Compactness in Metric Spaces

In this article, we mainly formalize in Mizar [2] the equivalence among a few compactness definitions of metric spaces, norm spaces, and the real line. In the first section, we formalized general topological properties of metric spaces. We discussed openness and closedness of subsets in metric space...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Formalized mathematics Ročník 24; číslo 3; s. 167 - 172
Hlavní autori: Nakasho, Kazuhisa, Narita, Keiko, Shidama, Yasunari
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Bialystok Sciendo 01.09.2016
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Predmet:
ISSN:1898-9934, 1426-2630, 1898-9934
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this article, we mainly formalize in Mizar [2] the equivalence among a few compactness definitions of metric spaces, norm spaces, and the real line. In the first section, we formalized general topological properties of metric spaces. We discussed openness and closedness of subsets in metric spaces in terms of convergence of element sequences. In the second section, we firstly formalize the definition of sequentially compact, and then discuss the equivalence of compactness, countable compactness, sequential compactness, and totally boundedness with completeness in metric spaces. In the third section, we discuss compactness in norm spaces. We formalize the equivalence of compactness and sequential compactness in norm space. In the fourth section, we formalize topological properties of the real line in terms of convergence of real number sequences. In the last section, we formalize the equivalence of compactness and sequential compactness in the real line. These formalizations are based on [20], [5], [17], [14], and [4].
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1898-9934
1426-2630
1898-9934
DOI:10.1515/forma-2016-0013