Machine learning applications to neuroimaging for glioma detection and classification: An artificial intelligence augmented systematic review
[Display omitted] oMachine learning has been widely applied to MRI to detect and diagnose gliomas.oNon-invasive detection of genetics has the potential to supersede biopsy procedures.oMachine learning has demonstrated strong performance and clinical utility.oPerformance metrics from 153 articles wer...
Uloženo v:
| Vydáno v: | Journal of clinical neuroscience Ročník 89; s. 177 - 198 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.07.2021
|
| Témata: | |
| ISSN: | 0967-5868, 1532-2653, 1532-2653 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | [Display omitted]
oMachine learning has been widely applied to MRI to detect and diagnose gliomas.oNon-invasive detection of genetics has the potential to supersede biopsy procedures.oMachine learning has demonstrated strong performance and clinical utility.oPerformance metrics from 153 articles were synthesized to facilitate benchmarking.oDeep language models can facilitate systematic review article screening.
Glioma is the most common primary intraparenchymal tumor of the brain and the 5-year survival rate of high-grade glioma is poor. Magnetic resonance imaging (MRI) is essential for detecting, characterizing and monitoring brain tumors but definitive diagnosis still relies on surgical pathology. Machine learning has been applied to the analysis of MRI data in glioma research and has the potential to change clinical practice and improve patient outcomes. This systematic review synthesizes and analyzes the current state of machine learning applications to glioma MRI data and explores the use of machine learning for systematic review automation. Various datapoints were extracted from the 153 studies that met inclusion criteria and analyzed. Natural language processing (NLP) analysis involved keyword extraction, topic modeling and document classification. Machine learning has been applied to tumor grading and diagnosis, tumor segmentation, non-invasive genomic biomarker identification, detection of progression and patient survival prediction. Model performance was generally strong (AUC = 0.87 ± 0.09; sensitivity = 0.87 ± 0.10; specificity = 0.0.86 ± 0.10; precision = 0.88 ± 0.11). Convolutional neural network, support vector machine and random forest algorithms were top performers. Deep learning document classifiers yielded acceptable performance (mean 5-fold cross-validation AUC = 0.71). Machine learning tools and data resources were synthesized and summarized to facilitate future research. Machine learning has been widely applied to the processing of MRI data in glioma research and has demonstrated substantial utility. NLP and transfer learning resources enabled the successful development of a replicable method for automating the systematic review article screening process, which has potential for shortening the time from discovery to clinical application in medicine. |
|---|---|
| AbstractList | Glioma is the most common primary intraparenchymal tumor of the brain and the 5-year survival rate of high-grade glioma is poor. Magnetic resonance imaging (MRI) is essential for detecting, characterizing and monitoring brain tumors but definitive diagnosis still relies on surgical pathology. Machine learning has been applied to the analysis of MRI data in glioma research and has the potential to change clinical practice and improve patient outcomes. This systematic review synthesizes and analyzes the current state of machine learning applications to glioma MRI data and explores the use of machine learning for systematic review automation. Various datapoints were extracted from the 153 studies that met inclusion criteria and analyzed. Natural language processing (NLP) analysis involved keyword extraction, topic modeling and document classification. Machine learning has been applied to tumor grading and diagnosis, tumor segmentation, non-invasive genomic biomarker identification, detection of progression and patient survival prediction. Model performance was generally strong (AUC = 0.87 ± 0.09; sensitivity = 0.87 ± 0.10; specificity = 0.0.86 ± 0.10; precision = 0.88 ± 0.11). Convolutional neural network, support vector machine and random forest algorithms were top performers. Deep learning document classifiers yielded acceptable performance (mean 5-fold cross-validation AUC = 0.71). Machine learning tools and data resources were synthesized and summarized to facilitate future research. Machine learning has been widely applied to the processing of MRI data in glioma research and has demonstrated substantial utility. NLP and transfer learning resources enabled the successful development of a replicable method for automating the systematic review article screening process, which has potential for shortening the time from discovery to clinical application in medicine.Glioma is the most common primary intraparenchymal tumor of the brain and the 5-year survival rate of high-grade glioma is poor. Magnetic resonance imaging (MRI) is essential for detecting, characterizing and monitoring brain tumors but definitive diagnosis still relies on surgical pathology. Machine learning has been applied to the analysis of MRI data in glioma research and has the potential to change clinical practice and improve patient outcomes. This systematic review synthesizes and analyzes the current state of machine learning applications to glioma MRI data and explores the use of machine learning for systematic review automation. Various datapoints were extracted from the 153 studies that met inclusion criteria and analyzed. Natural language processing (NLP) analysis involved keyword extraction, topic modeling and document classification. Machine learning has been applied to tumor grading and diagnosis, tumor segmentation, non-invasive genomic biomarker identification, detection of progression and patient survival prediction. Model performance was generally strong (AUC = 0.87 ± 0.09; sensitivity = 0.87 ± 0.10; specificity = 0.0.86 ± 0.10; precision = 0.88 ± 0.11). Convolutional neural network, support vector machine and random forest algorithms were top performers. Deep learning document classifiers yielded acceptable performance (mean 5-fold cross-validation AUC = 0.71). Machine learning tools and data resources were synthesized and summarized to facilitate future research. Machine learning has been widely applied to the processing of MRI data in glioma research and has demonstrated substantial utility. NLP and transfer learning resources enabled the successful development of a replicable method for automating the systematic review article screening process, which has potential for shortening the time from discovery to clinical application in medicine. [Display omitted] oMachine learning has been widely applied to MRI to detect and diagnose gliomas.oNon-invasive detection of genetics has the potential to supersede biopsy procedures.oMachine learning has demonstrated strong performance and clinical utility.oPerformance metrics from 153 articles were synthesized to facilitate benchmarking.oDeep language models can facilitate systematic review article screening. Glioma is the most common primary intraparenchymal tumor of the brain and the 5-year survival rate of high-grade glioma is poor. Magnetic resonance imaging (MRI) is essential for detecting, characterizing and monitoring brain tumors but definitive diagnosis still relies on surgical pathology. Machine learning has been applied to the analysis of MRI data in glioma research and has the potential to change clinical practice and improve patient outcomes. This systematic review synthesizes and analyzes the current state of machine learning applications to glioma MRI data and explores the use of machine learning for systematic review automation. Various datapoints were extracted from the 153 studies that met inclusion criteria and analyzed. Natural language processing (NLP) analysis involved keyword extraction, topic modeling and document classification. Machine learning has been applied to tumor grading and diagnosis, tumor segmentation, non-invasive genomic biomarker identification, detection of progression and patient survival prediction. Model performance was generally strong (AUC = 0.87 ± 0.09; sensitivity = 0.87 ± 0.10; specificity = 0.0.86 ± 0.10; precision = 0.88 ± 0.11). Convolutional neural network, support vector machine and random forest algorithms were top performers. Deep learning document classifiers yielded acceptable performance (mean 5-fold cross-validation AUC = 0.71). Machine learning tools and data resources were synthesized and summarized to facilitate future research. Machine learning has been widely applied to the processing of MRI data in glioma research and has demonstrated substantial utility. NLP and transfer learning resources enabled the successful development of a replicable method for automating the systematic review article screening process, which has potential for shortening the time from discovery to clinical application in medicine. |
| Author | Farrokhi, Farrokh Piccardi, Massimo Leveque, Jean-Christophe Buchlak, Quinlan D. Esmaili, Nazanin Bennett, Christine |
| Author_xml | – sequence: 1 givenname: Quinlan D. surname: Buchlak fullname: Buchlak, Quinlan D. email: quinlan.buchlak1@my.nd.edu.au organization: School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia – sequence: 2 givenname: Nazanin surname: Esmaili fullname: Esmaili, Nazanin organization: School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia – sequence: 3 givenname: Jean-Christophe surname: Leveque fullname: Leveque, Jean-Christophe organization: Neuroscience Institute, Virginia Mason Medical Center, Seattle, WA, USA – sequence: 4 givenname: Christine surname: Bennett fullname: Bennett, Christine organization: School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia – sequence: 5 givenname: Farrokh surname: Farrokhi fullname: Farrokhi, Farrokh organization: Neuroscience Institute, Virginia Mason Medical Center, Seattle, WA, USA – sequence: 6 givenname: Massimo surname: Piccardi fullname: Piccardi, Massimo organization: Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia |
| BookMark | eNqFkc1u1DAUhS3USkxbXoCVl2wytRM7PxWbqgKKVMQG1pZzfRM8OPZge6jmIXhnHKarLop0JUvH57N8z7kgZz54JOQtZ1vOeHu92-4C-G3Nar5lokzzimy4bOqqbmVzRjZsaLtK9m3_mlyktGOMDaJhG_Lni4Yf1iN1qKO3fqZ6v3cWdLbBJ5oD9XiIwS56Xi-nEOnsbFg0NZgRVhfV3lBwOiU7PYE39LbIMa-C1Y5an9E5O6MHpPowL1gEQ9MxZVwKATTib4uPV-R80i7hm6fzknz_-OHb3X318PXT57vbhwqaXuRKCGNGbUYhO2Fg6sZxajoYgYHssO0kyLHRupeyn0o6uu8lHwc9DQK4MV0_NJfk3endfQy_DpiyWmyC8kXtMRySqqVgXc2lZMXan6wQQ0oRJwU2_1syR22d4kytDaidWhtQawOKiTJNQetn6D6WIOPxZej9CcKyf8kkqgR2zc3YWPJWJtiX8ZtnODjrSy3uJx7_B_8FO6G6WA |
| CitedBy_id | crossref_primary_10_1007_s11831_025_10291_y crossref_primary_10_1007_s11547_023_01725_3 crossref_primary_10_1007_s00590_021_03059_0 crossref_primary_10_3389_fmed_2023_1059712 crossref_primary_10_1016_j_saa_2025_125980 crossref_primary_10_1186_s12884_022_04891_w crossref_primary_10_3390_cancers14112623 crossref_primary_10_1016_j_amjms_2023_06_010 crossref_primary_10_1155_2022_1478048 crossref_primary_10_3390_diagnostics13142429 crossref_primary_10_1186_s12880_025_01603_6 crossref_primary_10_3389_fpubh_2022_846598 crossref_primary_10_3390_diagnostics12081850 crossref_primary_10_1002_lary_30894 crossref_primary_10_1016_j_semcancer_2023_03_006 crossref_primary_10_3389_frai_2022_780405 crossref_primary_10_3390_app11167550 crossref_primary_10_1038_s41598_023_36702_3 crossref_primary_10_1007_s10143_025_03512_2 crossref_primary_10_1016_j_knosys_2024_111919 crossref_primary_10_3390_cancers14225608 crossref_primary_10_1007_s10143_025_03783_9 crossref_primary_10_3389_fonc_2022_856231 crossref_primary_10_1002_jmri_29364 crossref_primary_10_1016_j_jocn_2022_03_014 crossref_primary_10_1016_j_ncl_2024_08_003 crossref_primary_10_3390_info16010058 crossref_primary_10_1016_j_neuroimage_2023_120253 crossref_primary_10_3389_fonc_2022_905770 crossref_primary_10_3390_buildings13082061 crossref_primary_10_1007_s00117_021_00920_5 crossref_primary_10_1002_jmri_28103 crossref_primary_10_1007_s00330_023_10074_8 crossref_primary_10_2196_53567 crossref_primary_10_3389_fneur_2023_1179761 crossref_primary_10_3390_diagnostics13040743 crossref_primary_10_3390_diagnostics15010038 crossref_primary_10_1007_s10143_024_02452_7 crossref_primary_10_1007_s00586_024_08591_1 crossref_primary_10_1227_neu_0000000000003260 crossref_primary_10_1038_s41598_024_68291_0 crossref_primary_10_4103_wajr_wajr_32_22 crossref_primary_10_1016_j_compbiomed_2023_107063 crossref_primary_10_1007_s13721_023_00428_z crossref_primary_10_1088_1361_6560_ad64b8 crossref_primary_10_1016_j_wneu_2024_11_048 crossref_primary_10_3389_fmed_2025_1635796 crossref_primary_10_1016_j_cpcardiol_2024_102754 crossref_primary_10_1002_jmri_29146 crossref_primary_10_1002_jmri_29543 |
| Cites_doi | 10.1007/s00330-019-06492-2 10.1016/j.future.2018.04.065 10.1007/s00701-012-1418-x 10.1007/s00330-016-4653-3 10.1038/s41598-017-10649-8 10.1016/j.dsp.2009.07.002 10.1016/j.fcij.2017.12.001 10.1007/s10278-017-9984-3 10.1002/mp.12481 10.13005/bpj/1511 10.1002/mrm.22495 10.1016/j.compbiomed.2018.05.005 10.1002/ima.22037 10.1002/jmri.25970 10.1186/s13643-017-0644-y 10.1109/TBME.2014.2325410 10.1002/jmri.26010 10.1016/j.clineuro.2018.08.004 10.1007/978-3-319-24574-4_28 10.1007/s10278-013-9622-7 10.7326/0003-4819-151-4-200908180-00135 10.3171/2014.7.JNS132449 10.1007/s10014-010-0275-7 10.1148/radiol.14140770 10.1177/1971400915576637 10.1145/1961189.1961199 10.1016/j.jocn.2018.05.002 10.18637/jss.v028.i05 10.1117/1.JMI.6.3.034002 10.1377/hlthaff.2010.0696 10.3174/ajnr.A5279 10.1093/neuonc/now121 10.1016/j.acra.2018.09.022 10.1016/j.compbiomed.2018.06.009 10.1007/s00401-007-0243-4 10.1007/BF00598951 10.2528/PIERB13052805 10.1016/j.canlet.2019.02.054 10.1016/j.nicl.2014.08.001 10.3389/fnins.2018.00804 10.1093/neuonc/noz199 10.1016/j.media.2016.10.004 10.1056/NEJMp1606181 10.1016/j.media.2017.10.002 10.1158/0008-5472.CAN-17-0339 10.1016/j.ijrobp.2019.07.011 10.1038/s41598-019-55922-0 10.1109/TBME.2018.2845706 10.1007/s00401-016-1545-1 10.1109/TMI.2018.2820120 10.1148/radiol.2016161382 10.1016/j.wneu.2018.10.151 10.1038/s41598-018-30273-4 10.1109/TPAMI.2012.120 10.1117/1.JMI.5.2.021219 10.1002/jmri.26704 10.1093/neuonc/now086 10.1155/2017/8054939 10.1158/0008-5472.CAN-18-0125 10.3174/ajnr.A5421 10.1007/s11060-011-0749-4 10.1007/s10278-018-0107-6 10.1016/S1470-2045(08)70125-6 10.1016/j.nicl.2017.10.030 10.1007/s10916-019-1228-2 10.1109/TMI.2014.2377694 10.1016/j.media.2018.07.010 10.5244/C.28.6 10.1155/2018/4940593 10.1016/j.radonc.2018.07.011 10.1148/radiol.09090663 10.1038/s41598-019-42276-w 10.1007/s00330-019-06548-3 10.1093/neuonc/noy033 10.1186/s12916-016-0555-0 10.7326/M18-1376 10.1109/ACCESS.2019.2928975 10.1016/j.cmpb.2018.09.007 10.1007/s11682-018-9949-2 10.1016/j.media.2008.11.002 10.1016/j.ejmp.2019.03.014 10.1007/s10916-019-1416-0 10.1016/j.asoc.2016.01.022 10.1155/2016/8356294 10.1371/journal.pone.0141506 10.1002/mp.12945 10.3348/kjr.2018.0814 10.3171/2011.2.JNS10998 10.1109/ACCESS.2018.2885639 10.1016/j.mri.2013.06.010 10.1007/s12178-016-9351-x 10.1158/1078-0432.CCR-17-3420 10.1016/j.irbm.2015.08.001 10.1088/0031-9155/58/13/R97 10.1016/j.bbe.2018.10.004 10.1007/s11060-018-2953-y 10.1186/s13643-019-0974-z 10.1007/s11060-019-03096-0 10.1023/A:1007963824710 10.1038/s41598-017-13679-4 10.7717/peerj.5982 10.1038/sj.ebd.6400602 10.1093/neuonc/now135 10.1038/s41598-018-31007-2 10.1118/1.4934373 10.1007/s11548-011-0559-3 10.1007/s00330-017-5267-0 10.1016/j.eswa.2015.08.036 10.31803/tg-20190712095507 10.1016/j.bbe.2019.06.003 10.1215/15228517-2008-102 10.1002/jmri.25960 10.1016/j.compbiomed.2017.02.012 10.1016/j.jclinepi.2020.01.008 10.1007/s10278-017-0009-z 10.1158/1078-0432.CCR-17-2236 10.1148/radiol.2018180200 10.1007/s12652-018-0883-3 10.1007/s00330-019-06056-4 10.18632/oncotarget.18001 10.1007/s11604-019-00902-7 10.1109/TPAMI.2018.2873610 10.1002/cam4.1908 10.1038/nrclinonc.2009.150 10.1016/j.image.2017.05.013 10.1007/s00330-018-5368-4 10.1038/nature14539 10.1016/j.cmpb.2016.12.018 10.1007/s00234-019-02244-7 10.1016/j.jclinepi.2007.10.009 10.1016/j.ejrad.2018.07.018 10.1056/NEJMoa043330 10.3174/ajnr.A5173 10.3174/ajnr.A2939 10.1016/j.cmpb.2019.05.015 10.3390/genes9080382 10.1016/j.zemedi.2018.11.002 10.3174/ajnr.A5569 10.1038/s41598-019-46296-4 10.2463/mrms.mp.2017-0178 10.1097/PAP.0000000000000049 10.3174/ajnr.A5858 10.1007/s00330-017-4964-z 10.1002/mp.13400 10.1097/SLA.0000000000002579 10.1002/mp.12752 10.1212/WNL.59.6.947 10.1038/s41598-018-24438-4 10.1016/j.ejca.2018.10.019 10.1109/TIP.2017.2713099 10.1007/s00330-017-5302-1 10.1016/S1470-2045(17)30194-8 10.2106/JBJS.19.00071 10.1007/s00432-018-2787-1 10.1007/s11060-018-2895-4 10.1109/TMI.2018.2807590 10.1016/j.suronc.2018.09.002 10.1109/TMI.2015.2463078 10.1016/j.radonc.2020.01.028 10.1007/s11548-017-1691-5 10.3390/jcm8091287 10.18632/oncotarget.27301 10.3174/ajnr.A5667 10.1016/j.wneu.2011.06.014 10.1023/A:1010933404324 10.1111/jcmm.14328 10.1007/s00330-019-06441-z 10.14245/ns.1938386.193 10.1200/JCO.2011.35.5750 10.1002/jmri.25497 10.1227/01.neu.0000318159.21731.cf 10.1158/1078-0432.CCR-17-3445 10.1002/jmri.24390 10.1002/jmri.26240 10.1038/srep35142 10.1001/jama.2012.12807 10.1148/radiol.2015151169 10.7326/M18-1377 10.1016/j.amjsurg.2020.06.073 10.1097/RLI.0000000000000484 10.1016/j.crad.2019.12.008 10.1109/TMI.2016.2538465 10.1007/s00234-018-2091-4 10.1148/rg.2016150080 10.3174/ajnr.A3352 10.3390/app8010027 10.1007/978-3-319-31204-0_9 10.1118/1.4963812 10.1002/jmri.22432 10.1007/s11517-018-1858-4 10.1118/1.4948668 10.1227/NEU.0000000000001202 10.1016/j.jocn.2017.06.012 10.1109/TMI.2018.2805821 10.1016/j.media.2016.05.004 10.1038/s41598-018-22739-2 10.1007/s00330-019-06395-2 10.21037/qims.2019.07.01 10.1016/j.clineuro.2017.12.007 10.1016/j.wneu.2019.01.157 10.1016/j.jocs.2018.12.003 10.1016/j.bspc.2020.101926 10.1007/s10916-019-1453-8 10.1016/S1470-2045(19)30098-1 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION 7X8 |
| DOI | 10.1016/j.jocn.2021.04.043 |
| DatabaseName | CrossRef MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1532-2653 |
| EndPage | 198 |
| ExternalDocumentID | 10_1016_j_jocn_2021_04_043 S0967586821002241 |
| GroupedDBID | --- --K --M -RU .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABJNI ABMAC ABMZM ABTEW ABWVN ABXDB ACDAQ ACGFS ACIEU ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDW HMK HMO HVGLF HZ~ IHE J1W KOM LX8 M29 M41 MO0 MOBAO N9A O-L O9- OAUVE OP~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SEL SES SEW SPCBC SSH SSN SSZ T5K UHS WUQ Z5R ~G- ~HD AACTN AADPK AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW LCYCR RIG 9DU AAYXX CITATION 7X8 |
| ID | FETCH-LOGICAL-c384t-44ddbadb4574dcf7bbf37cbc0c57e675c5b3aa8558f101a8851b9af94c1dd7893 |
| ISICitedReferencesCount | 68 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000659912500030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0967-5868 1532-2653 |
| IngestDate | Thu Oct 02 10:40:19 EDT 2025 Tue Nov 18 22:13:21 EST 2025 Sat Nov 29 07:09:01 EST 2025 Fri Feb 23 02:43:58 EST 2024 Tue Oct 14 19:30:45 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | T1-MR image Image processing Multimodal neuroimaging Glioblastoma Glioma grading Neurosurgery Radiomics Deep learning Brain tumor classification Glioma T2-MR image Machine learning FLAIR Convolutional neural networks |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c384t-44ddbadb4574dcf7bbf37cbc0c57e675c5b3aa8558f101a8851b9af94c1dd7893 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
| PQID | 2540721550 |
| PQPubID | 23479 |
| PageCount | 22 |
| ParticipantIDs | proquest_miscellaneous_2540721550 crossref_citationtrail_10_1016_j_jocn_2021_04_043 crossref_primary_10_1016_j_jocn_2021_04_043 elsevier_sciencedirect_doi_10_1016_j_jocn_2021_04_043 elsevier_clinicalkey_doi_10_1016_j_jocn_2021_04_043 |
| PublicationCentury | 2000 |
| PublicationDate | July 2021 2021-07-00 20210701 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of clinical neuroscience |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Kocak, Durmaz, Ates, Sel, Gunes, Kaya (b0590) 2020; 30 Anaraki, Ayati, Kazemi (b0090) 2019; 39 El-Dahshan, Hosny, Salem (b0330) 2010; 20 Menze, Jakab, Bauer, Kalpathy-Cramer, Farahani, Kirby (b0760) 2014; 34 Buchlak, Yanamadala, Leveque, Sethi (b0200) 2016; 9 Tan, Zhang, Wei, Dong, Wang, Yang (b1070) 2019; 29 Wyles, Tibbo, Fu, Wang, Sohn, Kremers (b1155) 2019; 101 Bae, Choi, Ahn, Chang, Kang, Kim (b0105) 2018; 289 Kesler, Harrison, Petersen, Rao, Dyson, Alfaro-Munoz (b0545) 2019; 10 Kim, Do, Park (b0570) 2018; 45 Koley, Sadhu, Mitra, Chakraborty, Chakraborty (b0595) 2016; 41 Khawaldeh, Pervaiz, Rafiq, Alkhawaldeh (b0550) 2018; 8 Li, Wang, Yu, Guo, Cao (b0680) 2017; 7 Chollet (b0270) 2018 Bauer, Wiest, Nolte, Reyes (b0135) 2013; 58 Huang, Yang, Wu, Jiang, Chen, Feng (b0460) 2014; 61 Rathore, Akbari, Doshi, Shukla, Rozycki, Bilello (b0905) 2018; 5 Tian, Yan, Zhang, Zhang, Hu, Han (b1090) 2018; 48 Jang, Jeon, Kim, Kim (b0495) 2018; 8 Zhao, Wu, Song, Li, Zhang, Fan (b1240) 2018; 43 Li, Liu, Xu, Qian, Wang, Fan (b0670) 2018; 28 Devlin J, Chang M-W, Lee K, Toutanova K Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv Prepr; 2018. arXiv181004805 Bonte, Goethals, Van Holen (b0165) 2018; 98 Venneti, Huse (b1110) 2015; 22 Sanai, Berger (b0955) 2008; 62 Hu, Ning, Eschbacher, Gaw, Dueck, Smith (b0445) 2015; 10 Cai, Giannopoulos, Yu, Kelil, Ripley, Kumamaru (b0205) 2016; 36 Kanas, Zacharaki, Thomas, Zinn, Megalooikonomou, Colen (b0535) 2017; 140 Scott, Brasher, Sevick, Rewcastle, Forsyth (b0985) 2002; 59 Ismail, Hill, Statsevych, Huang, Prasanna, Correa (b0480) 2018; 39 Chaddad, Sabri, Niazi, Abdulkarim (b0215) 2018; 56 Perkuhn, Stavrinou, Thiele, Shakirin, Mohan, Garmpis (b0860) 2018; 53 Liao, Cai, Tian, Luo, Song, Li (b0690) 2019; 23 Su, Chen, Sun, Liu, Yang, Wang (b1030) 2020; 22 Shofty, Artzi, Ben, Liberman, Haim, Kashanian (b1005) 2018; 13 Wong, Syeda-Mahmood, Moradi (b1135) 2018; 49 Yiming Li,Zenghui Qian,Kaibin Xu,Kai Wang,Xing Fan,Shaowu Li,Tao Jiang,Xing Liu,Yinyan Wang (2018) MRI features predict p53 status in lower-grade gliomas via a machine-learning approach. NeuroImage Clin. doi: 10.1016/j.nicl.2017.10.030. Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A, Shinohara RT, Berger C, Ha SM, Rozycki M. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge; 2018. arXiv Prepr arXiv181102629 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. pp 1097–1105 Hsieh, Chen, Lo (b0435) 2017; 83 Takahashi, Takahashi, Tanaka, Haga, Nakamoto, Suzuki (b1065) 2019; 105 Kamnitsas, Ledig, Newcombe, Simpson, Kane, Menon (b0530) 2017; 36 Sajjad, Khan, Muhammad, Wu, Ullah, Baik (b0940) 2019; 30 Thaha, Kumar, Murugan, Dhanasekeran, Vijayakarthick, Selvi (b1085) 2019; 43 Kickingereder, Bonekamp, Nowosielski, Kratz, Sill, Burth (b0555) 2016; 281 Ismael, Mohammed, Hefny (b0475) 2020; 102 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (b0845) 2011; 12 Javed, Riaz, Ghafoor, Cheema (b0500) 2013; 53 Kim, Jung, Park, Jo, Park, Nam (b0575) 2020; 30 De Looze, Beausang, Cryan, Loftus, Buckley, Farrell (b0725) 2018; 139 Sampson, McGowan, Tetzlaff, Cogo, Moher (b0950) 2008; 61 Alis, Bagcilar, Senli, Isler, Yergin, Kocer (b0055) 2020 Sengupta, Ramaniharan, Gupta, Agarwal, Singh (b1000) 2019; 50 Costabile, Thompson, Alaswad, Ormond (b0295) 2019; 8 Klein, Engelberts, van der Ploeg, Kasteleijn-Nolst Trenité, Aaronson, Taphoorn (b0585) 2003; 54 Buchlak, Esmaili, Leveque, Bennett, Piccardi, Farrokhi (b0185) 2020 Svolos, Tsolaki, Kapsalaki, Theodorou, Fountas, Fezoulidis (b1055) 2013; 31 Hu, Yoon, Eschbacher, Baxter, Dueck, Nespodzany (b0450) 2019; 40 Havaei, Davy, Warde-Farley, Biard, Courville, Bengio (b0410) 2017; 35 Liu, Chen, Pan, Zhu, Zhang, Zhang (b0700) 2018; 65 Zhou, Chaudhury, Hall, Goldgof, Gillies, Gatenby (b1250) 2017; 46 Eichinger, Alberts, Delbridge, Trebeschi, Valentinitsch, Bette (b0325) 2017 Suh, Choi, Bae, Ahn, Chang, Kang (b1045) 2018; 28 Amin, Sharif, Raza, Saba, Anjum (b0065) 2019; 177 Smith, Brady (b1020) 1997; 23 Alcaide-Leon, Dufort, Geraldo, Alshafai, Maralani, Spears (b0045) 2017; 38 Subashini, Sahoo, Sunil, Easwaran (b1035) 2016; 43 Van Griethuysen, Fedorov, Parmar, Hosny, Aucoin, Narayan (b0385) 2017; 77 Amin, Sharif, Yasmin, Fernandes (b0075) 2017 Grabowski, Recinos, Nowacki, Schroeder, Angelov, Barnett (b0380) 2014; 121 Saouli, Akil, Kachouri (b0970) 2018; 166 Watanabe, Tanaka, Takeda (b1115) 1992; 34 Clark, Vendt, Smith, Freymann, Kirby, Koppel (b0285) 2013; 26 Prastawa, Bullitt, Gerig (b0865) 2009; 13 Zhou, Chang, Bai, Xiao, Su, Bi (b1245) 2019; 142 Bergstra, Breuleux, Bastien, Lamblin, Pascanu, Desjardins (b0140) 2010 Buchlak, Esmaili, Leveque, Farrokhi, Bennett, Piccardi (b0190) 2019; 1–19 Chang, Zhang, Guo, Zong, Rahman, Sanchez (b0230) 2016; 18 Chen, Zhang, Lu, Thung, Aibaidula, Liu (b0245) 2018; 37 Han, Xie, Zang, Zhang, Gu, Zhou (b0405) 2018; 140 Breiman (b0180) 2001; 45 Bird S, Klein E, Loper E. Natural language processing with Python: analyzing text with the natural language toolkit. “ O’Reilly Media, Inc.”; 2009. Citak-Er, Firat, Kovanlikaya, Ture, Ozturk-Isik (b0275) 2018; 99 Qian, Tan, Zhang, Zhao, Chan, Zhou (b0870) 2016; 43 Obermeyer, Emanuel (b0810) 2016; 375 Gaw, Hawkins-Daarud, Hu, Yoon, Wang, Xu (b0360) 2019; 9 Pereira, Pinto, Alves, Silva (b0855) 2016; 35 Upadhaya, Morvan, Stindel, Le Reste, Hatt (b1100) 2015; 36 Stupp, Mason, Van Den Bent, Weller, Fisher, Taphoorn (b1025) 2005; 352 Nioche, Orlhac, Boughdad, Reuzé, Goya-Outi, Robert (b0805) 2018; 78 Park, Han, Ahn, Choi, Chang, Kim (b0840) 2018; 39 Yang, Song, Li (b1190) 2019; 39 Emblem, Due-Tonnessen, Hald, Bjornerud, Pinho, Scheie (b0335) 2014; 40 Liu, Xu, Yin, Zhang, Li, Lu (b0715) 2017; 38 Lau J. Systematic review automation thematic series; 2019. Sanai, Polley, McDermott, Parsa, Berger (b0960) 2011; 115 Farrokhi, Buchlak, Sikora, Esmaili, Marsans, McLeod (b0345) 2019 Gillies, Kinahan, Hricak (b0365) 2016; 278 Peeken, Goldberg, Pyka, Bernhofer, Wiestler, Kessel (b0850) 2019; 8 Créquit, Trinquart, Yavchitz, Ravaud (b0300) 2016; 14 Li, Bai, Chen, Sun, Liu, Zhou (b0655) 2017; 7 Cheng J. Brain tumor dataset; 2017. Kayalibay B, Jensen G, van der Smagt P (2017) CNN-based segmentation of medical imaging data. arXiv Prepr arXiv170103056. Akbari, Macyszyn, Da, Bilello, Wolf, Martinez-Lage (b0030) 2016; 78 Barajas, Hodgson, Chang, Vandenberg, Yeh, Parsa (b0125) 2010; 254 Pan, Liu, Tang, Chen, Chen, Wu (b0825) 2019; 130 AlBadawy, Saha, Mazurowski (b0040) 2018; 45 Zinn, Singh, Kotrotsou, Hassan, Thomas, Luedi (b1260) 2018; 24 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov (b1060) 2015 Kickingereder, Isensee, Tursunova, Petersen, Neuberger, Bonekamp (b0560) 2019; 20 Li, Liu, Qian, Sun, Xu, Wang (b0665) 2018 Arita, Kinoshita, Kawaguchi, Takahashi, Narita, Terakawa (b0095) 2018; 8 Lilley, Lindvall, Lillemoe, Tulsky, Wiener, Cooper (b0695) 2018; 267 Zhao L, Jia K., Multiscale CNNs for brain tumor segmentation and diagnosis. Comput Math Methods Med; 2016. Manning, Surdeanu, Bauer, Finkel, Bethard, McClosky (b0755) 2014 Nazir, Wahid, Ali Khan (b0800) 2015; 28 Inano, Oishi, Kunieda, Arakawa, Yamao, Shibata (b0470) 2014; 5 Řehůřek R., Scalability of Semantic Analysis in Natural Language Processing; 2011. Morton, Berg, Levit, Eden (b0790) 2011 Chang, Bai, Zhou, Su, Bi, Agbodza (b0225) 2018; 24 Hemanth, Anitha, Naaji, Geman, Popescu (b0425) 2018; 7 Akkus, Ali, Sedlář, Agrawal, Parney, Giannini (b0035) 2017; 30 Liu, Zhang, Wu, Yu, Chen, Rekik (b0705) 2019; 13 Chen T, Li M, Li Y, Lin M, Wang N, Wang M, Xiao T, Xu B, Zhang C, Zhang Z (2015) Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems. arXiv Prepr arXiv151201274 Zhang, Chang, Ramkissoon, Tanguturi, Bi, Reardon (b1220) 2017; 19 Yun, Park, Lee, Ham, Kim, Kim (b1205) 2019; 9 Yu, Shi, Lian, Li, Liu, Gao (b1200) 2017; 27 Aaronson, Taphoorn, Heimans, Postma, Gundy, Beute (b0005) 2011; 29 Chang, Grinband, Weinberg, Bardis, Khy, Cadena (b0235) 2018; 39 Sun, Wang, Mok, Shi (b1050) 2019; 7 Fortin, De Rainville, Gardner, Parizeau, Gagné (b0355) 2012; 13 Cha (b0210) 2006; 27 Lao, Chen, Li, Li, Zhang, Liu (b0630) 2017; 7 Amin, Sharif, Yasmin, Saba, Anjum, Fernandes (b0085) 2019; 43 Park, Choi, Ahn, Chang, Kim, Lee (b0830) 2019; 20 Gong, Pauly, Wintermark, Zaharchuk (b0375) 2018; 48 Yang, Rao, Martinez, Veeraraghavan, Rao (b1175) 2015; 42 Team RC., R: A language and environment for statistical computing; 2013. Wolff, Moons, Riley, Whiting, Westwood, Collins (b1130) 2019; 170 Zhang, Yan, Hu, Li, Yang, Han (b1230) 2017; 8 Kim, Cho, Kim, Park, Nam, Kong (b0580) 2018; 60 Jeong, Wang, Ji, Lei, Ali, Liu (b0505) 2019; 9 Seetha, Raja (b0990) 2018; 11 Guo, Yao, Chen, Zhuang, Tang, Ren (b0395) 2012; 154 Quan, Nguyen-Duc, Jeong (b0885) 2018; 37 Liang, Zhang, Liang, Song, Ai, Xia (b0685) 2018; 9 Tang, Liang, Zhong, Huang, Deng, Zhang (b1075) 2020; 30 Olson RS, Urbanowicz RJ, Andrews PC, Lavender NA, Moore JH., Automating biomedical data science through tree-based pipeline optimization. In: European Conference on the Applications of Evolutionary Computation. Springer; 2016. pp 123–137. He, Zhang, Ren, Sun (b0420) 2016 Zacharaki, Morita, Bhatt, O’rourke, Melhem, Davatzikos (b1215) 2012; 33 Amin, Sharif, Yasmin, Fernandes (b0080) 2018; 87 Qiu, Yan, Gundreddy, Wang, Cheng, Liu (b0880) 2017; 25 Sengupta, Agarwal, Gupta, Ahlawat, Patir, Gupta (b0995) 2018; 106 Rathore, Akbari, Rozycki, Abdullah, Nasrallah, Binder (b0910) 2018; 8 Suchorska, Schüller, Biczok, Lenski, Albert, Giese (b1040) 2019; 107 Chatfield K, Simonyan K, Vedaldi A, Zisserman A. Return of the devil in the details: Delving deep into convolutional nets; 2014 arXiv Prepr arXiv14053531 Schwartz, Gao, Geng, Mody, Mikhail, Cho (b0980) 2019; 16 Li, Liang, Sun, Xu, Fan, Li (b0660) 2019; 61 Cho, Lee, Kim, Park (b0260) 2018; 6 Wu, Liu, Wu, Lin, Yang, Wang (b1150) 2018; 9 Jin, McCann, Froustey, Unser (b0515) 2017; 26 Jones E, Oliphant T, Peterson Pedregosa (10.1016/j.jocn.2021.04.043_b0845) 2011; 12 Chollet (10.1016/j.jocn.2021.04.043_b0270) 2018 10.1016/j.jocn.2021.04.043_b1165 Li (10.1016/j.jocn.2021.04.043_b0665) 2018 Liu (10.1016/j.jocn.2021.04.043_b0700) 2018; 65 Sengupta (10.1016/j.jocn.2021.04.043_b0995) 2018; 106 Huang (10.1016/j.jocn.2021.04.043_b0460) 2014; 61 Bischl (10.1016/j.jocn.2021.04.043_b0150) 2016; 17 Smith (10.1016/j.jocn.2021.04.043_b1020) 1997; 23 Yang (10.1016/j.jocn.2021.04.043_b1175) 2015; 42 Xiao (10.1016/j.jocn.2021.04.043_b1160) 2018; 173 Johnson (10.1016/j.jocn.2021.04.043_b0520) 2012; 107 Upadhaya (10.1016/j.jocn.2021.04.043_b1100) 2015; 36 Chang (10.1016/j.jocn.2021.04.043_b0230) 2016; 18 Vamvakas (10.1016/j.jocn.2021.04.043_b1105) 2019; 60 Zhang (10.1016/j.jocn.2021.04.043_b1220) 2017; 19 Aliotta (10.1016/j.jocn.2021.04.043_b0050) 2019; 46 Kim (10.1016/j.jocn.2021.04.043_b0575) 2020; 30 Salçin (10.1016/j.jocn.2021.04.043_b0945) 2019; 13 Alcaide-Leon (10.1016/j.jocn.2021.04.043_b0045) 2017; 38 Yamahara (10.1016/j.jocn.2021.04.043_b1170) 2010; 27 Svolos (10.1016/j.jocn.2021.04.043_b1055) 2013; 31 Quan (10.1016/j.jocn.2021.04.043_b0885) 2018; 37 10.1016/j.jocn.2021.04.043_b0610 Emblem (10.1016/j.jocn.2021.04.043_b0335) 2014; 40 Huang (10.1016/j.jocn.2021.04.043_b0465) 2020; 59 10.1016/j.jocn.2021.04.043_b0890 Sanai (10.1016/j.jocn.2021.04.043_b0960) 2011; 115 Thaha (10.1016/j.jocn.2021.04.043_b1085) 2019; 43 Clark (10.1016/j.jocn.2021.04.043_b0280) 2020; 121 Kickingereder (10.1016/j.jocn.2021.04.043_b0560) 2019; 20 Sun (10.1016/j.jocn.2021.04.043_b1050) 2019; 7 Schomas (10.1016/j.jocn.2021.04.043_b0975) 2009; 11 Suh (10.1016/j.jocn.2021.04.043_b1045) 2018; 28 Jin (10.1016/j.jocn.2021.04.043_b0515) 2017; 26 He (10.1016/j.jocn.2021.04.043_b0420) 2016 Jakola (10.1016/j.jocn.2021.04.043_b0485) 2012; 308 Zhou (10.1016/j.jocn.2021.04.043_b1250) 2017; 46 10.1016/j.jocn.2021.04.043_b0525 Wolff (10.1016/j.jocn.2021.04.043_b1130) 2019; 170 Gong (10.1016/j.jocn.2021.04.043_b0375) 2018; 48 Jia (10.1016/j.jocn.2021.04.043_b0510) 2014 Park (10.1016/j.jocn.2021.04.043_b0840) 2018; 39 Buchlak (10.1016/j.jocn.2021.04.043_b0190) 2019; 1–19 Schwartz (10.1016/j.jocn.2021.04.043_b0980) 2019; 16 Van Griethuysen (10.1016/j.jocn.2021.04.043_b0385) 2017; 77 Emblem (10.1016/j.jocn.2021.04.043_b0340) 2015; 275 Korfiatis (10.1016/j.jocn.2021.04.043_b0600) 2016; 43 Kesler (10.1016/j.jocn.2021.04.043_b0545) 2019; 10 Liao (10.1016/j.jocn.2021.04.043_b0690) 2019; 23 Kim (10.1016/j.jocn.2021.04.043_b0580) 2018; 60 10.1016/j.jocn.2021.04.043_b0635 Bae (10.1016/j.jocn.2021.04.043_b0105) 2018; 289 Chang (10.1016/j.jocn.2021.04.043_b0225) 2018; 24 Prastawa (10.1016/j.jocn.2021.04.043_b0865) 2009; 13 Kickingereder (10.1016/j.jocn.2021.04.043_b0555) 2016; 281 Li (10.1016/j.jocn.2021.04.043_b0675) 2018; 28 Scott (10.1016/j.jocn.2021.04.043_b0985) 2002; 59 Blei (10.1016/j.jocn.2021.04.043_b0160) 2003; 3 Tian (10.1016/j.jocn.2021.04.043_b1090) 2018; 48 Hu (10.1016/j.jocn.2021.04.043_b0440) 2017; 19 Créquit (10.1016/j.jocn.2021.04.043_b0300) 2016; 14 De Looze (10.1016/j.jocn.2021.04.043_b0725) 2018; 139 Costabile (10.1016/j.jocn.2021.04.043_b0295) 2019; 8 Goetz (10.1016/j.jocn.2021.04.043_b0370) 2015; 35 10.1016/j.jocn.2021.04.043_b1080 Tykocki (10.1016/j.jocn.2021.04.043_b1095) 2018; 54 Louis (10.1016/j.jocn.2021.04.043_b0730) 2007; 114 Cocosco (10.1016/j.jocn.2021.04.043_b0290) 1997 Lundervold (10.1016/j.jocn.2021.04.043_b0745) 2019; 29 10.1016/j.jocn.2021.04.043_b0305 Raschka (10.1016/j.jocn.2021.04.043_b0900) 2017 Bauer (10.1016/j.jocn.2021.04.043_b0130) 2013; 23 Alis (10.1016/j.jocn.2021.04.043_b0055) 2020 Zhao (10.1016/j.jocn.2021.04.043_b1240) 2018; 43 Buchlak (10.1016/j.jocn.2021.04.043_b0195) 2017 10.1016/j.jocn.2021.04.043_b0540 Nioche (10.1016/j.jocn.2021.04.043_b0805) 2018; 78 Chang (10.1016/j.jocn.2021.04.043_b0220) 2011; 2 Li (10.1016/j.jocn.2021.04.043_b0655) 2017; 7 Ismael (10.1016/j.jocn.2021.04.043_b0475) 2020; 102 Yu (10.1016/j.jocn.2021.04.043_b1200) 2017; 27 Kocak (10.1016/j.jocn.2021.04.043_b0590) 2020; 30 Jeong (10.1016/j.jocn.2021.04.043_b0505) 2019; 9 Yang (10.1016/j.jocn.2021.04.043_b1180) 2019 Amin (10.1016/j.jocn.2021.04.043_b0080) 2018; 87 Watanabe (10.1016/j.jocn.2021.04.043_b1115) 1992; 34 Moher (10.1016/j.jocn.2021.04.043_b0775) 2009; 151 Akkus (10.1016/j.jocn.2021.04.043_b0035) 2017; 30 Wong (10.1016/j.jocn.2021.04.043_b1135) 2018; 49 Klein (10.1016/j.jocn.2021.04.043_b0585) 2003; 54 Clark (10.1016/j.jocn.2021.04.043_b0285) 2013; 26 Tang (10.1016/j.jocn.2021.04.043_b1075) 2020; 30 Liu (10.1016/j.jocn.2021.04.043_b0720) 2019; 26 Park (10.1016/j.jocn.2021.04.043_b0830) 2019; 20 Szegedy (10.1016/j.jocn.2021.04.043_b1060) 2015 Takahashi (10.1016/j.jocn.2021.04.043_b1065) 2019; 105 Wyles (10.1016/j.jocn.2021.04.043_b1155) 2019; 101 Zacharaki (10.1016/j.jocn.2021.04.043_b1210) 2011; 6 Zacharaki (10.1016/j.jocn.2021.04.043_b1215) 2012; 33 Bangalore Yogananda (10.1016/j.jocn.2021.04.043_b0115) 2020; 22 Li (10.1016/j.jocn.2021.04.043_b0670) 2018; 28 Amin (10.1016/j.jocn.2021.04.043_b0065) 2019; 177 Manning (10.1016/j.jocn.2021.04.043_b0755) 2014 Peeken (10.1016/j.jocn.2021.04.043_b0850) 2019; 8 Sanai (10.1016/j.jocn.2021.04.043_b0955) 2008; 62 Lee (10.1016/j.jocn.2021.04.043_b0650) 2020; 30 Dong (10.1016/j.jocn.2021.04.043_b0320) 2018; 41 Moons (10.1016/j.jocn.2021.04.043_b0785) 2019; 170 Sajjad (10.1016/j.jocn.2021.04.043_b0940) 2019; 30 Zöllner (10.1016/j.jocn.2021.04.043_b1265) 2010; 64 Akbari (10.1016/j.jocn.2021.04.043_b0025) 2018; 20 Venneti (10.1016/j.jocn.2021.04.043_b1110) 2015; 22 Achanta (10.1016/j.jocn.2021.04.043_b0015) 2012; 34 Qian (10.1016/j.jocn.2021.04.043_b0875) 2019; 451 Fellah (10.1016/j.jocn.2021.04.043_b0350) 2013; 34 Stupp (10.1016/j.jocn.2021.04.043_b1025) 2005; 352 Aaronson (10.1016/j.jocn.2021.04.043_b0005) 2011; 29 10.1016/j.jocn.2021.04.043_b0315 Liu (10.1016/j.jocn.2021.04.043_b0705) 2019; 13 10.1016/j.jocn.2021.04.043_b0110 Gupta (10.1016/j.jocn.2021.04.043_b0400) 2017; 59 Chen (10.1016/j.jocn.2021.04.043_b0245) 2018; 37 Hu (10.1016/j.jocn.2021.04.043_b0455) 2011; 33 Akbari (10.1016/j.jocn.2021.04.043_b0030) 2016; 78 Subashini (10.1016/j.jocn.2021.04.043_b1035) 2016; 43 Obermeyer (10.1016/j.jocn.2021.04.043_b0810) 2016; 375 Javed (10.1016/j.jocn.2021.04.043_b0500) 2013; 53 Korfiatis (10.1016/j.jocn.2021.04.043_b0605) 2017; 30 Inano (10.1016/j.jocn.2021.04.043_b0470) 2014; 5 Ma (10.1016/j.jocn.2021.04.043_b0750) 2018; 37 Morton (10.1016/j.jocn.2021.04.043_b0790) 2011 Pereira (10.1016/j.jocn.2021.04.043_b0855) 2016; 35 Avorn (10.1016/j.jocn.2021.04.043_b0100) 2010; 29 Liu (10.1016/j.jocn.2021.04.043_b0715) 2017; 38 Qian (10.1016/j.jocn.2021.04.043_b0870) 2016; 43 Amin (10.1016/j.jocn.2021.04.043_b0070) 2018 Jang (10.1016/j.jocn.2021.04.043_b0495) 2018; 8 Mohsen (10.1016/j.jocn.2021.04.043_b0780) 2018; 3 Su (10.1016/j.jocn.2021.04.043_b1030) 2020; 22 Wu (10.1016/j.jocn.2021.04.043_b1150) 2018; 9 Shusharina (10.1016/j.jocn.2021.04.043_b1010) 2020; 146 Yun (10.1016/j.jocn.2021.04.043_b1205) 2019; 9 Shofty (10.1016/j.jocn.2021.04.043_b1005) 2018; 13 Bisdas (10.1016/j.jocn.2021.04.043_b0155) 2018; 8 Park (10.1016/j.jocn.2021.04.043_b0835) 2018; 39 AlBadawy (10.1016/j.jocn.2021.04.043_b0040) 2018; 45 Bannach-Brown (10.1016/j.jocn.2021.04.043_b0120) 2018 Perkuhn (10.1016/j.jocn.2021.04.043_b0860) 2018; 53 Weller (10.1016/j.jocn.2021.04.043_b1120) 2017; 18 10.1016/j.jocn.2021.04.043_b0255 Lao (10.1016/j.jocn.2021.04.043_b0630) 2017; 7 10.1016/j.jocn.2021.04.043_b0010 Liang (10.1016/j.jocn.2021.04.043_b0685) 2018; 9 10.1016/j.jocn.2021.04.043_b0250 Lilley (10.1016/j.jocn.2021.04.043_b0695) 2018; 267 Ren (10.1016/j.jocn.2021.04.043_b0925) 2019; 49 Cha (10.1016/j.jocn.2021.04.043_b0210) 2006; 27 Buchlak (10.1016/j.jocn.2021.04.043_b0200) 2016; 9 Li (10.1016/j.jocn.2021.04.043_b0680) 2017; 7 Choi (10.1016/j.jocn.2021.04.043_b0265) 2020 Bergstra (10.1016/j.jocn.2021.04.043_b0140) 2010 Nazir (10.1016/j.jocn.2021.04.043_b0800) 2015; 28 Lee (10.1016/j.jocn.2021.04.043_b0645) 2019; 125 Cai (10.1016/j.jocn.2021.04.043_b0205) 2016; 36 10.1016/j.jocn.2021.04.043_b0920 Han (10.1016/j.jocn.2021.04.043_b0405) 2018; 140 Aerts (10.1016/j.jocn.2021.04.043_b0020) 2014; 5 Rathore (10.1016/j.jocn.2021.04.043_b0905) 2018; 5 10.1016/j.jocn.2021.04.043_b0240 Wiestler (10.1016/j.jocn.2021.04.043_b1125) 2016; 6 Kanas (10.1016/j.jocn.2021.04.043_b0535) 2017; 140 Gillies (10.1016/j.jocn.2021.04.043_b0365) 2016; 278 Menze (10.1016/j.jocn.2021.04.043_b0760) 2014; 34 Grabowski (10.1016/j.jocn.2021.04.043_b0380) 2014; 121 LeCun (10.1016/j.jocn.2021.04.043_b0640) 2015; 521 10.1016/j.jocn.2021.04.043_b0915 Havaei (10.1016/j.jocn.2021.04.043_b0410) 2017; 35 Lu (10.1016/j.jocn.2021.04.043_b0740) 2018; 24 Bauer (10.1016/j.jocn.2021.04.043_b0135) 2013; 58 Hu (10.1016/j.jocn.2021.04.043_b0445) 2015; 10 Zinn (10.1016/j.jocn.2021.04.043_b1260) 2018; 24 Breiman (10.1016/j.jocn.2021.04.043_b0180) 2001; 45 Arita (10.1016/j.jocn.2021.04.043_b0095) 2018; 8 Zhang (10.1016/j.jocn.2021.04.043_b1230) 2017; 8 El-Dahshan (10.1016/j.jocn.2021.04.043_b0330) 2010; 20 Brandsma (10.1016/j.jocn.2021.04.043_b0175) 2008; 9 Barajas (10.1016/j.jocn.2021.04.043_b0125) 2010; 254 Bramer (10.1016/j.jocn.2021.04.043_b0170) 2017; 6 Zhuge (10.1016/j.jocn.2021.04.043_b1255) 2017; 44 Guo (10.1016/j.jocn.2021.04.043_b0395) 2012; 154 Yang (10.1016/j.jocn.2021.04.043_b1195) 2018; 12 10.1016/j.jocn.2021.04.043_b1235 10.1016/j.jocn.2021.04.043_b0145 Kunimatsu (10.1016/j.jocn.2021.04.043_b0620) 2019; 18 Am (10.1016/j.jocn.2021.04.043_b0625) 2019; 43 Zhou (10.1016/j.jocn.2021.04.043_b1245) 2019; 142 Hsieh (10.1016/j.jocn.2021.04.043_b0435) 2017; 83 Wu (10.1016/j.jocn.2021.04.043_b1140) 2019; 145 Citak-Er (10.1016/j.jocn.2021.04.043_b0275) 2018; 99 Ostrom (10.1016/j.jocn.2021.04.043_b0820) 2015; 17:iv1–iv62 Hoseini (10.1016/j.jocn.2021.04.043_b0430) 2019; 32 Alis (10.1016/j.jocn.2021.04.043_b0060) 2020; 38 Bonte (10.1016/j.jocn.2021.04.043_b0165) 2018; 98 Farrokhi (10.1016/j.jocn.2021.04.043_b0345) 2019 Richards (10.1016/j.jocn.2021.04.043_b0930) 2008; 9 Suchorska (10.1016/j.jocn.2021.04.043_b1040) 2019; 107 Kim (10.1016/j.jocn.2021.04.043_b0570) 2018; 45 10.1016/j.jocn.2021.04.043_b0815 Chaddad (10.101 |
| References_xml | – volume: 254 start-page: 564 year: 2010 end-page: 576 ident: b0125 article-title: Glioblastoma multiforme regional genetic and cellular expression patterns: influence on anatomic and physiologic MR imaging publication-title: Radiology – year: 2019 ident: b0345 article-title: Investigating risk factors and predicting complications in deep brain stimulation surgery with machine learning algorithms publication-title: World Neurosurg. – volume: 5 start-page: 21219 year: 2018 ident: b0905 article-title: Radiomic signature of infiltration in peritumoral edema predicts subsequent recurrence in glioblastoma: implications for personalized radiotherapy planning publication-title: J Med Imaging – reference: Simonyan K, Zisserman A Very deep convolutional networks for large-scale image recognition; 2014. arXiv Prepr arXiv14091556 – volume: 130 start-page: 172 year: 2019 end-page: 179 ident: b0825 article-title: A machine learning-based prediction model of H3K27M mutations in brainstem gliomas using conventional MRI and clinical features publication-title: Radiother Oncol – volume: 54 start-page: 7 year: 2018 end-page: 13 ident: b1095 article-title: Ten-year survival in glioblastoma. A systematic review publication-title: J Clin Neurosci – volume: 27 start-page: 3509 year: 2017 end-page: 3522 ident: b1200 article-title: Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma publication-title: Eur Radiol – volume: 8 start-page: 1 year: 2018 end-page: 10 ident: b0095 article-title: Lesion location implemented magnetic resonance imaging radiomics for predicting IDH and TERT promoter mutations in grade II/III gliomas publication-title: Sci Rep – volume: 19 start-page: 128 year: 2017 end-page: 137 ident: b0440 article-title: Radiogenomics to characterize regional genetic heterogeneity in glioblastoma publication-title: Neuro Oncol – volume: 9 start-page: 382 year: 2018 ident: b0685 article-title: Multimodal 3D DenseNet for IDH genotype prediction in gliomas publication-title: Genes (Basel) – reference: Lau J. Systematic review automation thematic series; 2019. – volume: 34 start-page: 2274 year: 2012 end-page: 2282 ident: b0015 article-title: SLIC superpixels compared to state-of-the-art superpixel methods publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 43 start-page: 294 year: 2019 ident: b1085 article-title: Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images publication-title: J Med Syst – volume: 177 start-page: 69 year: 2019 end-page: 79 ident: b0065 article-title: Brain tumor detection using statistical and machine learning method publication-title: Comput Methods Programs Biomed – volume: 521 start-page: 436 year: 2015 ident: b0640 article-title: Deep learning publication-title: Nature – volume: 26 start-page: 4509 year: 2017 end-page: 4522 ident: b0515 article-title: Deep convolutional neural network for inverse problems in imaging publication-title: IEEE Trans Image Process – start-page: 1 year: 2015 end-page: 9 ident: b1060 article-title: Going deeper with convolutions publication-title: In: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 48 start-page: 1518 year: 2018 end-page: 1528 ident: b1090 article-title: Radiomics strategy for glioma grading using texture features from multiparametric MRI publication-title: J Magn Reson Imaging – volume: 45 start-page: 1150 year: 2018 end-page: 1158 ident: b0040 article-title: Deep learning for segmentation of brain tumors: Impact of cross-institutional training and testing publication-title: Med Phys – volume: 27 start-page: 709 year: 2018 end-page: 714 ident: b0965 article-title: Overall survival prediction in glioblastoma multiforme patients from volumetric, shape and texture features using machine learning publication-title: Surg Oncol – start-page: 125 year: 2016 end-page: 148 ident: b0415 article-title: Deep learning trends for focal brain pathology segmentation in MRI publication-title: Machine learning for health informatics – volume: 105 start-page: 784 year: 2019 end-page: 791 ident: b1065 article-title: Radiomics Analysis for Glioma Malignancy Evaluation Using Diffusion Kurtosis and Tensor Imaging publication-title: Int J Radiat Oncol Biol Phys – volume: 43 start-page: 98 year: 2018 end-page: 111 ident: b1240 article-title: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation publication-title: Med Image Anal – reference: Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. pp 1097–1105 – volume: 27 start-page: 81 year: 2010 end-page: 87 ident: b1170 article-title: Morphological and flow cytometric analysis of cell infiltration in glioblastoma: a comparison of autopsy brain and neuroimaging publication-title: Brain Tumor Pathol – reference: Jones E, Oliphant T, Peterson P (2014) {SciPy}: Open source scientific tools for {Python}. – volume: 14 start-page: 2349 year: 2013 end-page: 2353 ident: b0310 article-title: Orange: data mining toolbox in Python publication-title: J Mach Learn Res – volume: 48 start-page: 916 year: 2018 end-page: 926 ident: b1225 article-title: Radiomics strategy for molecular subtype stratification of lower-grade glioma: detecting IDH and TP53 mutations based on multimodal MRI publication-title: J Magn Reson Imaging – volume: 16 year: 2019 ident: b0765 article-title: The significant cost of systematic reviews and meta-analyses: A call for greater involvement of machine learning to assess the promise of clinical trials publication-title: Contemp Clin trials Commun – volume: 36 start-page: 345 year: 2015 end-page: 350 ident: b1100 article-title: A framework for multimodal imaging-based prognostic model building: preliminary study on multimodal MRI in glioblastoma multiforme publication-title: IRBM – volume: 24 start-page: 6288 year: 2018 end-page: 6299 ident: b1260 article-title: A coclinical radiogenomic validation study: conserved magnetic resonance radiomic appearance of periostin-expressing glioblastoma in patients and xenograft models publication-title: Clin cancer Res – volume: 33 start-page: 296 year: 2011 end-page: 305 ident: b0455 article-title: Support vector machine multiparametric MRI identification of pseudoprogression from tumor recurrence in patients with resected glioblastoma publication-title: J Magn Reson Imaging – volume: 102 year: 2020 ident: b0475 article-title: An enhanced deep learning approach for brain cancer MRI images classification using residual networks publication-title: Artif Intell Med – volume: 121 start-page: 1115 year: 2014 end-page: 1123 ident: b0380 article-title: Residual tumor volume versus extent of resection: predictors of survival after surgery for glioblastoma publication-title: J Neurosurg – volume: 24 start-page: 1073 year: 2018 end-page: 1081 ident: b0225 article-title: Residual convolutional neural network for the determination of IDH status in low-and high-grade gliomas from MR imaging publication-title: Clin Cancer Res – volume: 9 start-page: 1201 year: 2019 ident: b0505 article-title: Machine-learning based classification of glioblastoma using delta-radiomic features derived from dynamic susceptibility contrast enhanced magnetic resonance images: Introduction publication-title: Quant Imaging Med Surg – volume: 59 year: 2020 ident: b0465 article-title: Application of innovative image processing methods and AdaBound-SE-DenseNet to optimize the diagnosis performance of meningiomas and gliomas publication-title: Biomed Signal Process Control – volume: 20 start-page: 1381 year: 2019 end-page: 1389 ident: b0830 article-title: Radiomics MRI phenotyping with machine learning to predict the grade of lower-grade gliomas: a study focused on nonenhancing tumors publication-title: Korean J Radiol – volume: 14 start-page: 8 year: 2016 ident: b0300 article-title: Wasted research when systematic reviews fail to provide a complete and up-to-date evidence synthesis: the example of lung cancer publication-title: BMC Med – volume: 38 start-page: 135 year: 2020 end-page: 143 ident: b0060 article-title: Machine learning-based quantitative texture analysis of conventional MRI combined with ADC maps for assessment of IDH1 mutation in high-grade gliomas publication-title: Jpn J Radiol – volume: 36 start-page: 61 year: 2017 end-page: 78 ident: b0530 article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Med Image Anal – volume: 352 start-page: 987 year: 2005 end-page: 996 ident: b1025 article-title: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma publication-title: N Engl J Med – volume: 3 start-page: 68 year: 2018 end-page: 71 ident: b0780 article-title: Classification using deep learning neural networks for brain tumors publication-title: Futur Comput Informatics J – volume: 40 start-page: 47 year: 2014 end-page: 54 ident: b0335 article-title: Machine learning in preoperative glioma MRI: Survival associations by perfusion-based support vector machine outperforms traditional MRI publication-title: J Magn Reson imaging – volume: 166 start-page: 39 year: 2018 end-page: 49 ident: b0970 article-title: Fully automatic brain tumor segmentation using end-to-end incremental deep neural networks in MRI images publication-title: Comput Methods Programs Biomed – start-page: 1 year: 2018 end-page: 17 ident: b0070 article-title: Detection of brain tumor based on features fusion and machine learning publication-title: J Ambient Intell Humaniz Comput – volume: 49 start-page: 808 year: 2019 end-page: 817 ident: b0925 article-title: Noninvasive prediction of IDH1 mutation and ATRX expression loss in low-grade gliomas using multiparametric MR radiomic features publication-title: J Magn Reson Imaging – volume: 10 start-page: 6484 year: 2019 ident: b0545 article-title: Pre-surgical connectome features predict IDH status in diffuse gliomas publication-title: Oncotarget – volume: 139 start-page: 491 year: 2018 end-page: 499 ident: b0725 article-title: Machine learning: a useful radiological adjunct in determination of a newly diagnosed glioma’s grade and IDH status publication-title: J Neurooncol – volume: 87 start-page: 290 year: 2018 end-page: 297 ident: b0080 article-title: Big data analysis for brain tumor detection: Deep convolutional neural networks publication-title: Futur Gener Comput Syst – volume: 62 start-page: 753 year: 2008 end-page: 766 ident: b0955 article-title: Glioma extent of resection and its impact on patient outcome publication-title: Neurosurgery – volume: 11 start-page: 1457 year: 2018 ident: b0990 article-title: Brain tumor classification using convolutional neural networks publication-title: Biomed Pharmacol J – volume: 24 start-page: 4429 year: 2018 end-page: 4436 ident: b0740 article-title: Machine learning–based radiomics for molecular subtyping of gliomas publication-title: Clin Cancer Res – volume: 164 start-page: 114 year: 2018 end-page: 120 ident: b0490 article-title: Quantitative texture analysis in the prediction of IDH status in low-grade gliomas publication-title: Clin Neurol Neurosurg – reference: Chatfield K, Simonyan K, Vedaldi A, Zisserman A. Return of the devil in the details: Delving deep into convolutional nets; 2014 arXiv Prepr arXiv14053531 – volume: 121 start-page: 81 year: 2020 end-page: 90 ident: b0280 article-title: A full systematic review was completed in 2 weeks using automation tools: a case study publication-title: J Clin Epidemiol – volume: 122 start-page: e812 year: 2019 end-page: e820 ident: b0565 article-title: Apparent Diffusion Coefficient as a Predictive Biomarker for Survival in Patients with Treatment-Naive Glioblastoma Using Quantitative Multiparametric Magnetic Resonance Profiling publication-title: World Neurosurg – volume: 48 start-page: 330 year: 2018 end-page: 340 ident: b0375 article-title: Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI publication-title: J Magn Reson Imaging – volume: 59 start-page: 947 year: 2002 end-page: 949 ident: b0985 article-title: How often are nonenhancing supratentorial gliomas malignant? A population study publication-title: Neurology – volume: 61 start-page: 2633 year: 2014 end-page: 2645 ident: b0460 article-title: Brain tumor segmentation based on local independent projection-based classification publication-title: IEEE Trans Biomed Eng – volume: 9 start-page: 1 year: 2019 end-page: 9 ident: b0360 article-title: Integration of machine learning and mechanistic models accurately predicts variation in cell density of glioblastoma using multiparametric MRI publication-title: Sci Rep – volume: 76 start-page: 572 year: 2011 end-page: 579 ident: b0390 article-title: The risk of getting worse: surgically acquired deficits, perioperative complications, and functional outcomes after primary resection of glioblastoma publication-title: World Neurosurg – year: 2011 ident: b0790 article-title: Finding what works in health care: standards for systematic reviews – volume: 7 start-page: 4275 year: 2018 end-page: 4283 ident: b0425 article-title: A modified deep convolutional neural network for abnormal brain image classification publication-title: IEEE Access – start-page: 675 year: 2014 end-page: 678 ident: b0510 article-title: Caffe: Convolutional architecture for fast feature embedding publication-title: In: Proceedings of the 22nd ACM international conference on Multimedia – volume: 151 start-page: 264 year: 2009 end-page: 269 ident: b0775 article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement publication-title: Ann Intern Med – volume: 289 start-page: 797 year: 2018 end-page: 806 ident: b0105 article-title: Radiomic MRI phenotyping of glioblastoma: improving survival prediction publication-title: Radiology – volume: 32 start-page: 105 year: 2019 end-page: 115 ident: b0430 article-title: AdaptAhead optimization algorithm for learning deep CNN applied to MRI segmentation publication-title: J Digit Imaging – volume: 30 start-page: 622 year: 2017 end-page: 628 ident: b0605 article-title: Residual deep convolutional neural network predicts MGMT methylation status publication-title: J Digit Imaging – volume: 22 start-page: 402 year: 2020 end-page: 411 ident: b0115 article-title: A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas publication-title: Neuro Oncol – volume: 36 start-page: 176 year: 2016 end-page: 191 ident: b0205 article-title: Natural language processing technologies in radiology research and clinical applications publication-title: Radiographics – volume: 8 start-page: 47816 year: 2017 ident: b1230 article-title: Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features publication-title: Oncotarget – volume: 44 start-page: 5234 year: 2017 end-page: 5243 ident: b1255 article-title: Brain tumor segmentation using holistically nested neural networks in MRI images publication-title: Med Phys – year: 2017 ident: b0325 article-title: Diffusion tensor image features predict IDH genotype in newly diagnosed WHO grade II/III gliomas publication-title: Sci Rep – volume: 10 year: 2015 ident: b0445 article-title: Multi-parametric MRI and texture analysis to visualize spatial histologic heterogeneity and tumor extent in glioblastoma publication-title: PLoS ONE – volume: 60 start-page: 1297 year: 2018 end-page: 1305 ident: b0580 article-title: Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI publication-title: Neuroradiology – volume: 5 start-page: 396 year: 2014 end-page: 407 ident: b0470 article-title: Voxel-based clustered imaging by multiparameter diffusion tensor images for glioma grading publication-title: NeuroImage Clin – volume: 275 start-page: 228 year: 2015 end-page: 234 ident: b0340 article-title: A generic support vector machine model for preoperative glioma survival associations publication-title: Radiology – year: 2017 ident: b0900 article-title: Python machine learning – volume: 8 start-page: 1 year: 2018 end-page: 9 ident: b0495 article-title: Prediction of pseudoprogression versus progression using machine learning algorithm in glioblastoma publication-title: Sci Rep – volume: 13 start-page: 563 year: 2018 end-page: 571 ident: b1005 article-title: MRI radiomics analysis of molecular alterations in low-grade gliomas publication-title: Int J Comput Assist Radiol Surg – volume: 77 start-page: e104 year: 2017 end-page: e107 ident: b0385 article-title: Computational radiomics system to decode the radiographic phenotype publication-title: Cancer Res – volume: 23 start-page: 45 year: 1997 end-page: 78 ident: b1020 article-title: SUSAN—a new approach to low level image processing publication-title: Int J Comput Vis – volume: 18 start-page: 1680 year: 2016 end-page: 1687 ident: b0230 article-title: Multimodal imaging patterns predict survival in recurrent glioblastoma patients treated with bevacizumab publication-title: Neuro Oncol – reference: Ronneberger O, Fischer P, Brox T., U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention; 2015, Springer, pp 234–241. – volume: 25 start-page: 751 year: 2017 end-page: 763 ident: b0880 article-title: A new approach to develop computer-aided diagnosis scheme of breast mass classification using deep learning technology publication-title: J Xray Sci Technol – year: 2018 ident: b0270 article-title: Keras: The python deep learning library publication-title: Astrophys Source Code Libr. – volume: 30 start-page: 877 year: 2020 end-page: 886 ident: b0590 article-title: Radiogenomics of lower-grade gliomas: machine learning–based MRI texture analysis for predicting 1p/19q codeletion status publication-title: Eur Radiol – volume: 6 start-page: 245 year: 2017 ident: b0170 article-title: Optimal database combinations for literature searches in systematic reviews: a prospective exploratory study publication-title: Syst Rev – volume: 39 start-page: 693 year: 2018 end-page: 698 ident: b0840 article-title: Whole-tumor histogram and texture analyses of DTI for evaluation of IDH1-mutation and 1p/19q-codeletion status in World Health Organization grade II gliomas publication-title: Am J Neuroradiol – reference: Řehůřek R., Scalability of Semantic Analysis in Natural Language Processing; 2011. – volume: 28 start-page: 1 year: 2008 end-page: 26 ident: b0615 article-title: Building predictive models in R using the caret package publication-title: J Stat Softw – volume: 41 start-page: 453 year: 2016 end-page: 465 ident: b0595 article-title: Delineation and diagnosis of brain tumors from post contrast T1-weighted MR images using rough granular computing and random forest publication-title: Appl Soft Comput – volume: 20 start-page: 433 year: 2010 end-page: 441 ident: b0330 article-title: Hybrid intelligent techniques for MRI brain images classification publication-title: Digit Signal Process – volume: 64 start-page: 1230 year: 2010 end-page: 1236 ident: b1265 article-title: Support vector machines in DSC-based glioma imaging: Suggestions for optimal characterization publication-title: Magn Reson Med – reference: Wu Y-P, Lin Y-S, Wu W-G, Yang C, Gu J-Q, Bai Y, Wang M-Y (2017) Semiautomatic segmentation of glioma on mobile devices. J Healthc Eng; 2017. – volume: 30 start-page: 469 year: 2017 end-page: 476 ident: b0035 article-title: Predicting deletion of chromosomal arms 1p/19q in low-grade gliomas from MR images using machine intelligence publication-title: J Digit Imaging – start-page: 89 year: 2019 end-page: 109 ident: b1180 article-title: Deep learning and its applications to natural language processing publication-title: Deep learning: Fundamentals, theory and applications – volume: 20 start-page: 728 year: 2019 end-page: 740 ident: b0560 article-title: Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study publication-title: Lancet Oncol – start-page: 1 year: 2020 end-page: 9 ident: b0265 article-title: Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction publication-title: Eur Radiol – volume: 35 start-page: 184 year: 2015 end-page: 196 ident: b0370 article-title: DALSA: domain adaptation for supervised learning from sparsely annotated MR images publication-title: IEEE Trans Med Imaging – volume: 267 start-page: 823 year: 2018 end-page: 825 ident: b0695 article-title: Measuring processes of care in palliative surgery: a novel approach using natural language processing publication-title: Ann Surg – reference: Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A, Shinohara RT, Berger C, Ha SM, Rozycki M. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge; 2018. arXiv Prepr arXiv181102629 – volume: 45 start-page: 3120 year: 2018 end-page: 3131 ident: b0570 article-title: Improving resolution of MR images with an adversarial network incorporating images with different contrast publication-title: Med Phys – start-page: 55 year: 2014 end-page: 60 ident: b0755 article-title: The Stanford CoreNLP natural language processing toolkit publication-title: In: Proceedings of 52nd annual meeting of the association for computational linguistics: system demonstrations – volume: 2 start-page: 1 year: 2011 end-page: 27 ident: b0220 article-title: LIBSVM: A library for support vector machines publication-title: ACM Trans Intell Syst Technol – year: 2018 ident: b0665 article-title: Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature publication-title: Eur Radiol – reference: Olson RS, Urbanowicz RJ, Andrews PC, Lavender NA, Moore JH., Automating biomedical data science through tree-based pipeline optimization. In: European Conference on the Applications of Evolutionary Computation. Springer; 2016. pp 123–137. – volume: 7 start-page: 1 year: 2017 end-page: 11 ident: b0680 article-title: Deep Learning based Radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma publication-title: Sci Rep – volume: 56 start-page: 2287 year: 2018 end-page: 2300 ident: b0215 article-title: Prediction of survival with multi-scale radiomic analysis in glioblastoma patients publication-title: Med Biol Eng Comput – volume: 83 start-page: 102 year: 2017 end-page: 108 ident: b0435 article-title: Quantitative glioma grading using transformed gray-scale invariant textures of MRI publication-title: Comput Biol Med – volume: 107 start-page: 359 year: 2012 end-page: 364 ident: b0520 article-title: Glioblastoma survival in the United States before and during the temozolomide era publication-title: J Neurooncol – volume: 13 start-page: 1333 year: 2019 end-page: 1351 ident: b0705 article-title: Overall survival time prediction for high-grade glioma patients based on large-scale brain functional networks publication-title: Brain Imaging Behav – volume: 6 start-page: 34002 year: 2019 ident: b0770 article-title: Deep learning with mixed supervision for brain tumor segmentation publication-title: J Med Imaging – volume: 13 start-page: 2171 year: 2012 end-page: 2175 ident: b0355 article-title: DEAP: Evolutionary algorithms made easy publication-title: J Mach Learn Res – volume: 140 start-page: 297 year: 2018 end-page: 306 ident: b0405 article-title: Non-invasive genotype prediction of chromosome 1p/19q co-deletion by development and validation of an MRI-based radiomics signature in lower-grade gliomas publication-title: J Neurooncol – volume: 9 start-page: 85 year: 2008 ident: b0930 article-title: Handsearching still a valuable element of the systematic review publication-title: Evid Based Dent – volume: 5 start-page: 1 year: 2014 end-page: 9 ident: b0020 article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach publication-title: Nat Commun – volume: 1–19 year: 2019 ident: b0190 article-title: Machine learning applications to clinical decision support in neurosurgery: an artificial intelligence augmented systematic review publication-title: Neurosurg Rev – volume: 101 start-page: 1931 year: 2019 end-page: 1938 ident: b1155 article-title: Use of natural language processing algorithms to identify common data elements in operative notes for total hip arthroplasty publication-title: JBJS – volume: 154 start-page: 1361 year: 2012 end-page: 1370 ident: b0395 article-title: The relationship between Cho/NAA and glioma metabolism: implementation for margin delineation of cerebral gliomas publication-title: Acta Neurochir (Wien) – volume: 26 start-page: 1062 year: 2019 end-page: 1070 ident: b0720 article-title: Conventional MR-based preoperative nomograms for prediction of IDH/1p19q subtype in low-grade glioma publication-title: Acad Radiol – volume: 35 start-page: 18 year: 2017 end-page: 31 ident: b0410 article-title: Brain tumor segmentation with deep neural networks publication-title: Med Image Anal – volume: 65 start-page: 1943 year: 2018 end-page: 1952 ident: b0700 article-title: A cascaded deep convolutional neural network for joint segmentation and genotype prediction of brainstem gliomas publication-title: IEEE Trans Biomed Eng – volume: 23 start-page: 59 year: 2013 end-page: 63 ident: b0130 article-title: Integrated segmentation of brain tumor images for radiotherapy and neurosurgery publication-title: Int J Imaging Syst Technol – reference: Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M (2016) Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv Prepr arXiv160304467. – volume: 6 start-page: 648 year: 2009 ident: b1185 article-title: New advances that enable identification of glioblastoma recurrence publication-title: Nat Rev Clin Oncol – volume: 22 start-page: 94 year: 2015 ident: b1110 article-title: The evolving molecular genetics of low-grade glioma publication-title: Adv Anat Pathol – volume: 27 start-page: 475 year: 2006 end-page: 487 ident: b0210 article-title: Update on brain tumor imaging: from anatomy to physiology publication-title: Am J Neuroradiol – volume: 7 start-page: 1 year: 2017 end-page: 9 ident: b0655 article-title: A fully-automatic multiparametric radiomics model: towards reproducible and prognostic imaging signature for prediction of overall survival in glioblastoma multiforme publication-title: Sci Rep – volume: 131 start-page: 803 year: 2016 end-page: 820 ident: b0735 article-title: The 2016 World Health Organization classification of tumors of the central nervous system: a summary publication-title: Acta Neuropathol – volume: 38 start-page: 1145 year: 2017 end-page: 1150 ident: b0045 article-title: Differentiation of enhancing glioma and primary central nervous system lymphoma by texture-based machine learning publication-title: Am J Neuroradiol – volume: 30 start-page: 844 year: 2020 end-page: 854 ident: b0650 article-title: Advanced imaging parameters improve the prediction of diffuse lower-grade gliomas subtype, IDH mutant with no 1p19q codeletion: added value to the T2/FLAIR mismatch sign publication-title: Eur Radiol – volume: 451 start-page: 128 year: 2019 end-page: 135 ident: b0875 article-title: Differentiation of glioblastoma from solitary brain metastases using radiomic machine-learning classifiers publication-title: Cancer Lett – volume: 28 start-page: 3640 year: 2018 end-page: 3650 ident: b0675 article-title: Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: a multicentre study publication-title: Eur Radiol – reference: Bird S, Klein E, Loper E. Natural language processing with Python: analyzing text with the natural language toolkit. “ O’Reilly Media, Inc.”; 2009. – volume: 37 start-page: 1488 year: 2018 end-page: 1497 ident: b0885 article-title: Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss publication-title: IEEE Trans Med Imaging – volume: 8 start-page: 1 year: 2018 end-page: 12 ident: b0910 article-title: Radiomic MRI signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond IDH1 publication-title: Sci Rep – reference: Yiming Li,Zenghui Qian,Kaibin Xu,Kai Wang,Xing Fan,Shaowu Li,Tao Jiang,Xing Liu,Yinyan Wang (2018) MRI features predict p53 status in lower-grade gliomas via a machine-learning approach. NeuroImage Clin. doi: 10.1016/j.nicl.2017.10.030. – volume: 43 start-page: 2835 year: 2016 end-page: 2844 ident: b0600 article-title: MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas publication-title: Med Phys – volume: 46 start-page: 1581 year: 2019 end-page: 1591 ident: b0050 article-title: Highly accelerated, model-free diffusion tensor MRI reconstruction using neural networks publication-title: Med Phys – volume: 53 start-page: 73 year: 2013 end-page: 88 ident: b0500 article-title: MRI brain classification using texture features, fuzzy weighting and support vector machine publication-title: Prog Electromagn Res – volume: 7 start-page: 1 year: 2017 end-page: 8 ident: b0630 article-title: A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme publication-title: Sci Rep – volume: 16 start-page: 643 year: 2019 ident: b0980 article-title: Applications of machine learning using electronic medical records in spine surgery publication-title: Neurospine – volume: 38 start-page: 1695 year: 2017 end-page: 1701 ident: b0715 article-title: Relationship between glioblastoma heterogeneity and survival time: an MR imaging texture analysis publication-title: Am J Neuroradiol – volume: 37 start-page: 1775 year: 2018 end-page: 1787 ident: b0245 article-title: Multi-label nonlinear matrix completion with transductive multi-task feature selection for joint MGMT and IDH1 status prediction of patient with high-grade gliomas publication-title: IEEE Trans Med Imaging – year: 2017 ident: b0075 article-title: A distinctive approach in brain tumor detection and classification using MRI publication-title: Pattern Recognit Lett – volume: 9 start-page: 1 year: 2019 end-page: 12 ident: b0795 article-title: Prediction of malignant glioma grades using contrast-enhanced T1-weighted and T2-weighted magnetic resonance images based on a radiomic analysis publication-title: Sci Rep – volume: 6 year: 2018 ident: b0260 article-title: Classification of the glioma grading using radiomics analysis publication-title: PeerJ – volume: 28 start-page: 356 year: 2018 end-page: 362 ident: b0670 article-title: MRI features can predict EGFR expression in lower grade gliomas: a voxel-based radiomic analysis publication-title: Eur Radiol – volume: 37 start-page: 1943 year: 2018 end-page: 1954 ident: b0750 article-title: Concatenated and connected random forests with multiscale patch driven active contour model for automated brain tumor segmentation of MR images publication-title: IEEE Trans Med Imaging – start-page: 3 year: 2010 end-page: 10 ident: b0140 article-title: Theano: A CPU and GPU math compiler in Python publication-title: In: Proc. 9th Python in Science Conf – volume: 17 start-page: 5938 year: 2016 end-page: 5942 ident: b0150 article-title: mlr: Machine Learning in R publication-title: J Mach Learn Res – reference: Cui S, Mao L, Jiang J, Liu C, Xiong S (2018) Automatic semantic segmentation of brain gliomas from MRI images using a deep cascaded neural network. J Healthc Eng 2018 – volume: 8 start-page: 1287 year: 2019 ident: b0295 article-title: Biopsy Confirmed Glioma Recurrence Predicted by Multi-Modal Neuroimaging Metrics publication-title: J Clin Med – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0180 article-title: Random forests publication-title: Mach Learn – volume: 59 start-page: 18 year: 2017 end-page: 26 ident: b0400 article-title: A non-invasive and adaptive CAD system to detect brain tumor from T2-weighted MRIs using customized Otsu’s thresholding with prominent features and supervised learning publication-title: Signal Process Image Commun – volume: 8 start-page: 1 year: 2018 end-page: 9 ident: b0155 article-title: Texture analysis-and support vector machine-assisted diffusional kurtosis imaging may allow in vivo gliomas grading and IDH-mutation status prediction: a preliminary study publication-title: Sci Rep – volume: 281 start-page: 907 year: 2016 end-page: 918 ident: b0555 article-title: Radiogenomics of glioblastoma: machine learning–based classification of molecular characteristics by using multiparametric and multiregional MR imaging features publication-title: Radiology – volume: 22 start-page: 393 year: 2020 end-page: 401 ident: b1030 article-title: Automated machine learning based on radiomics features predicts H3 K27M mutation in midline gliomas of the brain publication-title: Neuro Oncol – volume: 20 start-page: 1068 year: 2018 end-page: 1079 ident: b0025 article-title: In vivo evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signature publication-title: Neuro Oncol – volume: 30 start-page: 174 year: 2019 end-page: 182 ident: b0940 article-title: Multi-grade brain tumor classification using deep CNN with extensive data augmentation publication-title: J Comput Sci – volume: 39 start-page: 63 year: 2019 end-page: 74 ident: b0090 article-title: Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms publication-title: Biocybern Biomed Eng – volume: 8 start-page: 128 year: 2019 end-page: 136 ident: b0850 article-title: Combining multimodal imaging and treatment features improves machine learning-based prognostic assessment in patients with glioblastoma multiforme publication-title: Cancer Med – reference: Rajapakse T., Simple Transformers. simpletransformers.ai; 2020. – reference: Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis M, Zettlemoyer L, Stoyanov V., Roberta: A robustly optimized bert pretraining approach;2019. arXiv Prepr arXiv190711692. – volume: 13 start-page: 337 year: 2019 end-page: 342 ident: b0945 article-title: Detection and classification of brain tumours from MRI images using faster R-CNN publication-title: Teh Glas – volume: 43 start-page: 5889 year: 2016 end-page: 5902 ident: b0870 article-title: Stratification of pseudoprogression and true progression of glioblastoma multiform based on longitudinal diffusion tensor imaging without segmentation publication-title: Med Phys – reference: Zhao L, Jia K., Multiscale CNNs for brain tumor segmentation and diagnosis. Comput Math Methods Med; 2016. – volume: 114 start-page: 97 year: 2007 end-page: 109 ident: b0730 article-title: The 2007 WHO classification of tumours of the central nervous system publication-title: Acta Neuropathol – reference: Team RC., R: A language and environment for statistical computing; 2013. – volume: 17:iv1–iv62 year: 2015 ident: b0820 article-title: CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012 publication-title: Neuro Oncol – volume: 39 start-page: 613 year: 2019 end-page: 623 ident: b1190 article-title: A deep learning model integrating SK-TPCNN and random forests for brain tumor segmentation in MRI publication-title: Biocybern Biomed Eng – volume: 61 start-page: 748 year: 2008 end-page: 754 ident: b0950 article-title: No consensus exists on search reporting methods for systematic reviews publication-title: J Clin Epidemiol – volume: 28 start-page: 106 year: 2015 end-page: 111 ident: b0895 article-title: Machine learning methods for the classification of gliomas: initial results using features extracted from MR spectroscopy publication-title: Neuroradiol J – year: 1997 ident: b0290 article-title: Brainweb: Online interface to a 3D MRI simulated brain database publication-title: NeuroImage. Citeseer. – reference: Devlin J, Chang M-W, Lee K, Toutanova K Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv Prepr; 2018. arXiv181004805 – volume: 12 start-page: 804 year: 2018 ident: b1195 article-title: Glioma grading on conventional MR images: a deep learning study with transfer learning publication-title: Front Neurosci – volume: 30 start-page: 823 year: 2020 end-page: 832 ident: b1075 article-title: Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs publication-title: Eur Radiol – volume: 8 start-page: 27 year: 2018 ident: b0550 article-title: Noninvasive grading of glioma tumor using magnetic resonance imaging with convolutional neural networks publication-title: Appl Sci – volume: 60 start-page: 188 year: 2019 end-page: 198 ident: b1105 article-title: Imaging biomarker analysis of advanced multiparametric MRI for glioma grading publication-title: Phys Medica – volume: 145 start-page: 543 year: 2019 end-page: 550 ident: b1140 article-title: Radiomics-based machine learning methods for isocitrate dehydrogenase genotype prediction of diffuse gliomas publication-title: J Cancer Res Clin Oncol – volume: 7 start-page: 102010 year: 2019 end-page: 102020 ident: b1050 article-title: Comparison of Feature Selection Methods and Machine Learning Classifiers for Radiomics Analysis in Glioma Grading publication-title: IEEE Access – volume: 43 start-page: 186 year: 2016 end-page: 196 ident: b1035 article-title: A non-invasive methodology for the grade identification of astrocytoma using image processing and artificial intelligence techniques publication-title: Expert Syst Appl – volume: 308 start-page: 1881 year: 2012 end-page: 1888 ident: b0485 article-title: Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low-grade gliomas publication-title: JAMA – volume: 146 start-page: 37 year: 2020 end-page: 43 ident: b1010 article-title: Automated delineation of the clinical target volume using anatomically constrained 3D expansion of the gross tumor volume publication-title: Radiother Oncol – volume: 61 start-page: 1229 year: 2019 end-page: 1237 ident: b0660 article-title: Radiogenomic analysis of PTEN mutation in glioblastoma using preoperative multi-parametric magnetic resonance imaging publication-title: Neuroradiology – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b0845 article-title: Scikit-learn: Machine learning in Python publication-title: J Mach Learn Res – volume: 26 start-page: 1045 year: 2013 end-page: 1057 ident: b0285 article-title: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository publication-title: J Digit Imaging – volume: 6 start-page: 1 year: 2016 end-page: 6 ident: b1125 article-title: Multiparametric MRI-based differentiation of WHO grade II/III glioma and WHO grade IV glioblastoma publication-title: Sci Rep – year: 2018 ident: b0120 article-title: Systematic Review & Meta-Analysis: Automation tools to help your review publication-title: In: 16th Australian Conference on Personality & Individual Differences: Advances and Challenges in Personality and Individual Differences-Theories and Applications – volume: 43 start-page: 326 year: 2019 ident: b0085 article-title: A new approach for brain tumor segmentation and classification based on score level fusion using transfer learning publication-title: J Med Syst – volume: 106 start-page: 199 year: 2018 end-page: 208 ident: b0995 article-title: On differentiation between vasogenic edema and non-enhancing tumor in high-grade glioma patients using a support vector machine classifier based upon pre and post-surgery MRI images publication-title: Eur J Radiol – volume: 34 start-page: 463 year: 1992 end-page: 469 ident: b1115 article-title: Magnetic resonance imaging and histopathology of cerebral gliomas publication-title: Neuroradiology – volume: 35 start-page: 1240 year: 2016 end-page: 1251 ident: b0855 article-title: Brain tumor segmentation using convolutional neural networks in MRI images publication-title: IEEE Trans Med Imaging – reference: Kayalibay B, Jensen G, van der Smagt P (2017) CNN-based segmentation of medical imaging data. arXiv Prepr arXiv170103056. – volume: 78 start-page: 4786 year: 2018 end-page: 4789 ident: b0805 article-title: LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity publication-title: Cancer Res – volume: 9 start-page: 1671 year: 2018 end-page: 1682 ident: b1150 article-title: Grading glioma by radiomics with feature selection based on mutual information publication-title: J Ambient Intell Humaniz Comput – volume: 140 start-page: 249 year: 2017 end-page: 257 ident: b0535 article-title: Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma publication-title: Comput Methods Programs Biomed – volume: 30 start-page: 2142 year: 2020 end-page: 2151 ident: b0575 article-title: Diffusion-and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma publication-title: Eur Radiol – year: 2020 ident: b0055 article-title: The diagnostic value of quantitative texture analysis of conventional MRI sequences using artificial neural networks in grading gliomas publication-title: Clin Radiol – volume: 3 start-page: 993 year: 2003 end-page: 1022 ident: b0160 article-title: Latent dirichlet allocation publication-title: J Mach Learn Res – volume: 34 start-page: 1993 year: 2014 end-page: 2024 ident: b0760 article-title: The multimodal brain tumor image segmentation benchmark (BRATS) publication-title: IEEE Trans Med Imaging – volume: 170 start-page: 51 year: 2019 end-page: 58 ident: b1130 article-title: PROBAST: a tool to assess the risk of bias and applicability of prediction model studies publication-title: Ann Intern Med – volume: 142 start-page: 299 year: 2019 end-page: 307 ident: b1245 article-title: Machine learning reveals multimodal MRI patterns predictive of isocitrate dehydrogenase and 1p/19q status in diffuse low-and high-grade gliomas publication-title: J Neurooncol – volume: 43 start-page: 113 year: 2019 ident: b0625 article-title: Glioma Tumor Grade Identification Using Artificial Intelligent Techniques publication-title: J Med Syst – volume: 18 start-page: e315 year: 2017 end-page: e329 ident: b1120 article-title: European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas publication-title: Lancet Oncol – volume: 375 start-page: 1216 year: 2016 ident: b0810 article-title: Predicting the future—big data, machine learning, and clinical medicine publication-title: N Engl J Med – volume: 40 start-page: 418 year: 2019 end-page: 425 ident: b0450 article-title: Accurate patient-specific machine learning models of glioblastoma invasion using transfer learning publication-title: Am J Neuroradiol – volume: 9 start-page: 1 year: 2019 end-page: 10 ident: b1205 article-title: Radiomic features and multilayer perceptron network classifier: a robust MRI classification strategy for distinguishing glioblastoma from primary central nervous system lymphoma publication-title: Sci Rep – volume: 6 start-page: 821 year: 2011 end-page: 828 ident: b1210 article-title: Investigating machine learning techniques for MRI-based classification of brain neoplasms publication-title: Int J Comput Assist Radiol Surg – volume: 49 start-page: 105 year: 2018 end-page: 116 ident: b1135 article-title: Building medical image classifiers with very limited data using segmentation networks publication-title: Med Image Anal – year: 2020 ident: b0185 article-title: Ethical thinking machines in surgery and the requirement for clinical leadership publication-title: Am J Surg – volume: 42 start-page: 6725 year: 2015 end-page: 6735 ident: b1175 article-title: Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma publication-title: Med Phys – volume: 125 start-page: e688 year: 2019 end-page: e696 ident: b0645 article-title: Prediction of IDH1 Mutation Status in Glioblastoma Using Machine Learning Technique Based on Quantitative Radiomic Data publication-title: World Neurosurg – volume: 28 start-page: 3832 year: 2018 end-page: 3839 ident: b1045 article-title: Primary central nervous system lymphoma and atypical glioblastoma: differentiation using radiomics approach publication-title: Eur Radiol – volume: 170 start-page: W1 year: 2019 end-page: W33 ident: b0785 article-title: PROBAST: a tool to assess risk of bias and applicability of prediction model studies: explanation and elaboration publication-title: Ann Intern Med – volume: 58 start-page: R97 year: 2013 ident: b0135 article-title: A survey of MRI-based medical image analysis for brain tumor studies publication-title: Phys Med Biol – volume: 9 year: 2016 ident: b0200 article-title: Complication avoidance with pre-operative screening: insights from the Seattle spine team publication-title: Curr Rev Musculoskelet Med – volume: 9 start-page: 453 year: 2008 end-page: 461 ident: b0175 article-title: Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas publication-title: Lancet Oncol – start-page: 770 year: 2016 end-page: 778 ident: b0420 article-title: Deep residual learning for image recognition publication-title: In: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 278 start-page: 563 year: 2016 end-page: 577 ident: b0365 article-title: Radiomics: images are more than pictures, they are data publication-title: Radiology – volume: 41 start-page: 2305 year: 2018 end-page: 2318 ident: b0320 article-title: Denoising prior driven deep neural network for image restoration publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 19 start-page: 109 year: 2017 end-page: 117 ident: b1220 article-title: Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas publication-title: Neuro Oncol – volume: 39 start-page: 2187 year: 2018 end-page: 2193 ident: b0480 article-title: Shape features of the lesion habitat to differentiate brain tumor progression from pseudoprogression on routine multiparametric MRI: a multisite study publication-title: Am J Neuroradiol – volume: 28 start-page: 1127 year: 2015 end-page: 1135 ident: b0800 article-title: A simple and intelligent approach for brain MRI classification publication-title: J Intell Fuzzy Syst – reference: Chen T, Li M, Li Y, Lin M, Wang N, Wang M, Xiao T, Xu B, Zhang C, Zhang Z (2015) Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems. arXiv Prepr arXiv151201274 – volume: 99 start-page: 154 year: 2018 end-page: 160 ident: b0275 article-title: Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T publication-title: Comput Biol Med – volume: 107 start-page: 15 year: 2019 end-page: 27 ident: b1040 article-title: Contrast enhancement is a prognostic factor in IDH1/2 mutant, but not in wild-type WHO grade II/III glioma as confirmed by machine learning publication-title: Eur J Cancer – volume: 54 start-page: 514 year: 2003 end-page: 520 ident: b0585 article-title: Epilepsy in low-grade gliomas: The impact on cognitive function and quality of life publication-title: Ann Neurol Off J Am Neurol Assoc Child Neurol Soc – volume: 29 start-page: 4430 year: 2011 end-page: 4435 ident: b0005 article-title: Compromised health-related quality of life in patients with low-grade glioma publication-title: J Clin Oncol – volume: 98 start-page: 39 year: 2018 end-page: 47 ident: b0165 article-title: Machine learning based brain tumour segmentation on limited data using local texture and abnormality publication-title: Comput Biol Med – volume: 39 start-page: 1201 year: 2018 end-page: 1207 ident: b0235 article-title: Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas publication-title: Am J Neuroradiol – volume: 29 start-page: 102 year: 2019 end-page: 127 ident: b0745 article-title: An overview of deep learning in medical imaging focusing on MRI publication-title: Z Med Phys – volume: 23 start-page: 4375 year: 2019 end-page: 4385 ident: b0690 article-title: Machine-learning based radiogenomics analysis of MRI features and metagenes in glioblastoma multiforme patients with different survival time publication-title: J Cell Mol Med – volume: 78 start-page: 572 year: 2016 end-page: 580 ident: b0030 article-title: Imaging surrogates of infiltration obtained via multiparametric imaging pattern analysis predict subsequent location of recurrence of glioblastoma publication-title: Neurosurgery – volume: 18 start-page: 44 year: 2019 ident: b0620 article-title: Machine learning-based texture analysis of contrast-enhanced MR imaging to differentiate between glioblastoma and primary central nervous system lymphoma publication-title: Magn Reson Med Sci – volume: 53 start-page: 647 year: 2018 end-page: 654 ident: b0860 article-title: Clinical evaluation of a multiparametric deep learning model for glioblastoma segmentation using heterogeneous magnetic resonance imaging data from clinical routine publication-title: Invest Radiol – volume: 29 start-page: 1891 year: 2010 end-page: 1900 ident: b0100 article-title: ‘Bench to behavior’: translating comparative effectiveness research into improved clinical practice publication-title: Health Aff – volume: 33 start-page: 1065 year: 2012 end-page: 1071 ident: b1215 article-title: Survival analysis of patients with high-grade gliomas based on data mining of imaging variables publication-title: Am J Neuroradiol – volume: 46 start-page: 115 year: 2017 end-page: 123 ident: b1250 article-title: Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group prediction publication-title: J Magn Reson Imaging – reference: Cheng J. Brain tumor dataset; 2017. – year: 2017 ident: b0195 article-title: The Seattle spine score: Predicting 30-day complication risk in adult spinal deformity surgery publication-title: J Clin Neurosci – reference: Rehurek R, Sojka P., Software framework for topic modelling with large corpora. In: In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks. Citeseer; 2010. – volume: 39 start-page: 37 year: 2018 end-page: 42 ident: b0835 article-title: Prediction of IDH1-mutation and 1p/19q-codeletion status using preoperative MR imaging phenotypes in lower grade gliomas publication-title: Am J Neuroradiol – volume: 29 start-page: 3325 year: 2019 end-page: 3337 ident: b1070 article-title: A radiomics nomogram may improve the prediction of IDH genotype for astrocytoma before surgery publication-title: Eur Radiol – volume: 34 start-page: 1326 year: 2013 end-page: 1333 ident: b0350 article-title: Multimodal MR imaging (diffusion, perfusion, and spectroscopy): is it possible to distinguish oligodendroglial tumor grade and 1p/19q codeletion in the pretherapeutic diagnosis? publication-title: Am J Neuroradiol – volume: 13 start-page: 297 year: 2009 end-page: 311 ident: b0865 article-title: Simulation of brain tumors in MR images for evaluation of segmentation efficacy publication-title: Med Image Anal – volume: 115 start-page: 3 year: 2011 end-page: 8 ident: b0960 article-title: An extent of resection threshold for newly diagnosed glioblastomas publication-title: J Neurosurg – volume: 50 start-page: 1295 year: 2019 end-page: 1306 ident: b1000 article-title: Glioma grading using a machine-learning framework based on optimized features obtained from T1 perfusion MRI and volumes of tumor components publication-title: J Magn Reson Imaging – volume: 11 start-page: 437 year: 2009 end-page: 445 ident: b0975 article-title: Intracranial low-grade gliomas in adults: 30-year experience with long-term follow-up at Mayo Clinic publication-title: Neuro Oncol – volume: 31 start-page: 1567 year: 2013 end-page: 1577 ident: b1055 article-title: Investigating brain tumor differentiation with diffusion and perfusion metrics at 3T MRI using pattern recognition techniques publication-title: Magn Reson Imaging – volume: 173 start-page: 84 year: 2018 end-page: 90 ident: b1160 article-title: Glioblastoma and primary central nervous system lymphoma: preoperative differentiation by using MRI-based 3D texture analysis publication-title: Clin Neurol Neurosurg – volume: 14 start-page: 2349 year: 2013 ident: 10.1016/j.jocn.2021.04.043_b0310 article-title: Orange: data mining toolbox in Python publication-title: J Mach Learn Res – volume: 30 start-page: 877 year: 2020 ident: 10.1016/j.jocn.2021.04.043_b0590 article-title: Radiogenomics of lower-grade gliomas: machine learning–based MRI texture analysis for predicting 1p/19q codeletion status publication-title: Eur Radiol doi: 10.1007/s00330-019-06492-2 – volume: 87 start-page: 290 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0080 article-title: Big data analysis for brain tumor detection: Deep convolutional neural networks publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2018.04.065 – volume: 154 start-page: 1361 year: 2012 ident: 10.1016/j.jocn.2021.04.043_b0395 article-title: The relationship between Cho/NAA and glioma metabolism: implementation for margin delineation of cerebral gliomas publication-title: Acta Neurochir (Wien) doi: 10.1007/s00701-012-1418-x – volume: 27 start-page: 3509 year: 2017 ident: 10.1016/j.jocn.2021.04.043_b1200 article-title: Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma publication-title: Eur Radiol doi: 10.1007/s00330-016-4653-3 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.jocn.2021.04.043_b0630 article-title: A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme publication-title: Sci Rep doi: 10.1038/s41598-017-10649-8 – volume: 20 start-page: 433 year: 2010 ident: 10.1016/j.jocn.2021.04.043_b0330 article-title: Hybrid intelligent techniques for MRI brain images classification publication-title: Digit Signal Process doi: 10.1016/j.dsp.2009.07.002 – volume: 3 start-page: 68 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0780 article-title: Classification using deep learning neural networks for brain tumors publication-title: Futur Comput Informatics J doi: 10.1016/j.fcij.2017.12.001 – volume: 30 start-page: 469 year: 2017 ident: 10.1016/j.jocn.2021.04.043_b0035 article-title: Predicting deletion of chromosomal arms 1p/19q in low-grade gliomas from MR images using machine intelligence publication-title: J Digit Imaging doi: 10.1007/s10278-017-9984-3 – volume: 44 start-page: 5234 year: 2017 ident: 10.1016/j.jocn.2021.04.043_b1255 article-title: Brain tumor segmentation using holistically nested neural networks in MRI images publication-title: Med Phys doi: 10.1002/mp.12481 – year: 2011 ident: 10.1016/j.jocn.2021.04.043_b0790 – volume: 11 start-page: 1457 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0990 article-title: Brain tumor classification using convolutional neural networks publication-title: Biomed Pharmacol J doi: 10.13005/bpj/1511 – volume: 64 start-page: 1230 year: 2010 ident: 10.1016/j.jocn.2021.04.043_b1265 article-title: Support vector machines in DSC-based glioma imaging: Suggestions for optimal characterization publication-title: Magn Reson Med doi: 10.1002/mrm.22495 – volume: 98 start-page: 39 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0165 article-title: Machine learning based brain tumour segmentation on limited data using local texture and abnormality publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2018.05.005 – volume: 23 start-page: 59 year: 2013 ident: 10.1016/j.jocn.2021.04.043_b0130 article-title: Integrated segmentation of brain tumor images for radiotherapy and neurosurgery publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.22037 – volume: 48 start-page: 330 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0375 article-title: Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI publication-title: J Magn Reson Imaging doi: 10.1002/jmri.25970 – volume: 6 start-page: 245 year: 2017 ident: 10.1016/j.jocn.2021.04.043_b0170 article-title: Optimal database combinations for literature searches in systematic reviews: a prospective exploratory study publication-title: Syst Rev doi: 10.1186/s13643-017-0644-y – volume: 61 start-page: 2633 year: 2014 ident: 10.1016/j.jocn.2021.04.043_b0460 article-title: Brain tumor segmentation based on local independent projection-based classification publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2325410 – volume: 48 start-page: 1518 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b1090 article-title: Radiomics strategy for glioma grading using texture features from multiparametric MRI publication-title: J Magn Reson Imaging doi: 10.1002/jmri.26010 – volume: 173 start-page: 84 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b1160 article-title: Glioblastoma and primary central nervous system lymphoma: preoperative differentiation by using MRI-based 3D texture analysis publication-title: Clin Neurol Neurosurg doi: 10.1016/j.clineuro.2018.08.004 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.jocn.2021.04.043_b0845 article-title: Scikit-learn: Machine learning in Python publication-title: J Mach Learn Res – ident: 10.1016/j.jocn.2021.04.043_b0935 doi: 10.1007/978-3-319-24574-4_28 – volume: 26 start-page: 1045 year: 2013 ident: 10.1016/j.jocn.2021.04.043_b0285 article-title: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository publication-title: J Digit Imaging doi: 10.1007/s10278-013-9622-7 – volume: 151 start-page: 264 year: 2009 ident: 10.1016/j.jocn.2021.04.043_b0775 article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement publication-title: Ann Intern Med doi: 10.7326/0003-4819-151-4-200908180-00135 – volume: 121 start-page: 1115 year: 2014 ident: 10.1016/j.jocn.2021.04.043_b0380 article-title: Residual tumor volume versus extent of resection: predictors of survival after surgery for glioblastoma publication-title: J Neurosurg doi: 10.3171/2014.7.JNS132449 – volume: 27 start-page: 81 year: 2010 ident: 10.1016/j.jocn.2021.04.043_b1170 article-title: Morphological and flow cytometric analysis of cell infiltration in glioblastoma: a comparison of autopsy brain and neuroimaging publication-title: Brain Tumor Pathol doi: 10.1007/s10014-010-0275-7 – volume: 275 start-page: 228 year: 2015 ident: 10.1016/j.jocn.2021.04.043_b0340 article-title: A generic support vector machine model for preoperative glioma survival associations publication-title: Radiology doi: 10.1148/radiol.14140770 – volume: 28 start-page: 106 year: 2015 ident: 10.1016/j.jocn.2021.04.043_b0895 article-title: Machine learning methods for the classification of gliomas: initial results using features extracted from MR spectroscopy publication-title: Neuroradiol J doi: 10.1177/1971400915576637 – start-page: 89 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b1180 article-title: Deep learning and its applications to natural language processing – start-page: 3 year: 2010 ident: 10.1016/j.jocn.2021.04.043_b0140 article-title: Theano: A CPU and GPU math compiler in Python – volume: 2 start-page: 1 year: 2011 ident: 10.1016/j.jocn.2021.04.043_b0220 article-title: LIBSVM: A library for support vector machines publication-title: ACM Trans Intell Syst Technol doi: 10.1145/1961189.1961199 – volume: 54 start-page: 7 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b1095 article-title: Ten-year survival in glioblastoma. A systematic review publication-title: J Clin Neurosci doi: 10.1016/j.jocn.2018.05.002 – volume: 28 start-page: 1 year: 2008 ident: 10.1016/j.jocn.2021.04.043_b0615 article-title: Building predictive models in R using the caret package publication-title: J Stat Softw doi: 10.18637/jss.v028.i05 – volume: 6 start-page: 34002 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0770 article-title: Deep learning with mixed supervision for brain tumor segmentation publication-title: J Med Imaging doi: 10.1117/1.JMI.6.3.034002 – volume: 29 start-page: 1891 year: 2010 ident: 10.1016/j.jocn.2021.04.043_b0100 article-title: ‘Bench to behavior’: translating comparative effectiveness research into improved clinical practice publication-title: Health Aff doi: 10.1377/hlthaff.2010.0696 – volume: 38 start-page: 1695 year: 2017 ident: 10.1016/j.jocn.2021.04.043_b0715 article-title: Relationship between glioblastoma heterogeneity and survival time: an MR imaging texture analysis publication-title: Am J Neuroradiol doi: 10.3174/ajnr.A5279 – ident: 10.1016/j.jocn.2021.04.043_b0540 – volume: 19 start-page: 109 year: 2017 ident: 10.1016/j.jocn.2021.04.043_b1220 article-title: Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas publication-title: Neuro Oncol doi: 10.1093/neuonc/now121 – ident: 10.1016/j.jocn.2021.04.043_b0110 – volume: 26 start-page: 1062 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0720 article-title: Conventional MR-based preoperative nomograms for prediction of IDH/1p19q subtype in low-grade glioma publication-title: Acad Radiol doi: 10.1016/j.acra.2018.09.022 – volume: 99 start-page: 154 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0275 article-title: Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2018.06.009 – volume: 114 start-page: 97 year: 2007 ident: 10.1016/j.jocn.2021.04.043_b0730 article-title: The 2007 WHO classification of tumours of the central nervous system publication-title: Acta Neuropathol doi: 10.1007/s00401-007-0243-4 – volume: 34 start-page: 463 year: 1992 ident: 10.1016/j.jocn.2021.04.043_b1115 article-title: Magnetic resonance imaging and histopathology of cerebral gliomas publication-title: Neuroradiology doi: 10.1007/BF00598951 – volume: 53 start-page: 73 year: 2013 ident: 10.1016/j.jocn.2021.04.043_b0500 article-title: MRI brain classification using texture features, fuzzy weighting and support vector machine publication-title: Prog Electromagn Res doi: 10.2528/PIERB13052805 – volume: 451 start-page: 128 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0875 article-title: Differentiation of glioblastoma from solitary brain metastases using radiomic machine-learning classifiers publication-title: Cancer Lett doi: 10.1016/j.canlet.2019.02.054 – volume: 5 start-page: 396 year: 2014 ident: 10.1016/j.jocn.2021.04.043_b0470 article-title: Voxel-based clustered imaging by multiparameter diffusion tensor images for glioma grading publication-title: NeuroImage Clin doi: 10.1016/j.nicl.2014.08.001 – volume: 102 year: 2020 ident: 10.1016/j.jocn.2021.04.043_b0475 article-title: An enhanced deep learning approach for brain cancer MRI images classification using residual networks publication-title: Artif Intell Med – year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0270 article-title: Keras: The python deep learning library publication-title: Astrophys Source Code Libr. – volume: 25 start-page: 751 year: 2017 ident: 10.1016/j.jocn.2021.04.043_b0880 article-title: A new approach to develop computer-aided diagnosis scheme of breast mass classification using deep learning technology publication-title: J Xray Sci Technol – volume: 12 start-page: 804 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b1195 article-title: Glioma grading on conventional MR images: a deep learning study with transfer learning publication-title: Front Neurosci doi: 10.3389/fnins.2018.00804 – volume: 22 start-page: 402 year: 2020 ident: 10.1016/j.jocn.2021.04.043_b0115 article-title: A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas publication-title: Neuro Oncol doi: 10.1093/neuonc/noz199 – volume: 36 start-page: 61 year: 2017 ident: 10.1016/j.jocn.2021.04.043_b0530 article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Med Image Anal doi: 10.1016/j.media.2016.10.004 – volume: 375 start-page: 1216 year: 2016 ident: 10.1016/j.jocn.2021.04.043_b0810 article-title: Predicting the future—big data, machine learning, and clinical medicine publication-title: N Engl J Med doi: 10.1056/NEJMp1606181 – volume: 43 start-page: 98 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b1240 article-title: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation publication-title: Med Image Anal doi: 10.1016/j.media.2017.10.002 – volume: 77 start-page: e104 year: 2017 ident: 10.1016/j.jocn.2021.04.043_b0385 article-title: Computational radiomics system to decode the radiographic phenotype publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-17-0339 – year: 2017 ident: 10.1016/j.jocn.2021.04.043_b0900 – volume: 105 start-page: 784 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b1065 article-title: Radiomics Analysis for Glioma Malignancy Evaluation Using Diffusion Kurtosis and Tensor Imaging publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2019.07.011 – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0795 article-title: Prediction of malignant glioma grades using contrast-enhanced T1-weighted and T2-weighted magnetic resonance images based on a radiomic analysis publication-title: Sci Rep doi: 10.1038/s41598-019-55922-0 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.jocn.2021.04.043_b0680 article-title: Deep Learning based Radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma publication-title: Sci Rep – volume: 65 start-page: 1943 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0700 article-title: A cascaded deep convolutional neural network for joint segmentation and genotype prediction of brainstem gliomas publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2018.2845706 – volume: 131 start-page: 803 year: 2016 ident: 10.1016/j.jocn.2021.04.043_b0735 article-title: The 2016 World Health Organization classification of tumors of the central nervous system: a summary publication-title: Acta Neuropathol doi: 10.1007/s00401-016-1545-1 – volume: 37 start-page: 1488 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0885 article-title: Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2820120 – volume: 54 start-page: 514 year: 2003 ident: 10.1016/j.jocn.2021.04.043_b0585 article-title: Epilepsy in low-grade gliomas: The impact on cognitive function and quality of life publication-title: Ann Neurol Off J Am Neurol Assoc Child Neurol Soc – volume: 281 start-page: 907 year: 2016 ident: 10.1016/j.jocn.2021.04.043_b0555 article-title: Radiogenomics of glioblastoma: machine learning–based classification of molecular characteristics by using multiparametric and multiregional MR imaging features publication-title: Radiology doi: 10.1148/radiol.2016161382 – year: 2017 ident: 10.1016/j.jocn.2021.04.043_b0075 article-title: A distinctive approach in brain tumor detection and classification using MRI publication-title: Pattern Recognit Lett – volume: 122 start-page: e812 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0565 article-title: Apparent Diffusion Coefficient as a Predictive Biomarker for Survival in Patients with Treatment-Naive Glioblastoma Using Quantitative Multiparametric Magnetic Resonance Profiling publication-title: World Neurosurg doi: 10.1016/j.wneu.2018.10.151 – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0095 article-title: Lesion location implemented magnetic resonance imaging radiomics for predicting IDH and TERT promoter mutations in grade II/III gliomas publication-title: Sci Rep doi: 10.1038/s41598-018-30273-4 – volume: 34 start-page: 2274 year: 2012 ident: 10.1016/j.jocn.2021.04.043_b0015 article-title: SLIC superpixels compared to state-of-the-art superpixel methods publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2012.120 – volume: 5 start-page: 21219 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0905 article-title: Radiomic signature of infiltration in peritumoral edema predicts subsequent recurrence in glioblastoma: implications for personalized radiotherapy planning publication-title: J Med Imaging doi: 10.1117/1.JMI.5.2.021219 – volume: 50 start-page: 1295 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b1000 article-title: Glioma grading using a machine-learning framework based on optimized features obtained from T1 perfusion MRI and volumes of tumor components publication-title: J Magn Reson Imaging doi: 10.1002/jmri.26704 – volume: 18 start-page: 1680 year: 2016 ident: 10.1016/j.jocn.2021.04.043_b0230 article-title: Multimodal imaging patterns predict survival in recurrent glioblastoma patients treated with bevacizumab publication-title: Neuro Oncol doi: 10.1093/neuonc/now086 – ident: 10.1016/j.jocn.2021.04.043_b1145 doi: 10.1155/2017/8054939 – volume: 78 start-page: 4786 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0805 article-title: LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-18-0125 – volume: 39 start-page: 37 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0835 article-title: Prediction of IDH1-mutation and 1p/19q-codeletion status using preoperative MR imaging phenotypes in lower grade gliomas publication-title: Am J Neuroradiol doi: 10.3174/ajnr.A5421 – volume: 107 start-page: 359 year: 2012 ident: 10.1016/j.jocn.2021.04.043_b0520 article-title: Glioblastoma survival in the United States before and during the temozolomide era publication-title: J Neurooncol doi: 10.1007/s11060-011-0749-4 – volume: 32 start-page: 105 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0430 article-title: AdaptAhead optimization algorithm for learning deep CNN applied to MRI segmentation publication-title: J Digit Imaging doi: 10.1007/s10278-018-0107-6 – volume: 9 start-page: 453 year: 2008 ident: 10.1016/j.jocn.2021.04.043_b0175 article-title: Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas publication-title: Lancet Oncol doi: 10.1016/S1470-2045(08)70125-6 – volume: 28 start-page: 1127 year: 2015 ident: 10.1016/j.jocn.2021.04.043_b0800 article-title: A simple and intelligent approach for brain MRI classification publication-title: J Intell Fuzzy Syst – ident: 10.1016/j.jocn.2021.04.043_b1165 doi: 10.1016/j.nicl.2017.10.030 – volume: 43 start-page: 113 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0625 article-title: Glioma Tumor Grade Identification Using Artificial Intelligent Techniques publication-title: J Med Syst doi: 10.1007/s10916-019-1228-2 – volume: 34 start-page: 1993 year: 2014 ident: 10.1016/j.jocn.2021.04.043_b0760 article-title: The multimodal brain tumor image segmentation benchmark (BRATS) publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2014.2377694 – start-page: 125 year: 2016 ident: 10.1016/j.jocn.2021.04.043_b0415 article-title: Deep learning trends for focal brain pathology segmentation in MRI – volume: 49 start-page: 105 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b1135 article-title: Building medical image classifiers with very limited data using segmentation networks publication-title: Med Image Anal doi: 10.1016/j.media.2018.07.010 – ident: 10.1016/j.jocn.2021.04.043_b0240 doi: 10.5244/C.28.6 – ident: 10.1016/j.jocn.2021.04.043_b0305 doi: 10.1155/2018/4940593 – volume: 130 start-page: 172 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0825 article-title: A machine learning-based prediction model of H3K27M mutations in brainstem gliomas using conventional MRI and clinical features publication-title: Radiother Oncol doi: 10.1016/j.radonc.2018.07.011 – ident: 10.1016/j.jocn.2021.04.043_b0920 – volume: 17 start-page: 5938 year: 2016 ident: 10.1016/j.jocn.2021.04.043_b0150 article-title: mlr: Machine Learning in R publication-title: J Mach Learn Res – volume: 254 start-page: 564 year: 2010 ident: 10.1016/j.jocn.2021.04.043_b0125 article-title: Glioblastoma multiforme regional genetic and cellular expression patterns: influence on anatomic and physiologic MR imaging publication-title: Radiology doi: 10.1148/radiol.09090663 – ident: 10.1016/j.jocn.2021.04.043_b0525 – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b1205 article-title: Radiomic features and multilayer perceptron network classifier: a robust MRI classification strategy for distinguishing glioblastoma from primary central nervous system lymphoma publication-title: Sci Rep doi: 10.1038/s41598-019-42276-w – volume: 30 start-page: 2142 year: 2020 ident: 10.1016/j.jocn.2021.04.043_b0575 article-title: Diffusion-and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma publication-title: Eur Radiol doi: 10.1007/s00330-019-06548-3 – ident: 10.1016/j.jocn.2021.04.043_b0890 – volume: 20 start-page: 1068 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0025 article-title: In vivo evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signature publication-title: Neuro Oncol doi: 10.1093/neuonc/noy033 – volume: 14 start-page: 8 year: 2016 ident: 10.1016/j.jocn.2021.04.043_b0300 article-title: Wasted research when systematic reviews fail to provide a complete and up-to-date evidence synthesis: the example of lung cancer publication-title: BMC Med doi: 10.1186/s12916-016-0555-0 – volume: 170 start-page: 51 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b1130 article-title: PROBAST: a tool to assess the risk of bias and applicability of prediction model studies publication-title: Ann Intern Med doi: 10.7326/M18-1376 – start-page: 675 year: 2014 ident: 10.1016/j.jocn.2021.04.043_b0510 article-title: Caffe: Convolutional architecture for fast feature embedding – volume: 7 start-page: 102010 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b1050 article-title: Comparison of Feature Selection Methods and Machine Learning Classifiers for Radiomics Analysis in Glioma Grading publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2928975 – volume: 166 start-page: 39 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0970 article-title: Fully automatic brain tumor segmentation using end-to-end incremental deep neural networks in MRI images publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2018.09.007 – volume: 13 start-page: 1333 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0705 article-title: Overall survival time prediction for high-grade glioma patients based on large-scale brain functional networks publication-title: Brain Imaging Behav doi: 10.1007/s11682-018-9949-2 – volume: 13 start-page: 297 year: 2009 ident: 10.1016/j.jocn.2021.04.043_b0865 article-title: Simulation of brain tumors in MR images for evaluation of segmentation efficacy publication-title: Med Image Anal doi: 10.1016/j.media.2008.11.002 – volume: 22 start-page: 393 year: 2020 ident: 10.1016/j.jocn.2021.04.043_b1030 article-title: Automated machine learning based on radiomics features predicts H3 K27M mutation in midline gliomas of the brain publication-title: Neuro Oncol – volume: 60 start-page: 188 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b1105 article-title: Imaging biomarker analysis of advanced multiparametric MRI for glioma grading publication-title: Phys Medica doi: 10.1016/j.ejmp.2019.03.014 – volume: 43 start-page: 294 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b1085 article-title: Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images publication-title: J Med Syst doi: 10.1007/s10916-019-1416-0 – ident: 10.1016/j.jocn.2021.04.043_b1080 – start-page: 1 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0070 article-title: Detection of brain tumor based on features fusion and machine learning publication-title: J Ambient Intell Humaniz Comput – volume: 41 start-page: 453 year: 2016 ident: 10.1016/j.jocn.2021.04.043_b0595 article-title: Delineation and diagnosis of brain tumors from post contrast T1-weighted MR images using rough granular computing and random forest publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.01.022 – ident: 10.1016/j.jocn.2021.04.043_b1235 doi: 10.1155/2016/8356294 – volume: 10 year: 2015 ident: 10.1016/j.jocn.2021.04.043_b0445 article-title: Multi-parametric MRI and texture analysis to visualize spatial histologic heterogeneity and tumor extent in glioblastoma publication-title: PLoS ONE doi: 10.1371/journal.pone.0141506 – volume: 45 start-page: 3120 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0570 article-title: Improving resolution of MR images with an adversarial network incorporating images with different contrast publication-title: Med Phys doi: 10.1002/mp.12945 – volume: 20 start-page: 1381 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0830 article-title: Radiomics MRI phenotyping with machine learning to predict the grade of lower-grade gliomas: a study focused on nonenhancing tumors publication-title: Korean J Radiol doi: 10.3348/kjr.2018.0814 – volume: 3 start-page: 993 year: 2003 ident: 10.1016/j.jocn.2021.04.043_b0160 article-title: Latent dirichlet allocation publication-title: J Mach Learn Res – volume: 115 start-page: 3 year: 2011 ident: 10.1016/j.jocn.2021.04.043_b0960 article-title: An extent of resection threshold for newly diagnosed glioblastomas publication-title: J Neurosurg doi: 10.3171/2011.2.JNS10998 – volume: 7 start-page: 4275 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0425 article-title: A modified deep convolutional neural network for abnormal brain image classification publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2885639 – volume: 31 start-page: 1567 year: 2013 ident: 10.1016/j.jocn.2021.04.043_b1055 article-title: Investigating brain tumor differentiation with diffusion and perfusion metrics at 3T MRI using pattern recognition techniques publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2013.06.010 – volume: 9 year: 2016 ident: 10.1016/j.jocn.2021.04.043_b0200 article-title: Complication avoidance with pre-operative screening: insights from the Seattle spine team publication-title: Curr Rev Musculoskelet Med doi: 10.1007/s12178-016-9351-x – ident: 10.1016/j.jocn.2021.04.043_b0255 – ident: 10.1016/j.jocn.2021.04.043_b0315 – volume: 24 start-page: 6288 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b1260 article-title: A coclinical radiogenomic validation study: conserved magnetic resonance radiomic appearance of periostin-expressing glioblastoma in patients and xenograft models publication-title: Clin cancer Res doi: 10.1158/1078-0432.CCR-17-3420 – volume: 36 start-page: 345 year: 2015 ident: 10.1016/j.jocn.2021.04.043_b1100 article-title: A framework for multimodal imaging-based prognostic model building: preliminary study on multimodal MRI in glioblastoma multiforme publication-title: IRBM doi: 10.1016/j.irbm.2015.08.001 – volume: 58 start-page: R97 year: 2013 ident: 10.1016/j.jocn.2021.04.043_b0135 article-title: A survey of MRI-based medical image analysis for brain tumor studies publication-title: Phys Med Biol doi: 10.1088/0031-9155/58/13/R97 – volume: 39 start-page: 63 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0090 article-title: Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2018.10.004 – ident: 10.1016/j.jocn.2021.04.043_b0915 – start-page: 1 year: 2015 ident: 10.1016/j.jocn.2021.04.043_b1060 article-title: Going deeper with convolutions – volume: 140 start-page: 297 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0405 article-title: Non-invasive genotype prediction of chromosome 1p/19q co-deletion by development and validation of an MRI-based radiomics signature in lower-grade gliomas publication-title: J Neurooncol doi: 10.1007/s11060-018-2953-y – ident: 10.1016/j.jocn.2021.04.043_b0635 doi: 10.1186/s13643-019-0974-z – ident: 10.1016/j.jocn.2021.04.043_b0250 – volume: 142 start-page: 299 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b1245 article-title: Machine learning reveals multimodal MRI patterns predictive of isocitrate dehydrogenase and 1p/19q status in diffuse low-and high-grade gliomas publication-title: J Neurooncol doi: 10.1007/s11060-019-03096-0 – ident: 10.1016/j.jocn.2021.04.043_b0145 – volume: 23 start-page: 45 year: 1997 ident: 10.1016/j.jocn.2021.04.043_b1020 article-title: SUSAN—a new approach to low level image processing publication-title: Int J Comput Vis doi: 10.1023/A:1007963824710 – year: 2017 ident: 10.1016/j.jocn.2021.04.043_b0325 article-title: Diffusion tensor image features predict IDH genotype in newly diagnosed WHO grade II/III gliomas publication-title: Sci Rep doi: 10.1038/s41598-017-13679-4 – volume: 6 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0260 article-title: Classification of the glioma grading using radiomics analysis publication-title: PeerJ doi: 10.7717/peerj.5982 – volume: 9 start-page: 85 year: 2008 ident: 10.1016/j.jocn.2021.04.043_b0930 article-title: Handsearching still a valuable element of the systematic review publication-title: Evid Based Dent doi: 10.1038/sj.ebd.6400602 – volume: 19 start-page: 128 year: 2017 ident: 10.1016/j.jocn.2021.04.043_b0440 article-title: Radiogenomics to characterize regional genetic heterogeneity in glioblastoma publication-title: Neuro Oncol doi: 10.1093/neuonc/now135 – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0495 article-title: Prediction of pseudoprogression versus progression using machine learning algorithm in glioblastoma publication-title: Sci Rep doi: 10.1038/s41598-018-31007-2 – volume: 42 start-page: 6725 year: 2015 ident: 10.1016/j.jocn.2021.04.043_b1175 article-title: Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma publication-title: Med Phys doi: 10.1118/1.4934373 – volume: 6 start-page: 821 year: 2011 ident: 10.1016/j.jocn.2021.04.043_b1210 article-title: Investigating machine learning techniques for MRI-based classification of brain neoplasms publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-011-0559-3 – year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0665 article-title: Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature publication-title: Eur Radiol doi: 10.1007/s00330-017-5267-0 – volume: 43 start-page: 186 year: 2016 ident: 10.1016/j.jocn.2021.04.043_b1035 article-title: A non-invasive methodology for the grade identification of astrocytoma using image processing and artificial intelligence techniques publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.08.036 – volume: 13 start-page: 337 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0945 article-title: Detection and classification of brain tumours from MRI images using faster R-CNN publication-title: Teh Glas doi: 10.31803/tg-20190712095507 – volume: 39 start-page: 613 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b1190 article-title: A deep learning model integrating SK-TPCNN and random forests for brain tumor segmentation in MRI publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2019.06.003 – volume: 11 start-page: 437 year: 2009 ident: 10.1016/j.jocn.2021.04.043_b0975 article-title: Intracranial low-grade gliomas in adults: 30-year experience with long-term follow-up at Mayo Clinic publication-title: Neuro Oncol doi: 10.1215/15228517-2008-102 – start-page: 1 year: 2020 ident: 10.1016/j.jocn.2021.04.043_b0265 article-title: Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction publication-title: Eur Radiol – start-page: 55 year: 2014 ident: 10.1016/j.jocn.2021.04.043_b0755 article-title: The Stanford CoreNLP natural language processing toolkit – volume: 48 start-page: 916 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b1225 article-title: Radiomics strategy for molecular subtype stratification of lower-grade glioma: detecting IDH and TP53 mutations based on multimodal MRI publication-title: J Magn Reson Imaging doi: 10.1002/jmri.25960 – volume: 83 start-page: 102 year: 2017 ident: 10.1016/j.jocn.2021.04.043_b0435 article-title: Quantitative glioma grading using transformed gray-scale invariant textures of MRI publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2017.02.012 – volume: 121 start-page: 81 year: 2020 ident: 10.1016/j.jocn.2021.04.043_b0280 article-title: A full systematic review was completed in 2 weeks using automation tools: a case study publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2020.01.008 – volume: 30 start-page: 622 year: 2017 ident: 10.1016/j.jocn.2021.04.043_b0605 article-title: Residual deep convolutional neural network predicts MGMT methylation status publication-title: J Digit Imaging doi: 10.1007/s10278-017-0009-z – volume: 24 start-page: 1073 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0225 article-title: Residual convolutional neural network for the determination of IDH status in low-and high-grade gliomas from MR imaging publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-17-2236 – volume: 289 start-page: 797 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0105 article-title: Radiomic MRI phenotyping of glioblastoma: improving survival prediction publication-title: Radiology doi: 10.1148/radiol.2018180200 – ident: 10.1016/j.jocn.2021.04.043_b1015 – volume: 9 start-page: 1671 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b1150 article-title: Grading glioma by radiomics with feature selection based on mutual information publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-018-0883-3 – volume: 29 start-page: 3325 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b1070 article-title: A radiomics nomogram may improve the prediction of IDH genotype for astrocytoma before surgery publication-title: Eur Radiol doi: 10.1007/s00330-019-06056-4 – volume: 8 start-page: 47816 year: 2017 ident: 10.1016/j.jocn.2021.04.043_b1230 article-title: Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features publication-title: Oncotarget doi: 10.18632/oncotarget.18001 – volume: 38 start-page: 135 year: 2020 ident: 10.1016/j.jocn.2021.04.043_b0060 article-title: Machine learning-based quantitative texture analysis of conventional MRI combined with ADC maps for assessment of IDH1 mutation in high-grade gliomas publication-title: Jpn J Radiol doi: 10.1007/s11604-019-00902-7 – volume: 41 start-page: 2305 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0320 article-title: Denoising prior driven deep neural network for image restoration publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2018.2873610 – volume: 8 start-page: 128 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0850 article-title: Combining multimodal imaging and treatment features improves machine learning-based prognostic assessment in patients with glioblastoma multiforme publication-title: Cancer Med doi: 10.1002/cam4.1908 – volume: 13 start-page: 2171 year: 2012 ident: 10.1016/j.jocn.2021.04.043_b0355 article-title: DEAP: Evolutionary algorithms made easy publication-title: J Mach Learn Res – volume: 6 start-page: 648 year: 2009 ident: 10.1016/j.jocn.2021.04.043_b1185 article-title: New advances that enable identification of glioblastoma recurrence publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2009.150 – volume: 27 start-page: 475 year: 2006 ident: 10.1016/j.jocn.2021.04.043_b0210 article-title: Update on brain tumor imaging: from anatomy to physiology publication-title: Am J Neuroradiol – volume: 59 start-page: 18 year: 2017 ident: 10.1016/j.jocn.2021.04.043_b0400 article-title: A non-invasive and adaptive CAD system to detect brain tumor from T2-weighted MRIs using customized Otsu’s thresholding with prominent features and supervised learning publication-title: Signal Process Image Commun doi: 10.1016/j.image.2017.05.013 – volume: 40 start-page: 418 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0450 article-title: Accurate patient-specific machine learning models of glioblastoma invasion using transfer learning publication-title: Am J Neuroradiol – year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0345 article-title: Investigating risk factors and predicting complications in deep brain stimulation surgery with machine learning algorithms publication-title: World Neurosurg. – volume: 28 start-page: 3832 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b1045 article-title: Primary central nervous system lymphoma and atypical glioblastoma: differentiation using radiomics approach publication-title: Eur Radiol doi: 10.1007/s00330-018-5368-4 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.jocn.2021.04.043_b0640 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 140 start-page: 249 year: 2017 ident: 10.1016/j.jocn.2021.04.043_b0535 article-title: Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2016.12.018 – volume: 61 start-page: 1229 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0660 article-title: Radiogenomic analysis of PTEN mutation in glioblastoma using preoperative multi-parametric magnetic resonance imaging publication-title: Neuroradiology doi: 10.1007/s00234-019-02244-7 – volume: 61 start-page: 748 year: 2008 ident: 10.1016/j.jocn.2021.04.043_b0950 article-title: No consensus exists on search reporting methods for systematic reviews publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2007.10.009 – volume: 106 start-page: 199 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0995 article-title: On differentiation between vasogenic edema and non-enhancing tumor in high-grade glioma patients using a support vector machine classifier based upon pre and post-surgery MRI images publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2018.07.018 – volume: 352 start-page: 987 year: 2005 ident: 10.1016/j.jocn.2021.04.043_b1025 article-title: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma publication-title: N Engl J Med doi: 10.1056/NEJMoa043330 – volume: 38 start-page: 1145 year: 2017 ident: 10.1016/j.jocn.2021.04.043_b0045 article-title: Differentiation of enhancing glioma and primary central nervous system lymphoma by texture-based machine learning publication-title: Am J Neuroradiol doi: 10.3174/ajnr.A5173 – year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0120 article-title: Systematic Review & Meta-Analysis: Automation tools to help your review – volume: 33 start-page: 1065 year: 2012 ident: 10.1016/j.jocn.2021.04.043_b1215 article-title: Survival analysis of patients with high-grade gliomas based on data mining of imaging variables publication-title: Am J Neuroradiol doi: 10.3174/ajnr.A2939 – volume: 177 start-page: 69 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0065 article-title: Brain tumor detection using statistical and machine learning method publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2019.05.015 – volume: 9 start-page: 382 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0685 article-title: Multimodal 3D DenseNet for IDH genotype prediction in gliomas publication-title: Genes (Basel) doi: 10.3390/genes9080382 – volume: 29 start-page: 102 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0745 article-title: An overview of deep learning in medical imaging focusing on MRI publication-title: Z Med Phys doi: 10.1016/j.zemedi.2018.11.002 – volume: 39 start-page: 693 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0840 article-title: Whole-tumor histogram and texture analyses of DTI for evaluation of IDH1-mutation and 1p/19q-codeletion status in World Health Organization grade II gliomas publication-title: Am J Neuroradiol doi: 10.3174/ajnr.A5569 – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0360 article-title: Integration of machine learning and mechanistic models accurately predicts variation in cell density of glioblastoma using multiparametric MRI publication-title: Sci Rep doi: 10.1038/s41598-019-46296-4 – volume: 5 start-page: 1 year: 2014 ident: 10.1016/j.jocn.2021.04.043_b0020 article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach publication-title: Nat Commun – ident: 10.1016/j.jocn.2021.04.043_b0710 – volume: 18 start-page: 44 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0620 article-title: Machine learning-based texture analysis of contrast-enhanced MR imaging to differentiate between glioblastoma and primary central nervous system lymphoma publication-title: Magn Reson Med Sci doi: 10.2463/mrms.mp.2017-0178 – volume: 22 start-page: 94 year: 2015 ident: 10.1016/j.jocn.2021.04.043_b1110 article-title: The evolving molecular genetics of low-grade glioma publication-title: Adv Anat Pathol doi: 10.1097/PAP.0000000000000049 – volume: 39 start-page: 2187 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0480 article-title: Shape features of the lesion habitat to differentiate brain tumor progression from pseudoprogression on routine multiparametric MRI: a multisite study publication-title: Am J Neuroradiol doi: 10.3174/ajnr.A5858 – volume: 28 start-page: 356 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0670 article-title: MRI features can predict EGFR expression in lower grade gliomas: a voxel-based radiomic analysis publication-title: Eur Radiol doi: 10.1007/s00330-017-4964-z – volume: 46 start-page: 1581 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0050 article-title: Highly accelerated, model-free diffusion tensor MRI reconstruction using neural networks publication-title: Med Phys doi: 10.1002/mp.13400 – volume: 267 start-page: 823 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0695 article-title: Measuring processes of care in palliative surgery: a novel approach using natural language processing publication-title: Ann Surg doi: 10.1097/SLA.0000000000002579 – volume: 16 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0765 article-title: The significant cost of systematic reviews and meta-analyses: A call for greater involvement of machine learning to assess the promise of clinical trials publication-title: Contemp Clin trials Commun – volume: 45 start-page: 1150 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0040 article-title: Deep learning for segmentation of brain tumors: Impact of cross-institutional training and testing publication-title: Med Phys doi: 10.1002/mp.12752 – volume: 59 start-page: 947 year: 2002 ident: 10.1016/j.jocn.2021.04.043_b0985 article-title: How often are nonenhancing supratentorial gliomas malignant? A population study publication-title: Neurology doi: 10.1212/WNL.59.6.947 – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0155 article-title: Texture analysis-and support vector machine-assisted diffusional kurtosis imaging may allow in vivo gliomas grading and IDH-mutation status prediction: a preliminary study publication-title: Sci Rep doi: 10.1038/s41598-018-24438-4 – volume: 107 start-page: 15 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b1040 article-title: Contrast enhancement is a prognostic factor in IDH1/2 mutant, but not in wild-type WHO grade II/III glioma as confirmed by machine learning publication-title: Eur J Cancer doi: 10.1016/j.ejca.2018.10.019 – volume: 26 start-page: 4509 year: 2017 ident: 10.1016/j.jocn.2021.04.043_b0515 article-title: Deep convolutional neural network for inverse problems in imaging publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2017.2713099 – volume: 28 start-page: 3640 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0675 article-title: Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: a multicentre study publication-title: Eur Radiol doi: 10.1007/s00330-017-5302-1 – volume: 18 start-page: e315 year: 2017 ident: 10.1016/j.jocn.2021.04.043_b1120 article-title: European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas publication-title: Lancet Oncol doi: 10.1016/S1470-2045(17)30194-8 – volume: 101 start-page: 1931 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b1155 article-title: Use of natural language processing algorithms to identify common data elements in operative notes for total hip arthroplasty publication-title: JBJS doi: 10.2106/JBJS.19.00071 – volume: 145 start-page: 543 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b1140 article-title: Radiomics-based machine learning methods for isocitrate dehydrogenase genotype prediction of diffuse gliomas publication-title: J Cancer Res Clin Oncol doi: 10.1007/s00432-018-2787-1 – volume: 139 start-page: 491 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0725 article-title: Machine learning: a useful radiological adjunct in determination of a newly diagnosed glioma’s grade and IDH status publication-title: J Neurooncol doi: 10.1007/s11060-018-2895-4 – volume: 37 start-page: 1775 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0245 article-title: Multi-label nonlinear matrix completion with transductive multi-task feature selection for joint MGMT and IDH1 status prediction of patient with high-grade gliomas publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2807590 – volume: 27 start-page: 709 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0965 article-title: Overall survival prediction in glioblastoma multiforme patients from volumetric, shape and texture features using machine learning publication-title: Surg Oncol doi: 10.1016/j.suronc.2018.09.002 – volume: 35 start-page: 184 year: 2015 ident: 10.1016/j.jocn.2021.04.043_b0370 article-title: DALSA: domain adaptation for supervised learning from sparsely annotated MR images publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2015.2463078 – volume: 146 start-page: 37 year: 2020 ident: 10.1016/j.jocn.2021.04.043_b1010 article-title: Automated delineation of the clinical target volume using anatomically constrained 3D expansion of the gross tumor volume publication-title: Radiother Oncol doi: 10.1016/j.radonc.2020.01.028 – volume: 13 start-page: 563 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b1005 article-title: MRI radiomics analysis of molecular alterations in low-grade gliomas publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-017-1691-5 – volume: 8 start-page: 1287 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0295 article-title: Biopsy Confirmed Glioma Recurrence Predicted by Multi-Modal Neuroimaging Metrics publication-title: J Clin Med doi: 10.3390/jcm8091287 – volume: 10 start-page: 6484 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0545 article-title: Pre-surgical connectome features predict IDH status in diffuse gliomas publication-title: Oncotarget doi: 10.18632/oncotarget.27301 – volume: 1–19 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0190 article-title: Machine learning applications to clinical decision support in neurosurgery: an artificial intelligence augmented systematic review publication-title: Neurosurg Rev – volume: 17:iv1–iv62 year: 2015 ident: 10.1016/j.jocn.2021.04.043_b0820 article-title: CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012 publication-title: Neuro Oncol – volume: 39 start-page: 1201 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0235 article-title: Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas publication-title: Am J Neuroradiol doi: 10.3174/ajnr.A5667 – volume: 76 start-page: 572 year: 2011 ident: 10.1016/j.jocn.2021.04.043_b0390 article-title: The risk of getting worse: surgically acquired deficits, perioperative complications, and functional outcomes after primary resection of glioblastoma publication-title: World Neurosurg doi: 10.1016/j.wneu.2011.06.014 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.jocn.2021.04.043_b0655 article-title: A fully-automatic multiparametric radiomics model: towards reproducible and prognostic imaging signature for prediction of overall survival in glioblastoma multiforme publication-title: Sci Rep – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.jocn.2021.04.043_b0180 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 23 start-page: 4375 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0690 article-title: Machine-learning based radiogenomics analysis of MRI features and metagenes in glioblastoma multiforme patients with different survival time publication-title: J Cell Mol Med doi: 10.1111/jcmm.14328 – volume: 30 start-page: 823 year: 2020 ident: 10.1016/j.jocn.2021.04.043_b1075 article-title: Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs publication-title: Eur Radiol doi: 10.1007/s00330-019-06441-z – volume: 16 start-page: 643 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0980 article-title: Applications of machine learning using electronic medical records in spine surgery publication-title: Neurospine doi: 10.14245/ns.1938386.193 – volume: 29 start-page: 4430 year: 2011 ident: 10.1016/j.jocn.2021.04.043_b0005 article-title: Compromised health-related quality of life in patients with low-grade glioma publication-title: J Clin Oncol doi: 10.1200/JCO.2011.35.5750 – volume: 46 start-page: 115 year: 2017 ident: 10.1016/j.jocn.2021.04.043_b1250 article-title: Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group prediction publication-title: J Magn Reson Imaging doi: 10.1002/jmri.25497 – volume: 62 start-page: 753 year: 2008 ident: 10.1016/j.jocn.2021.04.043_b0955 article-title: Glioma extent of resection and its impact on patient outcome publication-title: Neurosurgery doi: 10.1227/01.neu.0000318159.21731.cf – year: 1997 ident: 10.1016/j.jocn.2021.04.043_b0290 article-title: Brainweb: Online interface to a 3D MRI simulated brain database publication-title: NeuroImage. Citeseer. – volume: 24 start-page: 4429 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0740 article-title: Machine learning–based radiomics for molecular subtyping of gliomas publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-17-3445 – volume: 40 start-page: 47 year: 2014 ident: 10.1016/j.jocn.2021.04.043_b0335 article-title: Machine learning in preoperative glioma MRI: Survival associations by perfusion-based support vector machine outperforms traditional MRI publication-title: J Magn Reson imaging doi: 10.1002/jmri.24390 – volume: 49 start-page: 808 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0925 article-title: Noninvasive prediction of IDH1 mutation and ATRX expression loss in low-grade gliomas using multiparametric MR radiomic features publication-title: J Magn Reson Imaging doi: 10.1002/jmri.26240 – volume: 6 start-page: 1 year: 2016 ident: 10.1016/j.jocn.2021.04.043_b1125 article-title: Multiparametric MRI-based differentiation of WHO grade II/III glioma and WHO grade IV glioblastoma publication-title: Sci Rep doi: 10.1038/srep35142 – volume: 308 start-page: 1881 year: 2012 ident: 10.1016/j.jocn.2021.04.043_b0485 article-title: Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low-grade gliomas publication-title: JAMA doi: 10.1001/jama.2012.12807 – volume: 278 start-page: 563 year: 2016 ident: 10.1016/j.jocn.2021.04.043_b0365 article-title: Radiomics: images are more than pictures, they are data publication-title: Radiology doi: 10.1148/radiol.2015151169 – volume: 170 start-page: W1 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0785 article-title: PROBAST: a tool to assess risk of bias and applicability of prediction model studies: explanation and elaboration publication-title: Ann Intern Med doi: 10.7326/M18-1377 – year: 2020 ident: 10.1016/j.jocn.2021.04.043_b0185 article-title: Ethical thinking machines in surgery and the requirement for clinical leadership publication-title: Am J Surg doi: 10.1016/j.amjsurg.2020.06.073 – volume: 53 start-page: 647 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0860 article-title: Clinical evaluation of a multiparametric deep learning model for glioblastoma segmentation using heterogeneous magnetic resonance imaging data from clinical routine publication-title: Invest Radiol doi: 10.1097/RLI.0000000000000484 – ident: 10.1016/j.jocn.2021.04.043_b0610 – year: 2020 ident: 10.1016/j.jocn.2021.04.043_b0055 article-title: The diagnostic value of quantitative texture analysis of conventional MRI sequences using artificial neural networks in grading gliomas publication-title: Clin Radiol doi: 10.1016/j.crad.2019.12.008 – volume: 35 start-page: 1240 year: 2016 ident: 10.1016/j.jocn.2021.04.043_b0855 article-title: Brain tumor segmentation using convolutional neural networks in MRI images publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2538465 – volume: 60 start-page: 1297 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0580 article-title: Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI publication-title: Neuroradiology doi: 10.1007/s00234-018-2091-4 – volume: 36 start-page: 176 year: 2016 ident: 10.1016/j.jocn.2021.04.043_b0205 article-title: Natural language processing technologies in radiology research and clinical applications publication-title: Radiographics doi: 10.1148/rg.2016150080 – volume: 34 start-page: 1326 year: 2013 ident: 10.1016/j.jocn.2021.04.043_b0350 article-title: Multimodal MR imaging (diffusion, perfusion, and spectroscopy): is it possible to distinguish oligodendroglial tumor grade and 1p/19q codeletion in the pretherapeutic diagnosis? publication-title: Am J Neuroradiol doi: 10.3174/ajnr.A3352 – volume: 8 start-page: 27 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0550 article-title: Noninvasive grading of glioma tumor using magnetic resonance imaging with convolutional neural networks publication-title: Appl Sci doi: 10.3390/app8010027 – ident: 10.1016/j.jocn.2021.04.043_b0010 – ident: 10.1016/j.jocn.2021.04.043_b0815 doi: 10.1007/978-3-319-31204-0_9 – volume: 43 start-page: 5889 year: 2016 ident: 10.1016/j.jocn.2021.04.043_b0870 article-title: Stratification of pseudoprogression and true progression of glioblastoma multiform based on longitudinal diffusion tensor imaging without segmentation publication-title: Med Phys doi: 10.1118/1.4963812 – volume: 33 start-page: 296 year: 2011 ident: 10.1016/j.jocn.2021.04.043_b0455 article-title: Support vector machine multiparametric MRI identification of pseudoprogression from tumor recurrence in patients with resected glioblastoma publication-title: J Magn Reson Imaging doi: 10.1002/jmri.22432 – volume: 56 start-page: 2287 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0215 article-title: Prediction of survival with multi-scale radiomic analysis in glioblastoma patients publication-title: Med Biol Eng Comput doi: 10.1007/s11517-018-1858-4 – volume: 43 start-page: 2835 year: 2016 ident: 10.1016/j.jocn.2021.04.043_b0600 article-title: MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas publication-title: Med Phys doi: 10.1118/1.4948668 – volume: 78 start-page: 572 year: 2016 ident: 10.1016/j.jocn.2021.04.043_b0030 article-title: Imaging surrogates of infiltration obtained via multiparametric imaging pattern analysis predict subsequent location of recurrence of glioblastoma publication-title: Neurosurgery doi: 10.1227/NEU.0000000000001202 – year: 2017 ident: 10.1016/j.jocn.2021.04.043_b0195 article-title: The Seattle spine score: Predicting 30-day complication risk in adult spinal deformity surgery publication-title: J Clin Neurosci doi: 10.1016/j.jocn.2017.06.012 – volume: 37 start-page: 1943 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0750 article-title: Concatenated and connected random forests with multiscale patch driven active contour model for automated brain tumor segmentation of MR images publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2805821 – volume: 35 start-page: 18 year: 2017 ident: 10.1016/j.jocn.2021.04.043_b0410 article-title: Brain tumor segmentation with deep neural networks publication-title: Med Image Anal doi: 10.1016/j.media.2016.05.004 – start-page: 770 year: 2016 ident: 10.1016/j.jocn.2021.04.043_b0420 article-title: Deep residual learning for image recognition – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0910 article-title: Radiomic MRI signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond IDH1 publication-title: Sci Rep doi: 10.1038/s41598-018-22739-2 – volume: 30 start-page: 844 year: 2020 ident: 10.1016/j.jocn.2021.04.043_b0650 article-title: Advanced imaging parameters improve the prediction of diffuse lower-grade gliomas subtype, IDH mutant with no 1p19q codeletion: added value to the T2/FLAIR mismatch sign publication-title: Eur Radiol doi: 10.1007/s00330-019-06395-2 – volume: 9 start-page: 1201 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0505 article-title: Machine-learning based classification of glioblastoma using delta-radiomic features derived from dynamic susceptibility contrast enhanced magnetic resonance images: Introduction publication-title: Quant Imaging Med Surg doi: 10.21037/qims.2019.07.01 – volume: 164 start-page: 114 year: 2018 ident: 10.1016/j.jocn.2021.04.043_b0490 article-title: Quantitative texture analysis in the prediction of IDH status in low-grade gliomas publication-title: Clin Neurol Neurosurg doi: 10.1016/j.clineuro.2017.12.007 – volume: 125 start-page: e688 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0645 article-title: Prediction of IDH1 Mutation Status in Glioblastoma Using Machine Learning Technique Based on Quantitative Radiomic Data publication-title: World Neurosurg doi: 10.1016/j.wneu.2019.01.157 – volume: 30 start-page: 174 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0940 article-title: Multi-grade brain tumor classification using deep CNN with extensive data augmentation publication-title: J Comput Sci doi: 10.1016/j.jocs.2018.12.003 – volume: 59 year: 2020 ident: 10.1016/j.jocn.2021.04.043_b0465 article-title: Application of innovative image processing methods and AdaBound-SE-DenseNet to optimize the diagnosis performance of meningiomas and gliomas publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2020.101926 – volume: 43 start-page: 326 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0085 article-title: A new approach for brain tumor segmentation and classification based on score level fusion using transfer learning publication-title: J Med Syst doi: 10.1007/s10916-019-1453-8 – volume: 20 start-page: 728 year: 2019 ident: 10.1016/j.jocn.2021.04.043_b0560 article-title: Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study publication-title: Lancet Oncol doi: 10.1016/S1470-2045(19)30098-1 |
| SSID | ssj0009430 |
| Score | 2.5544558 |
| SecondaryResourceType | review_article |
| Snippet | [Display omitted]
oMachine learning has been widely applied to MRI to detect and diagnose gliomas.oNon-invasive detection of genetics has the potential to... Glioma is the most common primary intraparenchymal tumor of the brain and the 5-year survival rate of high-grade glioma is poor. Magnetic resonance imaging... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 177 |
| SubjectTerms | Brain tumor classification Convolutional neural networks Deep learning FLAIR Glioblastoma Glioma Glioma grading Image processing Machine learning Multimodal neuroimaging Neurosurgery Radiomics T1-MR image T2-MR image |
| Title | Machine learning applications to neuroimaging for glioma detection and classification: An artificial intelligence augmented systematic review |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0967586821002241 https://dx.doi.org/10.1016/j.jocn.2021.04.043 https://www.proquest.com/docview/2540721550 |
| Volume | 89 |
| WOSCitedRecordID | wos000659912500030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1532-2653 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009430 issn: 0967-5868 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DSFeEFcxLpOReKsyNYm9JLxVMASIVSAN1LfIdpySqk2mNSkT_4G_x-_h-BIn69TBHpCqqLJqK835cnxsf-c7CL0KYZEc5BLWJjHJPMJy6TGAgQehEQ8J92Wu8yu-fYomk3g6TT4PBr_bXJj1IirL-OIiOfuvpoY2MLZKnb2Bud2g0ADfwehwBbPD9Z8Mf6LpkbKtBzEb9s-oVaipJSyLpSlPpFiGs0VRLdkwk7W0hcNVrpsKqxWPyNE_xqVSRCqs5ETR1_JkzUyLe2ZXlKF_bIl-XUZmT1CzO-BvxPcF0376S1OUC_BBbw9d7L9assIkdU_YT1YWPVLRWhHDDWmHlV4nnOAG1llIdaeq0LIK7L5H4DuOrNvABBdPY1OUp_XlphyRdca-LRBj5nXfVLu-MmWY3Yv54bwSSg838LX0rdGOuqzPvTFvOjZjS5Sbp2qMVI2Rjgh8wh20F0Q0AW-7N_5wPP3YyUETXQXH_QebzmWYh5t3si1k2ggedER0eg_dtcbEYwPB-2ggywfo9oklazxEvywScYtE3EcirivcRyIGJGKDROyQiAGJ-DISX-MxNDsc4j4OscMh7nCIDQ4foa_vjk_fvPds9Q9PhDGpPUKyjLOMExqRTOQR53kYCS5GgkYSlrmC8pCxmNI4h-fGYlg68ITlCRF-lkUQhj9Gu2VVyicI06OM5xCKqpmfJLnPfJaI4ChR1I1Rwsg-8tsHnAorja8qtCzS7abdR0PX58wIw1z767C1W9q-YDBJpwDCa3tR18u-iCbQ_Wu_ly00Upgt1BEgK2XVrNKAakFESkdPb3T_z9Cd7h18jnbr80a-QLfEui5W5wdoJ5rGBxbjfwBShe30 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+applications+to+neuroimaging+for+glioma+detection+and+classification%3A+An+artificial+intelligence+augmented+systematic+review&rft.jtitle=Journal+of+clinical+neuroscience&rft.au=Buchlak%2C+Quinlan+D.&rft.au=Esmaili%2C+Nazanin&rft.au=Leveque%2C+Jean-Christophe&rft.au=Bennett%2C+Christine&rft.date=2021-07-01&rft.issn=0967-5868&rft.volume=89&rft.spage=177&rft.epage=198&rft_id=info:doi/10.1016%2Fj.jocn.2021.04.043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jocn_2021_04_043 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-5868&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-5868&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-5868&client=summon |