10.1080/03052150215719
– ident: 1028_CR42
– ident: 1028_CR27
  doi: 10.1109/CEC.2006.1688315
– volume: 211
  start-page: 392
  year: 2009
  ident: 1028_CR78
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2009.01.048
– ident: 1028_CR44
  doi: 10.1016/j.eswa.2009.06.044
– volume: 36
  start-page: 585
  issue: 5
  year: 2004
  ident: 1028_CR48
  publication-title: Eng Optim
  doi: 10.1080/03052150410001704854
– volume: 116
  start-page: 318
  year: 1994
  ident: 1028_CR53
  publication-title: J Mech Des Trans
– volume: 36
  start-page: 607
  issue: 5
  year: 2004
  ident: 1028_CR41
  publication-title: Eng Optim
  doi: 10.1080/03052150410001704845
– ident: 1028_CR1
– volume: 29
  start-page: 2013
  issue: 11
  year: 1991
  ident: 1028_CR74
  publication-title: AIAA J
  doi: 10.2514/3.10834
– volume: 17
  start-page: 263
  issue: 3
  year: 1993
  ident: 1028_CR71
  publication-title: Eng Optim
– volume: 112
  start-page: 223
  issue: 2
  year: 1990
  ident: 1028_CR65
  publication-title: ASME J Mech Des
  doi: 10.1115/1.2912596
– volume: 22
  start-page: 109
  year: 1994
  ident: 1028_CR56
  publication-title: Eng Optim
– ident: 1028_CR64
  doi: 10.1115/DETC1988-0012
– ident: 1028_CR11
  doi: 10.1007/s00366-011-0241-y
– ident: 1028_CR75
  doi: 10.1080/03052150008941317
– ident: 1028_CR7
  doi: 10.1016/j.cnsns.2012.05.010
SSID ssj0004685
Score 2.5051699
Snippet In this study, we use a new metaheuristic optimization algorithm, called bat algorithm (BA), to solve constraint optimization tasks. BA is verified using...
SourceID pascalfrancis
crossref
springer
SourceType Index Database
Enrichment Source
Publisher
StartPage 1239
SubjectTerms Applied sciences
Artificial Intelligence
Calculus of variations and optimal control
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Computer science; control theory; systems
Data Mining and Knowledge Discovery
Exact sciences and technology
Image Processing and Computer Vision
Learning and adaptive systems
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in mathematical programming, optimization and calculus of variations
Numerical methods in optimization and calculus of variations
Original Article
Probability and Statistics in Computer Science
Sciences and techniques of general use
Title Bat algorithm for constrained optimization tasks
URI https://link.springer.com/article/10.1007/s00521-012-1028-9
Volume 22
WOSCitedRecordID wos000318003100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB609SCI9Yn1UXLwpATSTbqbPVpp8SCl1Ae9LXmtlj7prv5-k-3uYvEBetlTEoZJMvPNZmY-gEuiuC-s38BSKoqZYD6WKqDY-NZi8pZFyCrrrn8f9Hp8OAz7eR13UmS7F0-SmaUui93cH0wX-nrYOUUcbkLVejvu-BoGD8-fiiEzHk4btriUHkaLp8zvllhzRjsLkVi9xCtCiy8vo5nD6db-Jeoe7Ob4Et2sDsQ-bJjZAdQK7gaUX-VDIG2RIjF5mS9H6esUWeiKlIOKjjHCaDS3lmSal2iiVCTj5Aieup3H2zucsydgRTlLccC19LWyiCokTHhxk0gTU2UsAmOGMeXLZqy5CokLYTShLR20jOSakjhwRH30GCqz-cycAJKCaE619iSVzIuVlDKkKjAy9O2HkjqQQo2RyluLO3knUdkUOdNIZDUSOY1EYR2uyimLVV-N3wY31vamnOFZU24BkxXgutiIKL-Dyc_Lnf5p9BlsexkFhktyPIdKunwzF7Cl3tNRsmxAtd3p9QeN7Ax-AMqx06Q
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60CgpifWJ91Bw8KYF0k-5mjyqWirWIVultyWu12Bfd1d9vst0tFh-glz0lYZgkM99sZuYDOCGK-8L6DSylopgJ5mOpAoqNby0mr1uErLLu-q2g3ebdbniX13EnRbZ78SSZWepZsZv7g-lCXw87p4jDRVhi1mG5hvn3D0-fiiEzHk4btriUHkaLp8zvlphzRmtjkVi9xFNCiy8vo5nDaZT_JeoGrOf4Ep1PD8QmLJjhFpQL7gaUX-VtIBciRaL_PJr00pcBstAVKQcVHWOE0WhkLckgL9FEqUhekx14bFx1Lps4Z0_AinKW4oBr6WtlEVVImPDiGpEmpspYBMYMY8qXtVhzFRIXwmhC6zqoG8k1JXHgiProLpSGo6HZAyQF0Zxq7UkqmRcrKWVIVWBk6NsPJRUghRojlbcWd_L2o1lT5EwjkdVI5DQShRU4nU0ZT_tq_Da4Orc3sxmeNeUWMFkBzoqNiPI7mPy83P6fRh_DSrNz24pa1-2bA1j1MjoMl_B4CKV08maOYFm9p71kUs3O4QcWDtTu
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSwMxEB60ighiPbEeNQ8-KaHpJt3NPnoVxVIKHvRt2RyrxXZbuqu_32SPYvEA8WWfkjBMkplvNjPzAZwQyd3Q-A0shKSYhczFQnoUa9dYTN4yCFlm3fU7XrfL-32_V_CcJmW2e_kkmdc02C5NcdqYqKgxK3yzfzNtGOxg6yCxvwhLzObR23D9_ulTYWTGyWlCGJvew2j5rPndEnOOaW0SJkZHUU5u8eWVNHM-7eq_xd6A9QJ3ovP8oGzCgo63oFpyOqDiim8DuQhTFA6fx9NB-jJCBtIiaSGkZZLQCo2NhRkVpZsoDZPXZAce29cPlze4YFXAknKWYo8r4SppkJZPWOhETSJ0RKU2yIxpxqQrmpHi0ic2tFGEtpTX0oIrSiLPEvjRXajE41jvARIhUZwq5QgqmBNJIYRPpaeF75oPJTUgpUoDWbQct_IOg1mz5EwjgdFIYDUS-DU4nU2Z5P02fhtcn9un2QzHmHgDpIwAZ-WmBMXdTH5ebv9Po49hpXfVDjq33bsDWHUylgybB3kIlXT6po9gWb6ng2Raz47kB1y93dI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bat+algorithm+for+constrained+optimization+tasks&rft.jtitle=Neural+computing+%26+applications&rft.au=Gandomi%2C+Amir+Hossein&rft.au=Yang%2C+Xin-She&rft.au=Alavi%2C+Amir+Hossein&rft.au=Talatahari%2C+Siamak&rft.date=2013-05-01&rft.pub=Springer-Verlag&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=22&rft.issue=6&rft.spage=1239&rft.epage=1255&rft_id=info:doi/10.1007%2Fs00521-012-1028-9&rft.externalDocID=10_1007_s00521_012_1028_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon