Machine learning applications to neuroimaging for glioma detection and classification: An artificial intelligence augmented systematic review

[Display omitted] oMachine learning has been widely applied to MRI to detect and diagnose gliomas.oNon-invasive detection of genetics has the potential to supersede biopsy procedures.oMachine learning has demonstrated strong performance and clinical utility.oPerformance metrics from 153 articles wer...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of clinical neuroscience Ročník 89; s. 177 - 198
Hlavní autoři: Buchlak, Quinlan D., Esmaili, Nazanin, Leveque, Jean-Christophe, Bennett, Christine, Farrokhi, Farrokh, Piccardi, Massimo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.07.2021
Témata:
ISSN:0967-5868, 1532-2653, 1532-2653
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract [Display omitted] oMachine learning has been widely applied to MRI to detect and diagnose gliomas.oNon-invasive detection of genetics has the potential to supersede biopsy procedures.oMachine learning has demonstrated strong performance and clinical utility.oPerformance metrics from 153 articles were synthesized to facilitate benchmarking.oDeep language models can facilitate systematic review article screening. Glioma is the most common primary intraparenchymal tumor of the brain and the 5-year survival rate of high-grade glioma is poor. Magnetic resonance imaging (MRI) is essential for detecting, characterizing and monitoring brain tumors but definitive diagnosis still relies on surgical pathology. Machine learning has been applied to the analysis of MRI data in glioma research and has the potential to change clinical practice and improve patient outcomes. This systematic review synthesizes and analyzes the current state of machine learning applications to glioma MRI data and explores the use of machine learning for systematic review automation. Various datapoints were extracted from the 153 studies that met inclusion criteria and analyzed. Natural language processing (NLP) analysis involved keyword extraction, topic modeling and document classification. Machine learning has been applied to tumor grading and diagnosis, tumor segmentation, non-invasive genomic biomarker identification, detection of progression and patient survival prediction. Model performance was generally strong (AUC = 0.87 ± 0.09; sensitivity = 0.87 ± 0.10; specificity = 0.0.86 ± 0.10; precision = 0.88 ± 0.11). Convolutional neural network, support vector machine and random forest algorithms were top performers. Deep learning document classifiers yielded acceptable performance (mean 5-fold cross-validation AUC = 0.71). Machine learning tools and data resources were synthesized and summarized to facilitate future research. Machine learning has been widely applied to the processing of MRI data in glioma research and has demonstrated substantial utility. NLP and transfer learning resources enabled the successful development of a replicable method for automating the systematic review article screening process, which has potential for shortening the time from discovery to clinical application in medicine.
AbstractList Glioma is the most common primary intraparenchymal tumor of the brain and the 5-year survival rate of high-grade glioma is poor. Magnetic resonance imaging (MRI) is essential for detecting, characterizing and monitoring brain tumors but definitive diagnosis still relies on surgical pathology. Machine learning has been applied to the analysis of MRI data in glioma research and has the potential to change clinical practice and improve patient outcomes. This systematic review synthesizes and analyzes the current state of machine learning applications to glioma MRI data and explores the use of machine learning for systematic review automation. Various datapoints were extracted from the 153 studies that met inclusion criteria and analyzed. Natural language processing (NLP) analysis involved keyword extraction, topic modeling and document classification. Machine learning has been applied to tumor grading and diagnosis, tumor segmentation, non-invasive genomic biomarker identification, detection of progression and patient survival prediction. Model performance was generally strong (AUC = 0.87 ± 0.09; sensitivity = 0.87 ± 0.10; specificity = 0.0.86 ± 0.10; precision = 0.88 ± 0.11). Convolutional neural network, support vector machine and random forest algorithms were top performers. Deep learning document classifiers yielded acceptable performance (mean 5-fold cross-validation AUC = 0.71). Machine learning tools and data resources were synthesized and summarized to facilitate future research. Machine learning has been widely applied to the processing of MRI data in glioma research and has demonstrated substantial utility. NLP and transfer learning resources enabled the successful development of a replicable method for automating the systematic review article screening process, which has potential for shortening the time from discovery to clinical application in medicine.Glioma is the most common primary intraparenchymal tumor of the brain and the 5-year survival rate of high-grade glioma is poor. Magnetic resonance imaging (MRI) is essential for detecting, characterizing and monitoring brain tumors but definitive diagnosis still relies on surgical pathology. Machine learning has been applied to the analysis of MRI data in glioma research and has the potential to change clinical practice and improve patient outcomes. This systematic review synthesizes and analyzes the current state of machine learning applications to glioma MRI data and explores the use of machine learning for systematic review automation. Various datapoints were extracted from the 153 studies that met inclusion criteria and analyzed. Natural language processing (NLP) analysis involved keyword extraction, topic modeling and document classification. Machine learning has been applied to tumor grading and diagnosis, tumor segmentation, non-invasive genomic biomarker identification, detection of progression and patient survival prediction. Model performance was generally strong (AUC = 0.87 ± 0.09; sensitivity = 0.87 ± 0.10; specificity = 0.0.86 ± 0.10; precision = 0.88 ± 0.11). Convolutional neural network, support vector machine and random forest algorithms were top performers. Deep learning document classifiers yielded acceptable performance (mean 5-fold cross-validation AUC = 0.71). Machine learning tools and data resources were synthesized and summarized to facilitate future research. Machine learning has been widely applied to the processing of MRI data in glioma research and has demonstrated substantial utility. NLP and transfer learning resources enabled the successful development of a replicable method for automating the systematic review article screening process, which has potential for shortening the time from discovery to clinical application in medicine.
[Display omitted] oMachine learning has been widely applied to MRI to detect and diagnose gliomas.oNon-invasive detection of genetics has the potential to supersede biopsy procedures.oMachine learning has demonstrated strong performance and clinical utility.oPerformance metrics from 153 articles were synthesized to facilitate benchmarking.oDeep language models can facilitate systematic review article screening. Glioma is the most common primary intraparenchymal tumor of the brain and the 5-year survival rate of high-grade glioma is poor. Magnetic resonance imaging (MRI) is essential for detecting, characterizing and monitoring brain tumors but definitive diagnosis still relies on surgical pathology. Machine learning has been applied to the analysis of MRI data in glioma research and has the potential to change clinical practice and improve patient outcomes. This systematic review synthesizes and analyzes the current state of machine learning applications to glioma MRI data and explores the use of machine learning for systematic review automation. Various datapoints were extracted from the 153 studies that met inclusion criteria and analyzed. Natural language processing (NLP) analysis involved keyword extraction, topic modeling and document classification. Machine learning has been applied to tumor grading and diagnosis, tumor segmentation, non-invasive genomic biomarker identification, detection of progression and patient survival prediction. Model performance was generally strong (AUC = 0.87 ± 0.09; sensitivity = 0.87 ± 0.10; specificity = 0.0.86 ± 0.10; precision = 0.88 ± 0.11). Convolutional neural network, support vector machine and random forest algorithms were top performers. Deep learning document classifiers yielded acceptable performance (mean 5-fold cross-validation AUC = 0.71). Machine learning tools and data resources were synthesized and summarized to facilitate future research. Machine learning has been widely applied to the processing of MRI data in glioma research and has demonstrated substantial utility. NLP and transfer learning resources enabled the successful development of a replicable method for automating the systematic review article screening process, which has potential for shortening the time from discovery to clinical application in medicine.
Author Farrokhi, Farrokh
Piccardi, Massimo
Leveque, Jean-Christophe
Buchlak, Quinlan D.
Esmaili, Nazanin
Bennett, Christine
Author_xml – sequence: 1
  givenname: Quinlan D.
  surname: Buchlak
  fullname: Buchlak, Quinlan D.
  email: quinlan.buchlak1@my.nd.edu.au
  organization: School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia
– sequence: 2
  givenname: Nazanin
  surname: Esmaili
  fullname: Esmaili, Nazanin
  organization: School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia
– sequence: 3
  givenname: Jean-Christophe
  surname: Leveque
  fullname: Leveque, Jean-Christophe
  organization: Neuroscience Institute, Virginia Mason Medical Center, Seattle, WA, USA
– sequence: 4
  givenname: Christine
  surname: Bennett
  fullname: Bennett, Christine
  organization: School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia
– sequence: 5
  givenname: Farrokh
  surname: Farrokhi
  fullname: Farrokhi, Farrokh
  organization: Neuroscience Institute, Virginia Mason Medical Center, Seattle, WA, USA
– sequence: 6
  givenname: Massimo
  surname: Piccardi
  fullname: Piccardi, Massimo
  organization: Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia
BookMark eNqFkc1u1DAUhS3USkxbXoCVl2wytRM7PxWbqgKKVMQG1pZzfRM8OPZge6jmIXhnHKarLop0JUvH57N8z7kgZz54JOQtZ1vOeHu92-4C-G3Nar5lokzzimy4bOqqbmVzRjZsaLtK9m3_mlyktGOMDaJhG_Lni4Yf1iN1qKO3fqZ6v3cWdLbBJ5oD9XiIwS56Xi-nEOnsbFg0NZgRVhfV3lBwOiU7PYE39LbIMa-C1Y5an9E5O6MHpPowL1gEQ9MxZVwKATTib4uPV-R80i7hm6fzknz_-OHb3X318PXT57vbhwqaXuRKCGNGbUYhO2Fg6sZxajoYgYHssO0kyLHRupeyn0o6uu8lHwc9DQK4MV0_NJfk3endfQy_DpiyWmyC8kXtMRySqqVgXc2lZMXan6wQQ0oRJwU2_1syR22d4kytDaidWhtQawOKiTJNQetn6D6WIOPxZej9CcKyf8kkqgR2zc3YWPJWJtiX8ZtnODjrSy3uJx7_B_8FO6G6WA
CitedBy_id crossref_primary_10_1007_s11831_025_10291_y
crossref_primary_10_1007_s11547_023_01725_3
crossref_primary_10_1007_s00590_021_03059_0
crossref_primary_10_3389_fmed_2023_1059712
crossref_primary_10_1016_j_saa_2025_125980
crossref_primary_10_1186_s12884_022_04891_w
crossref_primary_10_3390_cancers14112623
crossref_primary_10_1016_j_amjms_2023_06_010
crossref_primary_10_1155_2022_1478048
crossref_primary_10_3390_diagnostics13142429
crossref_primary_10_1186_s12880_025_01603_6
crossref_primary_10_3389_fpubh_2022_846598
crossref_primary_10_3390_diagnostics12081850
crossref_primary_10_1002_lary_30894
crossref_primary_10_1016_j_semcancer_2023_03_006
crossref_primary_10_3389_frai_2022_780405
crossref_primary_10_3390_app11167550
crossref_primary_10_1038_s41598_023_36702_3
crossref_primary_10_1007_s10143_025_03512_2
crossref_primary_10_1016_j_knosys_2024_111919
crossref_primary_10_3390_cancers14225608
crossref_primary_10_1007_s10143_025_03783_9
crossref_primary_10_3389_fonc_2022_856231
crossref_primary_10_1002_jmri_29364
crossref_primary_10_1016_j_jocn_2022_03_014
crossref_primary_10_1016_j_ncl_2024_08_003
crossref_primary_10_3390_info16010058
crossref_primary_10_1016_j_neuroimage_2023_120253
crossref_primary_10_3389_fonc_2022_905770
crossref_primary_10_3390_buildings13082061
crossref_primary_10_1007_s00117_021_00920_5
crossref_primary_10_1002_jmri_28103
crossref_primary_10_1007_s00330_023_10074_8
crossref_primary_10_2196_53567
crossref_primary_10_3389_fneur_2023_1179761
crossref_primary_10_3390_diagnostics13040743
crossref_primary_10_3390_diagnostics15010038
crossref_primary_10_1007_s10143_024_02452_7
crossref_primary_10_1007_s00586_024_08591_1
crossref_primary_10_1227_neu_0000000000003260
crossref_primary_10_1038_s41598_024_68291_0
crossref_primary_10_4103_wajr_wajr_32_22
crossref_primary_10_1016_j_compbiomed_2023_107063
crossref_primary_10_1007_s13721_023_00428_z
crossref_primary_10_1088_1361_6560_ad64b8
crossref_primary_10_1016_j_wneu_2024_11_048
crossref_primary_10_3389_fmed_2025_1635796
crossref_primary_10_1016_j_cpcardiol_2024_102754
crossref_primary_10_1002_jmri_29146
crossref_primary_10_1002_jmri_29543
Cites_doi 10.1007/s00330-019-06492-2
10.1016/j.future.2018.04.065
10.1007/s00701-012-1418-x
10.1007/s00330-016-4653-3
10.1038/s41598-017-10649-8
10.1016/j.dsp.2009.07.002
10.1016/j.fcij.2017.12.001
10.1007/s10278-017-9984-3
10.1002/mp.12481
10.13005/bpj/1511
10.1002/mrm.22495
10.1016/j.compbiomed.2018.05.005
10.1002/ima.22037
10.1002/jmri.25970
10.1186/s13643-017-0644-y
10.1109/TBME.2014.2325410
10.1002/jmri.26010
10.1016/j.clineuro.2018.08.004
10.1007/978-3-319-24574-4_28
10.1007/s10278-013-9622-7
10.7326/0003-4819-151-4-200908180-00135
10.3171/2014.7.JNS132449
10.1007/s10014-010-0275-7
10.1148/radiol.14140770
10.1177/1971400915576637
10.1145/1961189.1961199
10.1016/j.jocn.2018.05.002
10.18637/jss.v028.i05
10.1117/1.JMI.6.3.034002
10.1377/hlthaff.2010.0696
10.3174/ajnr.A5279
10.1093/neuonc/now121
10.1016/j.acra.2018.09.022
10.1016/j.compbiomed.2018.06.009
10.1007/s00401-007-0243-4
10.1007/BF00598951
10.2528/PIERB13052805
10.1016/j.canlet.2019.02.054
10.1016/j.nicl.2014.08.001
10.3389/fnins.2018.00804
10.1093/neuonc/noz199
10.1016/j.media.2016.10.004
10.1056/NEJMp1606181
10.1016/j.media.2017.10.002
10.1158/0008-5472.CAN-17-0339
10.1016/j.ijrobp.2019.07.011
10.1038/s41598-019-55922-0
10.1109/TBME.2018.2845706
10.1007/s00401-016-1545-1
10.1109/TMI.2018.2820120
10.1148/radiol.2016161382
10.1016/j.wneu.2018.10.151
10.1038/s41598-018-30273-4
10.1109/TPAMI.2012.120
10.1117/1.JMI.5.2.021219
10.1002/jmri.26704
10.1093/neuonc/now086
10.1155/2017/8054939
10.1158/0008-5472.CAN-18-0125
10.3174/ajnr.A5421
10.1007/s11060-011-0749-4
10.1007/s10278-018-0107-6
10.1016/S1470-2045(08)70125-6
10.1016/j.nicl.2017.10.030
10.1007/s10916-019-1228-2
10.1109/TMI.2014.2377694
10.1016/j.media.2018.07.010
10.5244/C.28.6
10.1155/2018/4940593
10.1016/j.radonc.2018.07.011
10.1148/radiol.09090663
10.1038/s41598-019-42276-w
10.1007/s00330-019-06548-3
10.1093/neuonc/noy033
10.1186/s12916-016-0555-0
10.7326/M18-1376
10.1109/ACCESS.2019.2928975
10.1016/j.cmpb.2018.09.007
10.1007/s11682-018-9949-2
10.1016/j.media.2008.11.002
10.1016/j.ejmp.2019.03.014
10.1007/s10916-019-1416-0
10.1016/j.asoc.2016.01.022
10.1155/2016/8356294
10.1371/journal.pone.0141506
10.1002/mp.12945
10.3348/kjr.2018.0814
10.3171/2011.2.JNS10998
10.1109/ACCESS.2018.2885639
10.1016/j.mri.2013.06.010
10.1007/s12178-016-9351-x
10.1158/1078-0432.CCR-17-3420
10.1016/j.irbm.2015.08.001
10.1088/0031-9155/58/13/R97
10.1016/j.bbe.2018.10.004
10.1007/s11060-018-2953-y
10.1186/s13643-019-0974-z
10.1007/s11060-019-03096-0
10.1023/A:1007963824710
10.1038/s41598-017-13679-4
10.7717/peerj.5982
10.1038/sj.ebd.6400602
10.1093/neuonc/now135
10.1038/s41598-018-31007-2
10.1118/1.4934373
10.1007/s11548-011-0559-3
10.1007/s00330-017-5267-0
10.1016/j.eswa.2015.08.036
10.31803/tg-20190712095507
10.1016/j.bbe.2019.06.003
10.1215/15228517-2008-102
10.1002/jmri.25960
10.1016/j.compbiomed.2017.02.012
10.1016/j.jclinepi.2020.01.008
10.1007/s10278-017-0009-z
10.1158/1078-0432.CCR-17-2236
10.1148/radiol.2018180200
10.1007/s12652-018-0883-3
10.1007/s00330-019-06056-4
10.18632/oncotarget.18001
10.1007/s11604-019-00902-7
10.1109/TPAMI.2018.2873610
10.1002/cam4.1908
10.1038/nrclinonc.2009.150
10.1016/j.image.2017.05.013
10.1007/s00330-018-5368-4
10.1038/nature14539
10.1016/j.cmpb.2016.12.018
10.1007/s00234-019-02244-7
10.1016/j.jclinepi.2007.10.009
10.1016/j.ejrad.2018.07.018
10.1056/NEJMoa043330
10.3174/ajnr.A5173
10.3174/ajnr.A2939
10.1016/j.cmpb.2019.05.015
10.3390/genes9080382
10.1016/j.zemedi.2018.11.002
10.3174/ajnr.A5569
10.1038/s41598-019-46296-4
10.2463/mrms.mp.2017-0178
10.1097/PAP.0000000000000049
10.3174/ajnr.A5858
10.1007/s00330-017-4964-z
10.1002/mp.13400
10.1097/SLA.0000000000002579
10.1002/mp.12752
10.1212/WNL.59.6.947
10.1038/s41598-018-24438-4
10.1016/j.ejca.2018.10.019
10.1109/TIP.2017.2713099
10.1007/s00330-017-5302-1
10.1016/S1470-2045(17)30194-8
10.2106/JBJS.19.00071
10.1007/s00432-018-2787-1
10.1007/s11060-018-2895-4
10.1109/TMI.2018.2807590
10.1016/j.suronc.2018.09.002
10.1109/TMI.2015.2463078
10.1016/j.radonc.2020.01.028
10.1007/s11548-017-1691-5
10.3390/jcm8091287
10.18632/oncotarget.27301
10.3174/ajnr.A5667
10.1016/j.wneu.2011.06.014
10.1023/A:1010933404324
10.1111/jcmm.14328
10.1007/s00330-019-06441-z
10.14245/ns.1938386.193
10.1200/JCO.2011.35.5750
10.1002/jmri.25497
10.1227/01.neu.0000318159.21731.cf
10.1158/1078-0432.CCR-17-3445
10.1002/jmri.24390
10.1002/jmri.26240
10.1038/srep35142
10.1001/jama.2012.12807
10.1148/radiol.2015151169
10.7326/M18-1377
10.1016/j.amjsurg.2020.06.073
10.1097/RLI.0000000000000484
10.1016/j.crad.2019.12.008
10.1109/TMI.2016.2538465
10.1007/s00234-018-2091-4
10.1148/rg.2016150080
10.3174/ajnr.A3352
10.3390/app8010027
10.1007/978-3-319-31204-0_9
10.1118/1.4963812
10.1002/jmri.22432
10.1007/s11517-018-1858-4
10.1118/1.4948668
10.1227/NEU.0000000000001202
10.1016/j.jocn.2017.06.012
10.1109/TMI.2018.2805821
10.1016/j.media.2016.05.004
10.1038/s41598-018-22739-2
10.1007/s00330-019-06395-2
10.21037/qims.2019.07.01
10.1016/j.clineuro.2017.12.007
10.1016/j.wneu.2019.01.157
10.1016/j.jocs.2018.12.003
10.1016/j.bspc.2020.101926
10.1007/s10916-019-1453-8
10.1016/S1470-2045(19)30098-1
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.jocn.2021.04.043
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1532-2653
EndPage 198
ExternalDocumentID 10_1016_j_jocn_2021_04_043
S0967586821002241
GroupedDBID ---
--K
--M
-RU
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABJNI
ABMAC
ABMZM
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDW
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LX8
M29
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SEL
SES
SEW
SPCBC
SSH
SSN
SSZ
T5K
UHS
WUQ
Z5R
~G-
~HD
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
9DU
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c384t-44ddbadb4574dcf7bbf37cbc0c57e675c5b3aa8558f101a8851b9af94c1dd7893
ISICitedReferencesCount 68
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000659912500030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0967-5868
1532-2653
IngestDate Thu Oct 02 10:40:19 EDT 2025
Tue Nov 18 22:13:21 EST 2025
Sat Nov 29 07:09:01 EST 2025
Fri Feb 23 02:43:58 EST 2024
Tue Oct 14 19:30:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords T1-MR image
Image processing
Multimodal neuroimaging
Glioblastoma
Glioma grading
Neurosurgery
Radiomics
Deep learning
Brain tumor classification
Glioma
T2-MR image
Machine learning
FLAIR
Convolutional neural networks
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-44ddbadb4574dcf7bbf37cbc0c57e675c5b3aa8558f101a8851b9af94c1dd7893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
PQID 2540721550
PQPubID 23479
PageCount 22
ParticipantIDs proquest_miscellaneous_2540721550
crossref_citationtrail_10_1016_j_jocn_2021_04_043
crossref_primary_10_1016_j_jocn_2021_04_043
elsevier_sciencedirect_doi_10_1016_j_jocn_2021_04_043
elsevier_clinicalkey_doi_10_1016_j_jocn_2021_04_043
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationTitle Journal of clinical neuroscience
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kocak, Durmaz, Ates, Sel, Gunes, Kaya (b0590) 2020; 30
Anaraki, Ayati, Kazemi (b0090) 2019; 39
El-Dahshan, Hosny, Salem (b0330) 2010; 20
Menze, Jakab, Bauer, Kalpathy-Cramer, Farahani, Kirby (b0760) 2014; 34
Buchlak, Yanamadala, Leveque, Sethi (b0200) 2016; 9
Tan, Zhang, Wei, Dong, Wang, Yang (b1070) 2019; 29
Wyles, Tibbo, Fu, Wang, Sohn, Kremers (b1155) 2019; 101
Bae, Choi, Ahn, Chang, Kang, Kim (b0105) 2018; 289
Kesler, Harrison, Petersen, Rao, Dyson, Alfaro-Munoz (b0545) 2019; 10
Kim, Do, Park (b0570) 2018; 45
Koley, Sadhu, Mitra, Chakraborty, Chakraborty (b0595) 2016; 41
Khawaldeh, Pervaiz, Rafiq, Alkhawaldeh (b0550) 2018; 8
Li, Wang, Yu, Guo, Cao (b0680) 2017; 7
Chollet (b0270) 2018
Bauer, Wiest, Nolte, Reyes (b0135) 2013; 58
Huang, Yang, Wu, Jiang, Chen, Feng (b0460) 2014; 61
Rathore, Akbari, Doshi, Shukla, Rozycki, Bilello (b0905) 2018; 5
Tian, Yan, Zhang, Zhang, Hu, Han (b1090) 2018; 48
Jang, Jeon, Kim, Kim (b0495) 2018; 8
Zhao, Wu, Song, Li, Zhang, Fan (b1240) 2018; 43
Li, Liu, Xu, Qian, Wang, Fan (b0670) 2018; 28
Devlin J, Chang M-W, Lee K, Toutanova K Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv Prepr; 2018. arXiv181004805
Bonte, Goethals, Van Holen (b0165) 2018; 98
Venneti, Huse (b1110) 2015; 22
Sanai, Berger (b0955) 2008; 62
Hu, Ning, Eschbacher, Gaw, Dueck, Smith (b0445) 2015; 10
Cai, Giannopoulos, Yu, Kelil, Ripley, Kumamaru (b0205) 2016; 36
Kanas, Zacharaki, Thomas, Zinn, Megalooikonomou, Colen (b0535) 2017; 140
Scott, Brasher, Sevick, Rewcastle, Forsyth (b0985) 2002; 59
Ismail, Hill, Statsevych, Huang, Prasanna, Correa (b0480) 2018; 39
Chaddad, Sabri, Niazi, Abdulkarim (b0215) 2018; 56
Perkuhn, Stavrinou, Thiele, Shakirin, Mohan, Garmpis (b0860) 2018; 53
Liao, Cai, Tian, Luo, Song, Li (b0690) 2019; 23
Su, Chen, Sun, Liu, Yang, Wang (b1030) 2020; 22
Shofty, Artzi, Ben, Liberman, Haim, Kashanian (b1005) 2018; 13
Wong, Syeda-Mahmood, Moradi (b1135) 2018; 49
Yiming Li,Zenghui Qian,Kaibin Xu,Kai Wang,Xing Fan,Shaowu Li,Tao Jiang,Xing Liu,Yinyan Wang (2018) MRI features predict p53 status in lower-grade gliomas via a machine-learning approach. NeuroImage Clin. doi: 10.1016/j.nicl.2017.10.030.
Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A, Shinohara RT, Berger C, Ha SM, Rozycki M. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge; 2018. arXiv Prepr arXiv181102629
Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. pp 1097–1105
Hsieh, Chen, Lo (b0435) 2017; 83
Takahashi, Takahashi, Tanaka, Haga, Nakamoto, Suzuki (b1065) 2019; 105
Kamnitsas, Ledig, Newcombe, Simpson, Kane, Menon (b0530) 2017; 36
Sajjad, Khan, Muhammad, Wu, Ullah, Baik (b0940) 2019; 30
Thaha, Kumar, Murugan, Dhanasekeran, Vijayakarthick, Selvi (b1085) 2019; 43
Kickingereder, Bonekamp, Nowosielski, Kratz, Sill, Burth (b0555) 2016; 281
Ismael, Mohammed, Hefny (b0475) 2020; 102
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (b0845) 2011; 12
Javed, Riaz, Ghafoor, Cheema (b0500) 2013; 53
Kim, Jung, Park, Jo, Park, Nam (b0575) 2020; 30
De Looze, Beausang, Cryan, Loftus, Buckley, Farrell (b0725) 2018; 139
Sampson, McGowan, Tetzlaff, Cogo, Moher (b0950) 2008; 61
Alis, Bagcilar, Senli, Isler, Yergin, Kocer (b0055) 2020
Sengupta, Ramaniharan, Gupta, Agarwal, Singh (b1000) 2019; 50
Costabile, Thompson, Alaswad, Ormond (b0295) 2019; 8
Klein, Engelberts, van der Ploeg, Kasteleijn-Nolst Trenité, Aaronson, Taphoorn (b0585) 2003; 54
Buchlak, Esmaili, Leveque, Bennett, Piccardi, Farrokhi (b0185) 2020
Svolos, Tsolaki, Kapsalaki, Theodorou, Fountas, Fezoulidis (b1055) 2013; 31
Hu, Yoon, Eschbacher, Baxter, Dueck, Nespodzany (b0450) 2019; 40
Havaei, Davy, Warde-Farley, Biard, Courville, Bengio (b0410) 2017; 35
Liu, Chen, Pan, Zhu, Zhang, Zhang (b0700) 2018; 65
Zhou, Chaudhury, Hall, Goldgof, Gillies, Gatenby (b1250) 2017; 46
Eichinger, Alberts, Delbridge, Trebeschi, Valentinitsch, Bette (b0325) 2017
Suh, Choi, Bae, Ahn, Chang, Kang (b1045) 2018; 28
Amin, Sharif, Raza, Saba, Anjum (b0065) 2019; 177
Smith, Brady (b1020) 1997; 23
Alcaide-Leon, Dufort, Geraldo, Alshafai, Maralani, Spears (b0045) 2017; 38
Subashini, Sahoo, Sunil, Easwaran (b1035) 2016; 43
Van Griethuysen, Fedorov, Parmar, Hosny, Aucoin, Narayan (b0385) 2017; 77
Amin, Sharif, Yasmin, Fernandes (b0075) 2017
Grabowski, Recinos, Nowacki, Schroeder, Angelov, Barnett (b0380) 2014; 121
Saouli, Akil, Kachouri (b0970) 2018; 166
Watanabe, Tanaka, Takeda (b1115) 1992; 34
Clark, Vendt, Smith, Freymann, Kirby, Koppel (b0285) 2013; 26
Prastawa, Bullitt, Gerig (b0865) 2009; 13
Zhou, Chang, Bai, Xiao, Su, Bi (b1245) 2019; 142
Bergstra, Breuleux, Bastien, Lamblin, Pascanu, Desjardins (b0140) 2010
Buchlak, Esmaili, Leveque, Farrokhi, Bennett, Piccardi (b0190) 2019; 1–19
Chang, Zhang, Guo, Zong, Rahman, Sanchez (b0230) 2016; 18
Chen, Zhang, Lu, Thung, Aibaidula, Liu (b0245) 2018; 37
Han, Xie, Zang, Zhang, Gu, Zhou (b0405) 2018; 140
Breiman (b0180) 2001; 45
Bird S, Klein E, Loper E. Natural language processing with Python: analyzing text with the natural language toolkit. “ O’Reilly Media, Inc.”; 2009.
Citak-Er, Firat, Kovanlikaya, Ture, Ozturk-Isik (b0275) 2018; 99
Qian, Tan, Zhang, Zhao, Chan, Zhou (b0870) 2016; 43
Obermeyer, Emanuel (b0810) 2016; 375
Gaw, Hawkins-Daarud, Hu, Yoon, Wang, Xu (b0360) 2019; 9
Pereira, Pinto, Alves, Silva (b0855) 2016; 35
Upadhaya, Morvan, Stindel, Le Reste, Hatt (b1100) 2015; 36
Stupp, Mason, Van Den Bent, Weller, Fisher, Taphoorn (b1025) 2005; 352
Nioche, Orlhac, Boughdad, Reuzé, Goya-Outi, Robert (b0805) 2018; 78
Park, Han, Ahn, Choi, Chang, Kim (b0840) 2018; 39
Yang, Song, Li (b1190) 2019; 39
Emblem, Due-Tonnessen, Hald, Bjornerud, Pinho, Scheie (b0335) 2014; 40
Liu, Xu, Yin, Zhang, Li, Lu (b0715) 2017; 38
Lau J. Systematic review automation thematic series; 2019.
Sanai, Polley, McDermott, Parsa, Berger (b0960) 2011; 115
Farrokhi, Buchlak, Sikora, Esmaili, Marsans, McLeod (b0345) 2019
Gillies, Kinahan, Hricak (b0365) 2016; 278
Peeken, Goldberg, Pyka, Bernhofer, Wiestler, Kessel (b0850) 2019; 8
Créquit, Trinquart, Yavchitz, Ravaud (b0300) 2016; 14
Li, Bai, Chen, Sun, Liu, Zhou (b0655) 2017; 7
Cheng J. Brain tumor dataset; 2017.
Kayalibay B, Jensen G, van der Smagt P (2017) CNN-based segmentation of medical imaging data. arXiv Prepr arXiv170103056.
Akbari, Macyszyn, Da, Bilello, Wolf, Martinez-Lage (b0030) 2016; 78
Barajas, Hodgson, Chang, Vandenberg, Yeh, Parsa (b0125) 2010; 254
Pan, Liu, Tang, Chen, Chen, Wu (b0825) 2019; 130
AlBadawy, Saha, Mazurowski (b0040) 2018; 45
Zinn, Singh, Kotrotsou, Hassan, Thomas, Luedi (b1260) 2018; 24
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov (b1060) 2015
Kickingereder, Isensee, Tursunova, Petersen, Neuberger, Bonekamp (b0560) 2019; 20
Li, Liu, Qian, Sun, Xu, Wang (b0665) 2018
Arita, Kinoshita, Kawaguchi, Takahashi, Narita, Terakawa (b0095) 2018; 8
Lilley, Lindvall, Lillemoe, Tulsky, Wiener, Cooper (b0695) 2018; 267
Zhao L, Jia K., Multiscale CNNs for brain tumor segmentation and diagnosis. Comput Math Methods Med; 2016.
Manning, Surdeanu, Bauer, Finkel, Bethard, McClosky (b0755) 2014
Nazir, Wahid, Ali Khan (b0800) 2015; 28
Inano, Oishi, Kunieda, Arakawa, Yamao, Shibata (b0470) 2014; 5
Řehůřek R., Scalability of Semantic Analysis in Natural Language Processing; 2011.
Morton, Berg, Levit, Eden (b0790) 2011
Chang, Bai, Zhou, Su, Bi, Agbodza (b0225) 2018; 24
Hemanth, Anitha, Naaji, Geman, Popescu (b0425) 2018; 7
Akkus, Ali, Sedlář, Agrawal, Parney, Giannini (b0035) 2017; 30
Liu, Zhang, Wu, Yu, Chen, Rekik (b0705) 2019; 13
Chen T, Li M, Li Y, Lin M, Wang N, Wang M, Xiao T, Xu B, Zhang C, Zhang Z (2015) Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems. arXiv Prepr arXiv151201274
Zhang, Chang, Ramkissoon, Tanguturi, Bi, Reardon (b1220) 2017; 19
Yun, Park, Lee, Ham, Kim, Kim (b1205) 2019; 9
Yu, Shi, Lian, Li, Liu, Gao (b1200) 2017; 27
Aaronson, Taphoorn, Heimans, Postma, Gundy, Beute (b0005) 2011; 29
Chang, Grinband, Weinberg, Bardis, Khy, Cadena (b0235) 2018; 39
Sun, Wang, Mok, Shi (b1050) 2019; 7
Fortin, De Rainville, Gardner, Parizeau, Gagné (b0355) 2012; 13
Cha (b0210) 2006; 27
Lao, Chen, Li, Li, Zhang, Liu (b0630) 2017; 7
Amin, Sharif, Yasmin, Saba, Anjum, Fernandes (b0085) 2019; 43
Park, Choi, Ahn, Chang, Kim, Lee (b0830) 2019; 20
Gong, Pauly, Wintermark, Zaharchuk (b0375) 2018; 48
Yang, Rao, Martinez, Veeraraghavan, Rao (b1175) 2015; 42
Team RC., R: A language and environment for statistical computing; 2013.
Wolff, Moons, Riley, Whiting, Westwood, Collins (b1130) 2019; 170
Zhang, Yan, Hu, Li, Yang, Han (b1230) 2017; 8
Kim, Cho, Kim, Park, Nam, Kong (b0580) 2018; 60
Jeong, Wang, Ji, Lei, Ali, Liu (b0505) 2019; 9
Seetha, Raja (b0990) 2018; 11
Guo, Yao, Chen, Zhuang, Tang, Ren (b0395) 2012; 154
Quan, Nguyen-Duc, Jeong (b0885) 2018; 37
Liang, Zhang, Liang, Song, Ai, Xia (b0685) 2018; 9
Tang, Liang, Zhong, Huang, Deng, Zhang (b1075) 2020; 30
Olson RS, Urbanowicz RJ, Andrews PC, Lavender NA, Moore JH., Automating biomedical data science through tree-based pipeline optimization. In: European Conference on the Applications of Evolutionary Computation. Springer; 2016. pp 123–137.
He, Zhang, Ren, Sun (b0420) 2016
Zacharaki, Morita, Bhatt, O’rourke, Melhem, Davatzikos (b1215) 2012; 33
Amin, Sharif, Yasmin, Fernandes (b0080) 2018; 87
Qiu, Yan, Gundreddy, Wang, Cheng, Liu (b0880) 2017; 25
Sengupta, Agarwal, Gupta, Ahlawat, Patir, Gupta (b0995) 2018; 106
Rathore, Akbari, Rozycki, Abdullah, Nasrallah, Binder (b0910) 2018; 8
Suchorska, Schüller, Biczok, Lenski, Albert, Giese (b1040) 2019; 107
Chatfield K, Simonyan K, Vedaldi A, Zisserman A. Return of the devil in the details: Delving deep into convolutional nets; 2014 arXiv Prepr arXiv14053531
Schwartz, Gao, Geng, Mody, Mikhail, Cho (b0980) 2019; 16
Li, Liang, Sun, Xu, Fan, Li (b0660) 2019; 61
Cho, Lee, Kim, Park (b0260) 2018; 6
Wu, Liu, Wu, Lin, Yang, Wang (b1150) 2018; 9
Jin, McCann, Froustey, Unser (b0515) 2017; 26
Jones E, Oliphant T, Peterson
Pedregosa (10.1016/j.jocn.2021.04.043_b0845) 2011; 12
Chollet (10.1016/j.jocn.2021.04.043_b0270) 2018
10.1016/j.jocn.2021.04.043_b1165
Li (10.1016/j.jocn.2021.04.043_b0665) 2018
Liu (10.1016/j.jocn.2021.04.043_b0700) 2018; 65
Sengupta (10.1016/j.jocn.2021.04.043_b0995) 2018; 106
Huang (10.1016/j.jocn.2021.04.043_b0460) 2014; 61
Bischl (10.1016/j.jocn.2021.04.043_b0150) 2016; 17
Smith (10.1016/j.jocn.2021.04.043_b1020) 1997; 23
Yang (10.1016/j.jocn.2021.04.043_b1175) 2015; 42
Xiao (10.1016/j.jocn.2021.04.043_b1160) 2018; 173
Johnson (10.1016/j.jocn.2021.04.043_b0520) 2012; 107
Upadhaya (10.1016/j.jocn.2021.04.043_b1100) 2015; 36
Chang (10.1016/j.jocn.2021.04.043_b0230) 2016; 18
Vamvakas (10.1016/j.jocn.2021.04.043_b1105) 2019; 60
Zhang (10.1016/j.jocn.2021.04.043_b1220) 2017; 19
Aliotta (10.1016/j.jocn.2021.04.043_b0050) 2019; 46
Kim (10.1016/j.jocn.2021.04.043_b0575) 2020; 30
Salçin (10.1016/j.jocn.2021.04.043_b0945) 2019; 13
Alcaide-Leon (10.1016/j.jocn.2021.04.043_b0045) 2017; 38
Yamahara (10.1016/j.jocn.2021.04.043_b1170) 2010; 27
Svolos (10.1016/j.jocn.2021.04.043_b1055) 2013; 31
Quan (10.1016/j.jocn.2021.04.043_b0885) 2018; 37
10.1016/j.jocn.2021.04.043_b0610
Emblem (10.1016/j.jocn.2021.04.043_b0335) 2014; 40
Huang (10.1016/j.jocn.2021.04.043_b0465) 2020; 59
10.1016/j.jocn.2021.04.043_b0890
Sanai (10.1016/j.jocn.2021.04.043_b0960) 2011; 115
Thaha (10.1016/j.jocn.2021.04.043_b1085) 2019; 43
Clark (10.1016/j.jocn.2021.04.043_b0280) 2020; 121
Kickingereder (10.1016/j.jocn.2021.04.043_b0560) 2019; 20
Sun (10.1016/j.jocn.2021.04.043_b1050) 2019; 7
Schomas (10.1016/j.jocn.2021.04.043_b0975) 2009; 11
Suh (10.1016/j.jocn.2021.04.043_b1045) 2018; 28
Jin (10.1016/j.jocn.2021.04.043_b0515) 2017; 26
He (10.1016/j.jocn.2021.04.043_b0420) 2016
Jakola (10.1016/j.jocn.2021.04.043_b0485) 2012; 308
Zhou (10.1016/j.jocn.2021.04.043_b1250) 2017; 46
10.1016/j.jocn.2021.04.043_b0525
Wolff (10.1016/j.jocn.2021.04.043_b1130) 2019; 170
Gong (10.1016/j.jocn.2021.04.043_b0375) 2018; 48
Jia (10.1016/j.jocn.2021.04.043_b0510) 2014
Park (10.1016/j.jocn.2021.04.043_b0840) 2018; 39
Buchlak (10.1016/j.jocn.2021.04.043_b0190) 2019; 1–19
Schwartz (10.1016/j.jocn.2021.04.043_b0980) 2019; 16
Van Griethuysen (10.1016/j.jocn.2021.04.043_b0385) 2017; 77
Emblem (10.1016/j.jocn.2021.04.043_b0340) 2015; 275
Korfiatis (10.1016/j.jocn.2021.04.043_b0600) 2016; 43
Kesler (10.1016/j.jocn.2021.04.043_b0545) 2019; 10
Liao (10.1016/j.jocn.2021.04.043_b0690) 2019; 23
Kim (10.1016/j.jocn.2021.04.043_b0580) 2018; 60
10.1016/j.jocn.2021.04.043_b0635
Bae (10.1016/j.jocn.2021.04.043_b0105) 2018; 289
Chang (10.1016/j.jocn.2021.04.043_b0225) 2018; 24
Prastawa (10.1016/j.jocn.2021.04.043_b0865) 2009; 13
Kickingereder (10.1016/j.jocn.2021.04.043_b0555) 2016; 281
Li (10.1016/j.jocn.2021.04.043_b0675) 2018; 28
Scott (10.1016/j.jocn.2021.04.043_b0985) 2002; 59
Blei (10.1016/j.jocn.2021.04.043_b0160) 2003; 3
Tian (10.1016/j.jocn.2021.04.043_b1090) 2018; 48
Hu (10.1016/j.jocn.2021.04.043_b0440) 2017; 19
Créquit (10.1016/j.jocn.2021.04.043_b0300) 2016; 14
De Looze (10.1016/j.jocn.2021.04.043_b0725) 2018; 139
Costabile (10.1016/j.jocn.2021.04.043_b0295) 2019; 8
Goetz (10.1016/j.jocn.2021.04.043_b0370) 2015; 35
10.1016/j.jocn.2021.04.043_b1080
Tykocki (10.1016/j.jocn.2021.04.043_b1095) 2018; 54
Louis (10.1016/j.jocn.2021.04.043_b0730) 2007; 114
Cocosco (10.1016/j.jocn.2021.04.043_b0290) 1997
Lundervold (10.1016/j.jocn.2021.04.043_b0745) 2019; 29
10.1016/j.jocn.2021.04.043_b0305
Raschka (10.1016/j.jocn.2021.04.043_b0900) 2017
Bauer (10.1016/j.jocn.2021.04.043_b0130) 2013; 23
Alis (10.1016/j.jocn.2021.04.043_b0055) 2020
Zhao (10.1016/j.jocn.2021.04.043_b1240) 2018; 43
Buchlak (10.1016/j.jocn.2021.04.043_b0195) 2017
10.1016/j.jocn.2021.04.043_b0540
Nioche (10.1016/j.jocn.2021.04.043_b0805) 2018; 78
Chang (10.1016/j.jocn.2021.04.043_b0220) 2011; 2
Li (10.1016/j.jocn.2021.04.043_b0655) 2017; 7
Ismael (10.1016/j.jocn.2021.04.043_b0475) 2020; 102
Yu (10.1016/j.jocn.2021.04.043_b1200) 2017; 27
Kocak (10.1016/j.jocn.2021.04.043_b0590) 2020; 30
Jeong (10.1016/j.jocn.2021.04.043_b0505) 2019; 9
Yang (10.1016/j.jocn.2021.04.043_b1180) 2019
Amin (10.1016/j.jocn.2021.04.043_b0080) 2018; 87
Watanabe (10.1016/j.jocn.2021.04.043_b1115) 1992; 34
Moher (10.1016/j.jocn.2021.04.043_b0775) 2009; 151
Akkus (10.1016/j.jocn.2021.04.043_b0035) 2017; 30
Wong (10.1016/j.jocn.2021.04.043_b1135) 2018; 49
Klein (10.1016/j.jocn.2021.04.043_b0585) 2003; 54
Clark (10.1016/j.jocn.2021.04.043_b0285) 2013; 26
Tang (10.1016/j.jocn.2021.04.043_b1075) 2020; 30
Liu (10.1016/j.jocn.2021.04.043_b0720) 2019; 26
Park (10.1016/j.jocn.2021.04.043_b0830) 2019; 20
Szegedy (10.1016/j.jocn.2021.04.043_b1060) 2015
Takahashi (10.1016/j.jocn.2021.04.043_b1065) 2019; 105
Wyles (10.1016/j.jocn.2021.04.043_b1155) 2019; 101
Zacharaki (10.1016/j.jocn.2021.04.043_b1210) 2011; 6
Zacharaki (10.1016/j.jocn.2021.04.043_b1215) 2012; 33
Bangalore Yogananda (10.1016/j.jocn.2021.04.043_b0115) 2020; 22
Li (10.1016/j.jocn.2021.04.043_b0670) 2018; 28
Amin (10.1016/j.jocn.2021.04.043_b0065) 2019; 177
Manning (10.1016/j.jocn.2021.04.043_b0755) 2014
Peeken (10.1016/j.jocn.2021.04.043_b0850) 2019; 8
Sanai (10.1016/j.jocn.2021.04.043_b0955) 2008; 62
Lee (10.1016/j.jocn.2021.04.043_b0650) 2020; 30
Dong (10.1016/j.jocn.2021.04.043_b0320) 2018; 41
Moons (10.1016/j.jocn.2021.04.043_b0785) 2019; 170
Sajjad (10.1016/j.jocn.2021.04.043_b0940) 2019; 30
Zöllner (10.1016/j.jocn.2021.04.043_b1265) 2010; 64
Akbari (10.1016/j.jocn.2021.04.043_b0025) 2018; 20
Venneti (10.1016/j.jocn.2021.04.043_b1110) 2015; 22
Achanta (10.1016/j.jocn.2021.04.043_b0015) 2012; 34
Qian (10.1016/j.jocn.2021.04.043_b0875) 2019; 451
Fellah (10.1016/j.jocn.2021.04.043_b0350) 2013; 34
Stupp (10.1016/j.jocn.2021.04.043_b1025) 2005; 352
Aaronson (10.1016/j.jocn.2021.04.043_b0005) 2011; 29
10.1016/j.jocn.2021.04.043_b0315
Liu (10.1016/j.jocn.2021.04.043_b0705) 2019; 13
10.1016/j.jocn.2021.04.043_b0110
Gupta (10.1016/j.jocn.2021.04.043_b0400) 2017; 59
Chen (10.1016/j.jocn.2021.04.043_b0245) 2018; 37
Hu (10.1016/j.jocn.2021.04.043_b0455) 2011; 33
Akbari (10.1016/j.jocn.2021.04.043_b0030) 2016; 78
Subashini (10.1016/j.jocn.2021.04.043_b1035) 2016; 43
Obermeyer (10.1016/j.jocn.2021.04.043_b0810) 2016; 375
Javed (10.1016/j.jocn.2021.04.043_b0500) 2013; 53
Korfiatis (10.1016/j.jocn.2021.04.043_b0605) 2017; 30
Inano (10.1016/j.jocn.2021.04.043_b0470) 2014; 5
Ma (10.1016/j.jocn.2021.04.043_b0750) 2018; 37
Morton (10.1016/j.jocn.2021.04.043_b0790) 2011
Pereira (10.1016/j.jocn.2021.04.043_b0855) 2016; 35
Avorn (10.1016/j.jocn.2021.04.043_b0100) 2010; 29
Liu (10.1016/j.jocn.2021.04.043_b0715) 2017; 38
Qian (10.1016/j.jocn.2021.04.043_b0870) 2016; 43
Amin (10.1016/j.jocn.2021.04.043_b0070) 2018
Jang (10.1016/j.jocn.2021.04.043_b0495) 2018; 8
Mohsen (10.1016/j.jocn.2021.04.043_b0780) 2018; 3
Su (10.1016/j.jocn.2021.04.043_b1030) 2020; 22
Wu (10.1016/j.jocn.2021.04.043_b1150) 2018; 9
Shusharina (10.1016/j.jocn.2021.04.043_b1010) 2020; 146
Yun (10.1016/j.jocn.2021.04.043_b1205) 2019; 9
Shofty (10.1016/j.jocn.2021.04.043_b1005) 2018; 13
Bisdas (10.1016/j.jocn.2021.04.043_b0155) 2018; 8
Park (10.1016/j.jocn.2021.04.043_b0835) 2018; 39
AlBadawy (10.1016/j.jocn.2021.04.043_b0040) 2018; 45
Bannach-Brown (10.1016/j.jocn.2021.04.043_b0120) 2018
Perkuhn (10.1016/j.jocn.2021.04.043_b0860) 2018; 53
Weller (10.1016/j.jocn.2021.04.043_b1120) 2017; 18
10.1016/j.jocn.2021.04.043_b0255
Lao (10.1016/j.jocn.2021.04.043_b0630) 2017; 7
10.1016/j.jocn.2021.04.043_b0010
Liang (10.1016/j.jocn.2021.04.043_b0685) 2018; 9
10.1016/j.jocn.2021.04.043_b0250
Lilley (10.1016/j.jocn.2021.04.043_b0695) 2018; 267
Ren (10.1016/j.jocn.2021.04.043_b0925) 2019; 49
Cha (10.1016/j.jocn.2021.04.043_b0210) 2006; 27
Buchlak (10.1016/j.jocn.2021.04.043_b0200) 2016; 9
Li (10.1016/j.jocn.2021.04.043_b0680) 2017; 7
Choi (10.1016/j.jocn.2021.04.043_b0265) 2020
Bergstra (10.1016/j.jocn.2021.04.043_b0140) 2010
Nazir (10.1016/j.jocn.2021.04.043_b0800) 2015; 28
Lee (10.1016/j.jocn.2021.04.043_b0645) 2019; 125
Cai (10.1016/j.jocn.2021.04.043_b0205) 2016; 36
10.1016/j.jocn.2021.04.043_b0920
Han (10.1016/j.jocn.2021.04.043_b0405) 2018; 140
Aerts (10.1016/j.jocn.2021.04.043_b0020) 2014; 5
Rathore (10.1016/j.jocn.2021.04.043_b0905) 2018; 5
10.1016/j.jocn.2021.04.043_b0240
Wiestler (10.1016/j.jocn.2021.04.043_b1125) 2016; 6
Kanas (10.1016/j.jocn.2021.04.043_b0535) 2017; 140
Gillies (10.1016/j.jocn.2021.04.043_b0365) 2016; 278
Menze (10.1016/j.jocn.2021.04.043_b0760) 2014; 34
Grabowski (10.1016/j.jocn.2021.04.043_b0380) 2014; 121
LeCun (10.1016/j.jocn.2021.04.043_b0640) 2015; 521
10.1016/j.jocn.2021.04.043_b0915
Havaei (10.1016/j.jocn.2021.04.043_b0410) 2017; 35
Lu (10.1016/j.jocn.2021.04.043_b0740) 2018; 24
Bauer (10.1016/j.jocn.2021.04.043_b0135) 2013; 58
Hu (10.1016/j.jocn.2021.04.043_b0445) 2015; 10
Zinn (10.1016/j.jocn.2021.04.043_b1260) 2018; 24
Breiman (10.1016/j.jocn.2021.04.043_b0180) 2001; 45
Arita (10.1016/j.jocn.2021.04.043_b0095) 2018; 8
Zhang (10.1016/j.jocn.2021.04.043_b1230) 2017; 8
El-Dahshan (10.1016/j.jocn.2021.04.043_b0330) 2010; 20
Brandsma (10.1016/j.jocn.2021.04.043_b0175) 2008; 9
Barajas (10.1016/j.jocn.2021.04.043_b0125) 2010; 254
Bramer (10.1016/j.jocn.2021.04.043_b0170) 2017; 6
Zhuge (10.1016/j.jocn.2021.04.043_b1255) 2017; 44
Guo (10.1016/j.jocn.2021.04.043_b0395) 2012; 154
Yang (10.1016/j.jocn.2021.04.043_b1195) 2018; 12
10.1016/j.jocn.2021.04.043_b1235
10.1016/j.jocn.2021.04.043_b0145
Kunimatsu (10.1016/j.jocn.2021.04.043_b0620) 2019; 18
Am (10.1016/j.jocn.2021.04.043_b0625) 2019; 43
Zhou (10.1016/j.jocn.2021.04.043_b1245) 2019; 142
Hsieh (10.1016/j.jocn.2021.04.043_b0435) 2017; 83
Wu (10.1016/j.jocn.2021.04.043_b1140) 2019; 145
Citak-Er (10.1016/j.jocn.2021.04.043_b0275) 2018; 99
Ostrom (10.1016/j.jocn.2021.04.043_b0820) 2015; 17:iv1–iv62
Hoseini (10.1016/j.jocn.2021.04.043_b0430) 2019; 32
Alis (10.1016/j.jocn.2021.04.043_b0060) 2020; 38
Bonte (10.1016/j.jocn.2021.04.043_b0165) 2018; 98
Farrokhi (10.1016/j.jocn.2021.04.043_b0345) 2019
Richards (10.1016/j.jocn.2021.04.043_b0930) 2008; 9
Suchorska (10.1016/j.jocn.2021.04.043_b1040) 2019; 107
Kim (10.1016/j.jocn.2021.04.043_b0570) 2018; 45
10.1016/j.jocn.2021.04.043_b0815
Chaddad (10.101
References_xml – volume: 254
  start-page: 564
  year: 2010
  end-page: 576
  ident: b0125
  article-title: Glioblastoma multiforme regional genetic and cellular expression patterns: influence on anatomic and physiologic MR imaging
  publication-title: Radiology
– year: 2019
  ident: b0345
  article-title: Investigating risk factors and predicting complications in deep brain stimulation surgery with machine learning algorithms
  publication-title: World Neurosurg.
– volume: 5
  start-page: 21219
  year: 2018
  ident: b0905
  article-title: Radiomic signature of infiltration in peritumoral edema predicts subsequent recurrence in glioblastoma: implications for personalized radiotherapy planning
  publication-title: J Med Imaging
– reference: Simonyan K, Zisserman A Very deep convolutional networks for large-scale image recognition; 2014. arXiv Prepr arXiv14091556
– volume: 130
  start-page: 172
  year: 2019
  end-page: 179
  ident: b0825
  article-title: A machine learning-based prediction model of H3K27M mutations in brainstem gliomas using conventional MRI and clinical features
  publication-title: Radiother Oncol
– volume: 54
  start-page: 7
  year: 2018
  end-page: 13
  ident: b1095
  article-title: Ten-year survival in glioblastoma. A systematic review
  publication-title: J Clin Neurosci
– volume: 27
  start-page: 3509
  year: 2017
  end-page: 3522
  ident: b1200
  article-title: Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma
  publication-title: Eur Radiol
– volume: 8
  start-page: 1
  year: 2018
  end-page: 10
  ident: b0095
  article-title: Lesion location implemented magnetic resonance imaging radiomics for predicting IDH and TERT promoter mutations in grade II/III gliomas
  publication-title: Sci Rep
– volume: 19
  start-page: 128
  year: 2017
  end-page: 137
  ident: b0440
  article-title: Radiogenomics to characterize regional genetic heterogeneity in glioblastoma
  publication-title: Neuro Oncol
– volume: 9
  start-page: 382
  year: 2018
  ident: b0685
  article-title: Multimodal 3D DenseNet for IDH genotype prediction in gliomas
  publication-title: Genes (Basel)
– reference: Lau J. Systematic review automation thematic series; 2019.
– volume: 34
  start-page: 2274
  year: 2012
  end-page: 2282
  ident: b0015
  article-title: SLIC superpixels compared to state-of-the-art superpixel methods
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 43
  start-page: 294
  year: 2019
  ident: b1085
  article-title: Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images
  publication-title: J Med Syst
– volume: 177
  start-page: 69
  year: 2019
  end-page: 79
  ident: b0065
  article-title: Brain tumor detection using statistical and machine learning method
  publication-title: Comput Methods Programs Biomed
– volume: 521
  start-page: 436
  year: 2015
  ident: b0640
  article-title: Deep learning
  publication-title: Nature
– volume: 26
  start-page: 4509
  year: 2017
  end-page: 4522
  ident: b0515
  article-title: Deep convolutional neural network for inverse problems in imaging
  publication-title: IEEE Trans Image Process
– start-page: 1
  year: 2015
  end-page: 9
  ident: b1060
  article-title: Going deeper with convolutions
  publication-title: In: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 48
  start-page: 1518
  year: 2018
  end-page: 1528
  ident: b1090
  article-title: Radiomics strategy for glioma grading using texture features from multiparametric MRI
  publication-title: J Magn Reson Imaging
– volume: 45
  start-page: 1150
  year: 2018
  end-page: 1158
  ident: b0040
  article-title: Deep learning for segmentation of brain tumors: Impact of cross-institutional training and testing
  publication-title: Med Phys
– volume: 27
  start-page: 709
  year: 2018
  end-page: 714
  ident: b0965
  article-title: Overall survival prediction in glioblastoma multiforme patients from volumetric, shape and texture features using machine learning
  publication-title: Surg Oncol
– start-page: 125
  year: 2016
  end-page: 148
  ident: b0415
  article-title: Deep learning trends for focal brain pathology segmentation in MRI
  publication-title: Machine learning for health informatics
– volume: 105
  start-page: 784
  year: 2019
  end-page: 791
  ident: b1065
  article-title: Radiomics Analysis for Glioma Malignancy Evaluation Using Diffusion Kurtosis and Tensor Imaging
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 43
  start-page: 98
  year: 2018
  end-page: 111
  ident: b1240
  article-title: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation
  publication-title: Med Image Anal
– reference: Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. pp 1097–1105
– volume: 27
  start-page: 81
  year: 2010
  end-page: 87
  ident: b1170
  article-title: Morphological and flow cytometric analysis of cell infiltration in glioblastoma: a comparison of autopsy brain and neuroimaging
  publication-title: Brain Tumor Pathol
– reference: Jones E, Oliphant T, Peterson P (2014) {SciPy}: Open source scientific tools for {Python}.
– volume: 14
  start-page: 2349
  year: 2013
  end-page: 2353
  ident: b0310
  article-title: Orange: data mining toolbox in Python
  publication-title: J Mach Learn Res
– volume: 48
  start-page: 916
  year: 2018
  end-page: 926
  ident: b1225
  article-title: Radiomics strategy for molecular subtype stratification of lower-grade glioma: detecting IDH and TP53 mutations based on multimodal MRI
  publication-title: J Magn Reson Imaging
– volume: 16
  year: 2019
  ident: b0765
  article-title: The significant cost of systematic reviews and meta-analyses: A call for greater involvement of machine learning to assess the promise of clinical trials
  publication-title: Contemp Clin trials Commun
– volume: 36
  start-page: 345
  year: 2015
  end-page: 350
  ident: b1100
  article-title: A framework for multimodal imaging-based prognostic model building: preliminary study on multimodal MRI in glioblastoma multiforme
  publication-title: IRBM
– volume: 24
  start-page: 6288
  year: 2018
  end-page: 6299
  ident: b1260
  article-title: A coclinical radiogenomic validation study: conserved magnetic resonance radiomic appearance of periostin-expressing glioblastoma in patients and xenograft models
  publication-title: Clin cancer Res
– volume: 33
  start-page: 296
  year: 2011
  end-page: 305
  ident: b0455
  article-title: Support vector machine multiparametric MRI identification of pseudoprogression from tumor recurrence in patients with resected glioblastoma
  publication-title: J Magn Reson Imaging
– volume: 102
  year: 2020
  ident: b0475
  article-title: An enhanced deep learning approach for brain cancer MRI images classification using residual networks
  publication-title: Artif Intell Med
– volume: 121
  start-page: 1115
  year: 2014
  end-page: 1123
  ident: b0380
  article-title: Residual tumor volume versus extent of resection: predictors of survival after surgery for glioblastoma
  publication-title: J Neurosurg
– volume: 24
  start-page: 1073
  year: 2018
  end-page: 1081
  ident: b0225
  article-title: Residual convolutional neural network for the determination of IDH status in low-and high-grade gliomas from MR imaging
  publication-title: Clin Cancer Res
– volume: 9
  start-page: 1201
  year: 2019
  ident: b0505
  article-title: Machine-learning based classification of glioblastoma using delta-radiomic features derived from dynamic susceptibility contrast enhanced magnetic resonance images: Introduction
  publication-title: Quant Imaging Med Surg
– volume: 59
  year: 2020
  ident: b0465
  article-title: Application of innovative image processing methods and AdaBound-SE-DenseNet to optimize the diagnosis performance of meningiomas and gliomas
  publication-title: Biomed Signal Process Control
– volume: 20
  start-page: 1381
  year: 2019
  end-page: 1389
  ident: b0830
  article-title: Radiomics MRI phenotyping with machine learning to predict the grade of lower-grade gliomas: a study focused on nonenhancing tumors
  publication-title: Korean J Radiol
– volume: 14
  start-page: 8
  year: 2016
  ident: b0300
  article-title: Wasted research when systematic reviews fail to provide a complete and up-to-date evidence synthesis: the example of lung cancer
  publication-title: BMC Med
– volume: 38
  start-page: 135
  year: 2020
  end-page: 143
  ident: b0060
  article-title: Machine learning-based quantitative texture analysis of conventional MRI combined with ADC maps for assessment of IDH1 mutation in high-grade gliomas
  publication-title: Jpn J Radiol
– volume: 36
  start-page: 61
  year: 2017
  end-page: 78
  ident: b0530
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med Image Anal
– volume: 352
  start-page: 987
  year: 2005
  end-page: 996
  ident: b1025
  article-title: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma
  publication-title: N Engl J Med
– volume: 3
  start-page: 68
  year: 2018
  end-page: 71
  ident: b0780
  article-title: Classification using deep learning neural networks for brain tumors
  publication-title: Futur Comput Informatics J
– volume: 40
  start-page: 47
  year: 2014
  end-page: 54
  ident: b0335
  article-title: Machine learning in preoperative glioma MRI: Survival associations by perfusion-based support vector machine outperforms traditional MRI
  publication-title: J Magn Reson imaging
– volume: 166
  start-page: 39
  year: 2018
  end-page: 49
  ident: b0970
  article-title: Fully automatic brain tumor segmentation using end-to-end incremental deep neural networks in MRI images
  publication-title: Comput Methods Programs Biomed
– start-page: 1
  year: 2018
  end-page: 17
  ident: b0070
  article-title: Detection of brain tumor based on features fusion and machine learning
  publication-title: J Ambient Intell Humaniz Comput
– volume: 49
  start-page: 808
  year: 2019
  end-page: 817
  ident: b0925
  article-title: Noninvasive prediction of IDH1 mutation and ATRX expression loss in low-grade gliomas using multiparametric MR radiomic features
  publication-title: J Magn Reson Imaging
– volume: 10
  start-page: 6484
  year: 2019
  ident: b0545
  article-title: Pre-surgical connectome features predict IDH status in diffuse gliomas
  publication-title: Oncotarget
– volume: 139
  start-page: 491
  year: 2018
  end-page: 499
  ident: b0725
  article-title: Machine learning: a useful radiological adjunct in determination of a newly diagnosed glioma’s grade and IDH status
  publication-title: J Neurooncol
– volume: 87
  start-page: 290
  year: 2018
  end-page: 297
  ident: b0080
  article-title: Big data analysis for brain tumor detection: Deep convolutional neural networks
  publication-title: Futur Gener Comput Syst
– volume: 62
  start-page: 753
  year: 2008
  end-page: 766
  ident: b0955
  article-title: Glioma extent of resection and its impact on patient outcome
  publication-title: Neurosurgery
– volume: 11
  start-page: 1457
  year: 2018
  ident: b0990
  article-title: Brain tumor classification using convolutional neural networks
  publication-title: Biomed Pharmacol J
– volume: 24
  start-page: 4429
  year: 2018
  end-page: 4436
  ident: b0740
  article-title: Machine learning–based radiomics for molecular subtyping of gliomas
  publication-title: Clin Cancer Res
– volume: 164
  start-page: 114
  year: 2018
  end-page: 120
  ident: b0490
  article-title: Quantitative texture analysis in the prediction of IDH status in low-grade gliomas
  publication-title: Clin Neurol Neurosurg
– reference: Chatfield K, Simonyan K, Vedaldi A, Zisserman A. Return of the devil in the details: Delving deep into convolutional nets; 2014 arXiv Prepr arXiv14053531
– volume: 121
  start-page: 81
  year: 2020
  end-page: 90
  ident: b0280
  article-title: A full systematic review was completed in 2 weeks using automation tools: a case study
  publication-title: J Clin Epidemiol
– volume: 122
  start-page: e812
  year: 2019
  end-page: e820
  ident: b0565
  article-title: Apparent Diffusion Coefficient as a Predictive Biomarker for Survival in Patients with Treatment-Naive Glioblastoma Using Quantitative Multiparametric Magnetic Resonance Profiling
  publication-title: World Neurosurg
– volume: 48
  start-page: 330
  year: 2018
  end-page: 340
  ident: b0375
  article-title: Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI
  publication-title: J Magn Reson Imaging
– volume: 59
  start-page: 947
  year: 2002
  end-page: 949
  ident: b0985
  article-title: How often are nonenhancing supratentorial gliomas malignant? A population study
  publication-title: Neurology
– volume: 61
  start-page: 2633
  year: 2014
  end-page: 2645
  ident: b0460
  article-title: Brain tumor segmentation based on local independent projection-based classification
  publication-title: IEEE Trans Biomed Eng
– volume: 9
  start-page: 1
  year: 2019
  end-page: 9
  ident: b0360
  article-title: Integration of machine learning and mechanistic models accurately predicts variation in cell density of glioblastoma using multiparametric MRI
  publication-title: Sci Rep
– volume: 76
  start-page: 572
  year: 2011
  end-page: 579
  ident: b0390
  article-title: The risk of getting worse: surgically acquired deficits, perioperative complications, and functional outcomes after primary resection of glioblastoma
  publication-title: World Neurosurg
– year: 2011
  ident: b0790
  article-title: Finding what works in health care: standards for systematic reviews
– volume: 7
  start-page: 4275
  year: 2018
  end-page: 4283
  ident: b0425
  article-title: A modified deep convolutional neural network for abnormal brain image classification
  publication-title: IEEE Access
– start-page: 675
  year: 2014
  end-page: 678
  ident: b0510
  article-title: Caffe: Convolutional architecture for fast feature embedding
  publication-title: In: Proceedings of the 22nd ACM international conference on Multimedia
– volume: 151
  start-page: 264
  year: 2009
  end-page: 269
  ident: b0775
  article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement
  publication-title: Ann Intern Med
– volume: 289
  start-page: 797
  year: 2018
  end-page: 806
  ident: b0105
  article-title: Radiomic MRI phenotyping of glioblastoma: improving survival prediction
  publication-title: Radiology
– volume: 32
  start-page: 105
  year: 2019
  end-page: 115
  ident: b0430
  article-title: AdaptAhead optimization algorithm for learning deep CNN applied to MRI segmentation
  publication-title: J Digit Imaging
– volume: 30
  start-page: 622
  year: 2017
  end-page: 628
  ident: b0605
  article-title: Residual deep convolutional neural network predicts MGMT methylation status
  publication-title: J Digit Imaging
– volume: 22
  start-page: 402
  year: 2020
  end-page: 411
  ident: b0115
  article-title: A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas
  publication-title: Neuro Oncol
– volume: 36
  start-page: 176
  year: 2016
  end-page: 191
  ident: b0205
  article-title: Natural language processing technologies in radiology research and clinical applications
  publication-title: Radiographics
– volume: 8
  start-page: 47816
  year: 2017
  ident: b1230
  article-title: Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features
  publication-title: Oncotarget
– volume: 44
  start-page: 5234
  year: 2017
  end-page: 5243
  ident: b1255
  article-title: Brain tumor segmentation using holistically nested neural networks in MRI images
  publication-title: Med Phys
– year: 2017
  ident: b0325
  article-title: Diffusion tensor image features predict IDH genotype in newly diagnosed WHO grade II/III gliomas
  publication-title: Sci Rep
– volume: 10
  year: 2015
  ident: b0445
  article-title: Multi-parametric MRI and texture analysis to visualize spatial histologic heterogeneity and tumor extent in glioblastoma
  publication-title: PLoS ONE
– volume: 60
  start-page: 1297
  year: 2018
  end-page: 1305
  ident: b0580
  article-title: Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI
  publication-title: Neuroradiology
– volume: 5
  start-page: 396
  year: 2014
  end-page: 407
  ident: b0470
  article-title: Voxel-based clustered imaging by multiparameter diffusion tensor images for glioma grading
  publication-title: NeuroImage Clin
– volume: 275
  start-page: 228
  year: 2015
  end-page: 234
  ident: b0340
  article-title: A generic support vector machine model for preoperative glioma survival associations
  publication-title: Radiology
– year: 2017
  ident: b0900
  article-title: Python machine learning
– volume: 8
  start-page: 1
  year: 2018
  end-page: 9
  ident: b0495
  article-title: Prediction of pseudoprogression versus progression using machine learning algorithm in glioblastoma
  publication-title: Sci Rep
– volume: 13
  start-page: 563
  year: 2018
  end-page: 571
  ident: b1005
  article-title: MRI radiomics analysis of molecular alterations in low-grade gliomas
  publication-title: Int J Comput Assist Radiol Surg
– volume: 77
  start-page: e104
  year: 2017
  end-page: e107
  ident: b0385
  article-title: Computational radiomics system to decode the radiographic phenotype
  publication-title: Cancer Res
– volume: 23
  start-page: 45
  year: 1997
  end-page: 78
  ident: b1020
  article-title: SUSAN—a new approach to low level image processing
  publication-title: Int J Comput Vis
– volume: 18
  start-page: 1680
  year: 2016
  end-page: 1687
  ident: b0230
  article-title: Multimodal imaging patterns predict survival in recurrent glioblastoma patients treated with bevacizumab
  publication-title: Neuro Oncol
– reference: Ronneberger O, Fischer P, Brox T., U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention; 2015, Springer, pp 234–241.
– volume: 25
  start-page: 751
  year: 2017
  end-page: 763
  ident: b0880
  article-title: A new approach to develop computer-aided diagnosis scheme of breast mass classification using deep learning technology
  publication-title: J Xray Sci Technol
– year: 2018
  ident: b0270
  article-title: Keras: The python deep learning library
  publication-title: Astrophys Source Code Libr.
– volume: 30
  start-page: 877
  year: 2020
  end-page: 886
  ident: b0590
  article-title: Radiogenomics of lower-grade gliomas: machine learning–based MRI texture analysis for predicting 1p/19q codeletion status
  publication-title: Eur Radiol
– volume: 6
  start-page: 245
  year: 2017
  ident: b0170
  article-title: Optimal database combinations for literature searches in systematic reviews: a prospective exploratory study
  publication-title: Syst Rev
– volume: 39
  start-page: 693
  year: 2018
  end-page: 698
  ident: b0840
  article-title: Whole-tumor histogram and texture analyses of DTI for evaluation of IDH1-mutation and 1p/19q-codeletion status in World Health Organization grade II gliomas
  publication-title: Am J Neuroradiol
– reference: Řehůřek R., Scalability of Semantic Analysis in Natural Language Processing; 2011.
– volume: 28
  start-page: 1
  year: 2008
  end-page: 26
  ident: b0615
  article-title: Building predictive models in R using the caret package
  publication-title: J Stat Softw
– volume: 41
  start-page: 453
  year: 2016
  end-page: 465
  ident: b0595
  article-title: Delineation and diagnosis of brain tumors from post contrast T1-weighted MR images using rough granular computing and random forest
  publication-title: Appl Soft Comput
– volume: 20
  start-page: 433
  year: 2010
  end-page: 441
  ident: b0330
  article-title: Hybrid intelligent techniques for MRI brain images classification
  publication-title: Digit Signal Process
– volume: 64
  start-page: 1230
  year: 2010
  end-page: 1236
  ident: b1265
  article-title: Support vector machines in DSC-based glioma imaging: Suggestions for optimal characterization
  publication-title: Magn Reson Med
– reference: Wu Y-P, Lin Y-S, Wu W-G, Yang C, Gu J-Q, Bai Y, Wang M-Y (2017) Semiautomatic segmentation of glioma on mobile devices. J Healthc Eng; 2017.
– volume: 30
  start-page: 469
  year: 2017
  end-page: 476
  ident: b0035
  article-title: Predicting deletion of chromosomal arms 1p/19q in low-grade gliomas from MR images using machine intelligence
  publication-title: J Digit Imaging
– start-page: 89
  year: 2019
  end-page: 109
  ident: b1180
  article-title: Deep learning and its applications to natural language processing
  publication-title: Deep learning: Fundamentals, theory and applications
– volume: 20
  start-page: 728
  year: 2019
  end-page: 740
  ident: b0560
  article-title: Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study
  publication-title: Lancet Oncol
– start-page: 1
  year: 2020
  end-page: 9
  ident: b0265
  article-title: Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction
  publication-title: Eur Radiol
– volume: 35
  start-page: 184
  year: 2015
  end-page: 196
  ident: b0370
  article-title: DALSA: domain adaptation for supervised learning from sparsely annotated MR images
  publication-title: IEEE Trans Med Imaging
– volume: 267
  start-page: 823
  year: 2018
  end-page: 825
  ident: b0695
  article-title: Measuring processes of care in palliative surgery: a novel approach using natural language processing
  publication-title: Ann Surg
– reference: Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A, Shinohara RT, Berger C, Ha SM, Rozycki M. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge; 2018. arXiv Prepr arXiv181102629
– volume: 45
  start-page: 3120
  year: 2018
  end-page: 3131
  ident: b0570
  article-title: Improving resolution of MR images with an adversarial network incorporating images with different contrast
  publication-title: Med Phys
– start-page: 55
  year: 2014
  end-page: 60
  ident: b0755
  article-title: The Stanford CoreNLP natural language processing toolkit
  publication-title: In: Proceedings of 52nd annual meeting of the association for computational linguistics: system demonstrations
– volume: 2
  start-page: 1
  year: 2011
  end-page: 27
  ident: b0220
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Trans Intell Syst Technol
– year: 2018
  ident: b0665
  article-title: Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature
  publication-title: Eur Radiol
– reference: Olson RS, Urbanowicz RJ, Andrews PC, Lavender NA, Moore JH., Automating biomedical data science through tree-based pipeline optimization. In: European Conference on the Applications of Evolutionary Computation. Springer; 2016. pp 123–137.
– volume: 7
  start-page: 1
  year: 2017
  end-page: 11
  ident: b0680
  article-title: Deep Learning based Radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma
  publication-title: Sci Rep
– volume: 56
  start-page: 2287
  year: 2018
  end-page: 2300
  ident: b0215
  article-title: Prediction of survival with multi-scale radiomic analysis in glioblastoma patients
  publication-title: Med Biol Eng Comput
– volume: 83
  start-page: 102
  year: 2017
  end-page: 108
  ident: b0435
  article-title: Quantitative glioma grading using transformed gray-scale invariant textures of MRI
  publication-title: Comput Biol Med
– volume: 107
  start-page: 359
  year: 2012
  end-page: 364
  ident: b0520
  article-title: Glioblastoma survival in the United States before and during the temozolomide era
  publication-title: J Neurooncol
– volume: 13
  start-page: 1333
  year: 2019
  end-page: 1351
  ident: b0705
  article-title: Overall survival time prediction for high-grade glioma patients based on large-scale brain functional networks
  publication-title: Brain Imaging Behav
– volume: 6
  start-page: 34002
  year: 2019
  ident: b0770
  article-title: Deep learning with mixed supervision for brain tumor segmentation
  publication-title: J Med Imaging
– volume: 13
  start-page: 2171
  year: 2012
  end-page: 2175
  ident: b0355
  article-title: DEAP: Evolutionary algorithms made easy
  publication-title: J Mach Learn Res
– volume: 140
  start-page: 297
  year: 2018
  end-page: 306
  ident: b0405
  article-title: Non-invasive genotype prediction of chromosome 1p/19q co-deletion by development and validation of an MRI-based radiomics signature in lower-grade gliomas
  publication-title: J Neurooncol
– volume: 9
  start-page: 85
  year: 2008
  ident: b0930
  article-title: Handsearching still a valuable element of the systematic review
  publication-title: Evid Based Dent
– volume: 5
  start-page: 1
  year: 2014
  end-page: 9
  ident: b0020
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nat Commun
– volume: 1–19
  year: 2019
  ident: b0190
  article-title: Machine learning applications to clinical decision support in neurosurgery: an artificial intelligence augmented systematic review
  publication-title: Neurosurg Rev
– volume: 101
  start-page: 1931
  year: 2019
  end-page: 1938
  ident: b1155
  article-title: Use of natural language processing algorithms to identify common data elements in operative notes for total hip arthroplasty
  publication-title: JBJS
– volume: 154
  start-page: 1361
  year: 2012
  end-page: 1370
  ident: b0395
  article-title: The relationship between Cho/NAA and glioma metabolism: implementation for margin delineation of cerebral gliomas
  publication-title: Acta Neurochir (Wien)
– volume: 26
  start-page: 1062
  year: 2019
  end-page: 1070
  ident: b0720
  article-title: Conventional MR-based preoperative nomograms for prediction of IDH/1p19q subtype in low-grade glioma
  publication-title: Acad Radiol
– volume: 35
  start-page: 18
  year: 2017
  end-page: 31
  ident: b0410
  article-title: Brain tumor segmentation with deep neural networks
  publication-title: Med Image Anal
– volume: 65
  start-page: 1943
  year: 2018
  end-page: 1952
  ident: b0700
  article-title: A cascaded deep convolutional neural network for joint segmentation and genotype prediction of brainstem gliomas
  publication-title: IEEE Trans Biomed Eng
– volume: 23
  start-page: 59
  year: 2013
  end-page: 63
  ident: b0130
  article-title: Integrated segmentation of brain tumor images for radiotherapy and neurosurgery
  publication-title: Int J Imaging Syst Technol
– reference: Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M (2016) Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv Prepr arXiv160304467.
– volume: 6
  start-page: 648
  year: 2009
  ident: b1185
  article-title: New advances that enable identification of glioblastoma recurrence
  publication-title: Nat Rev Clin Oncol
– volume: 22
  start-page: 94
  year: 2015
  ident: b1110
  article-title: The evolving molecular genetics of low-grade glioma
  publication-title: Adv Anat Pathol
– volume: 27
  start-page: 475
  year: 2006
  end-page: 487
  ident: b0210
  article-title: Update on brain tumor imaging: from anatomy to physiology
  publication-title: Am J Neuroradiol
– volume: 7
  start-page: 1
  year: 2017
  end-page: 9
  ident: b0655
  article-title: A fully-automatic multiparametric radiomics model: towards reproducible and prognostic imaging signature for prediction of overall survival in glioblastoma multiforme
  publication-title: Sci Rep
– volume: 131
  start-page: 803
  year: 2016
  end-page: 820
  ident: b0735
  article-title: The 2016 World Health Organization classification of tumors of the central nervous system: a summary
  publication-title: Acta Neuropathol
– volume: 38
  start-page: 1145
  year: 2017
  end-page: 1150
  ident: b0045
  article-title: Differentiation of enhancing glioma and primary central nervous system lymphoma by texture-based machine learning
  publication-title: Am J Neuroradiol
– volume: 30
  start-page: 844
  year: 2020
  end-page: 854
  ident: b0650
  article-title: Advanced imaging parameters improve the prediction of diffuse lower-grade gliomas subtype, IDH mutant with no 1p19q codeletion: added value to the T2/FLAIR mismatch sign
  publication-title: Eur Radiol
– volume: 451
  start-page: 128
  year: 2019
  end-page: 135
  ident: b0875
  article-title: Differentiation of glioblastoma from solitary brain metastases using radiomic machine-learning classifiers
  publication-title: Cancer Lett
– volume: 28
  start-page: 3640
  year: 2018
  end-page: 3650
  ident: b0675
  article-title: Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: a multicentre study
  publication-title: Eur Radiol
– reference: Bird S, Klein E, Loper E. Natural language processing with Python: analyzing text with the natural language toolkit. “ O’Reilly Media, Inc.”; 2009.
– volume: 37
  start-page: 1488
  year: 2018
  end-page: 1497
  ident: b0885
  article-title: Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss
  publication-title: IEEE Trans Med Imaging
– volume: 8
  start-page: 1
  year: 2018
  end-page: 12
  ident: b0910
  article-title: Radiomic MRI signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond IDH1
  publication-title: Sci Rep
– reference: Yiming Li,Zenghui Qian,Kaibin Xu,Kai Wang,Xing Fan,Shaowu Li,Tao Jiang,Xing Liu,Yinyan Wang (2018) MRI features predict p53 status in lower-grade gliomas via a machine-learning approach. NeuroImage Clin. doi: 10.1016/j.nicl.2017.10.030.
– volume: 43
  start-page: 2835
  year: 2016
  end-page: 2844
  ident: b0600
  article-title: MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas
  publication-title: Med Phys
– volume: 46
  start-page: 1581
  year: 2019
  end-page: 1591
  ident: b0050
  article-title: Highly accelerated, model-free diffusion tensor MRI reconstruction using neural networks
  publication-title: Med Phys
– volume: 53
  start-page: 73
  year: 2013
  end-page: 88
  ident: b0500
  article-title: MRI brain classification using texture features, fuzzy weighting and support vector machine
  publication-title: Prog Electromagn Res
– volume: 7
  start-page: 1
  year: 2017
  end-page: 8
  ident: b0630
  article-title: A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme
  publication-title: Sci Rep
– volume: 16
  start-page: 643
  year: 2019
  ident: b0980
  article-title: Applications of machine learning using electronic medical records in spine surgery
  publication-title: Neurospine
– volume: 38
  start-page: 1695
  year: 2017
  end-page: 1701
  ident: b0715
  article-title: Relationship between glioblastoma heterogeneity and survival time: an MR imaging texture analysis
  publication-title: Am J Neuroradiol
– volume: 37
  start-page: 1775
  year: 2018
  end-page: 1787
  ident: b0245
  article-title: Multi-label nonlinear matrix completion with transductive multi-task feature selection for joint MGMT and IDH1 status prediction of patient with high-grade gliomas
  publication-title: IEEE Trans Med Imaging
– year: 2017
  ident: b0075
  article-title: A distinctive approach in brain tumor detection and classification using MRI
  publication-title: Pattern Recognit Lett
– volume: 9
  start-page: 1
  year: 2019
  end-page: 12
  ident: b0795
  article-title: Prediction of malignant glioma grades using contrast-enhanced T1-weighted and T2-weighted magnetic resonance images based on a radiomic analysis
  publication-title: Sci Rep
– volume: 6
  year: 2018
  ident: b0260
  article-title: Classification of the glioma grading using radiomics analysis
  publication-title: PeerJ
– volume: 28
  start-page: 356
  year: 2018
  end-page: 362
  ident: b0670
  article-title: MRI features can predict EGFR expression in lower grade gliomas: a voxel-based radiomic analysis
  publication-title: Eur Radiol
– volume: 37
  start-page: 1943
  year: 2018
  end-page: 1954
  ident: b0750
  article-title: Concatenated and connected random forests with multiscale patch driven active contour model for automated brain tumor segmentation of MR images
  publication-title: IEEE Trans Med Imaging
– start-page: 3
  year: 2010
  end-page: 10
  ident: b0140
  article-title: Theano: A CPU and GPU math compiler in Python
  publication-title: In: Proc. 9th Python in Science Conf
– volume: 17
  start-page: 5938
  year: 2016
  end-page: 5942
  ident: b0150
  article-title: mlr: Machine Learning in R
  publication-title: J Mach Learn Res
– reference: Cui S, Mao L, Jiang J, Liu C, Xiong S (2018) Automatic semantic segmentation of brain gliomas from MRI images using a deep cascaded neural network. J Healthc Eng 2018
– volume: 8
  start-page: 1287
  year: 2019
  ident: b0295
  article-title: Biopsy Confirmed Glioma Recurrence Predicted by Multi-Modal Neuroimaging Metrics
  publication-title: J Clin Med
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0180
  article-title: Random forests
  publication-title: Mach Learn
– volume: 59
  start-page: 18
  year: 2017
  end-page: 26
  ident: b0400
  article-title: A non-invasive and adaptive CAD system to detect brain tumor from T2-weighted MRIs using customized Otsu’s thresholding with prominent features and supervised learning
  publication-title: Signal Process Image Commun
– volume: 8
  start-page: 1
  year: 2018
  end-page: 9
  ident: b0155
  article-title: Texture analysis-and support vector machine-assisted diffusional kurtosis imaging may allow in vivo gliomas grading and IDH-mutation status prediction: a preliminary study
  publication-title: Sci Rep
– volume: 281
  start-page: 907
  year: 2016
  end-page: 918
  ident: b0555
  article-title: Radiogenomics of glioblastoma: machine learning–based classification of molecular characteristics by using multiparametric and multiregional MR imaging features
  publication-title: Radiology
– volume: 22
  start-page: 393
  year: 2020
  end-page: 401
  ident: b1030
  article-title: Automated machine learning based on radiomics features predicts H3 K27M mutation in midline gliomas of the brain
  publication-title: Neuro Oncol
– volume: 20
  start-page: 1068
  year: 2018
  end-page: 1079
  ident: b0025
  article-title: In vivo evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signature
  publication-title: Neuro Oncol
– volume: 30
  start-page: 174
  year: 2019
  end-page: 182
  ident: b0940
  article-title: Multi-grade brain tumor classification using deep CNN with extensive data augmentation
  publication-title: J Comput Sci
– volume: 39
  start-page: 63
  year: 2019
  end-page: 74
  ident: b0090
  article-title: Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms
  publication-title: Biocybern Biomed Eng
– volume: 8
  start-page: 128
  year: 2019
  end-page: 136
  ident: b0850
  article-title: Combining multimodal imaging and treatment features improves machine learning-based prognostic assessment in patients with glioblastoma multiforme
  publication-title: Cancer Med
– reference: Rajapakse T., Simple Transformers. simpletransformers.ai; 2020.
– reference: Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis M, Zettlemoyer L, Stoyanov V., Roberta: A robustly optimized bert pretraining approach;2019. arXiv Prepr arXiv190711692.
– volume: 13
  start-page: 337
  year: 2019
  end-page: 342
  ident: b0945
  article-title: Detection and classification of brain tumours from MRI images using faster R-CNN
  publication-title: Teh Glas
– volume: 43
  start-page: 5889
  year: 2016
  end-page: 5902
  ident: b0870
  article-title: Stratification of pseudoprogression and true progression of glioblastoma multiform based on longitudinal diffusion tensor imaging without segmentation
  publication-title: Med Phys
– reference: Zhao L, Jia K., Multiscale CNNs for brain tumor segmentation and diagnosis. Comput Math Methods Med; 2016.
– volume: 114
  start-page: 97
  year: 2007
  end-page: 109
  ident: b0730
  article-title: The 2007 WHO classification of tumours of the central nervous system
  publication-title: Acta Neuropathol
– reference: Team RC., R: A language and environment for statistical computing; 2013.
– volume: 17:iv1–iv62
  year: 2015
  ident: b0820
  article-title: CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012
  publication-title: Neuro Oncol
– volume: 39
  start-page: 613
  year: 2019
  end-page: 623
  ident: b1190
  article-title: A deep learning model integrating SK-TPCNN and random forests for brain tumor segmentation in MRI
  publication-title: Biocybern Biomed Eng
– volume: 61
  start-page: 748
  year: 2008
  end-page: 754
  ident: b0950
  article-title: No consensus exists on search reporting methods for systematic reviews
  publication-title: J Clin Epidemiol
– volume: 28
  start-page: 106
  year: 2015
  end-page: 111
  ident: b0895
  article-title: Machine learning methods for the classification of gliomas: initial results using features extracted from MR spectroscopy
  publication-title: Neuroradiol J
– year: 1997
  ident: b0290
  article-title: Brainweb: Online interface to a 3D MRI simulated brain database
  publication-title: NeuroImage. Citeseer.
– reference: Devlin J, Chang M-W, Lee K, Toutanova K Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv Prepr; 2018. arXiv181004805
– volume: 12
  start-page: 804
  year: 2018
  ident: b1195
  article-title: Glioma grading on conventional MR images: a deep learning study with transfer learning
  publication-title: Front Neurosci
– volume: 30
  start-page: 823
  year: 2020
  end-page: 832
  ident: b1075
  article-title: Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs
  publication-title: Eur Radiol
– volume: 8
  start-page: 27
  year: 2018
  ident: b0550
  article-title: Noninvasive grading of glioma tumor using magnetic resonance imaging with convolutional neural networks
  publication-title: Appl Sci
– volume: 60
  start-page: 188
  year: 2019
  end-page: 198
  ident: b1105
  article-title: Imaging biomarker analysis of advanced multiparametric MRI for glioma grading
  publication-title: Phys Medica
– volume: 145
  start-page: 543
  year: 2019
  end-page: 550
  ident: b1140
  article-title: Radiomics-based machine learning methods for isocitrate dehydrogenase genotype prediction of diffuse gliomas
  publication-title: J Cancer Res Clin Oncol
– volume: 7
  start-page: 102010
  year: 2019
  end-page: 102020
  ident: b1050
  article-title: Comparison of Feature Selection Methods and Machine Learning Classifiers for Radiomics Analysis in Glioma Grading
  publication-title: IEEE Access
– volume: 43
  start-page: 186
  year: 2016
  end-page: 196
  ident: b1035
  article-title: A non-invasive methodology for the grade identification of astrocytoma using image processing and artificial intelligence techniques
  publication-title: Expert Syst Appl
– volume: 308
  start-page: 1881
  year: 2012
  end-page: 1888
  ident: b0485
  article-title: Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low-grade gliomas
  publication-title: JAMA
– volume: 146
  start-page: 37
  year: 2020
  end-page: 43
  ident: b1010
  article-title: Automated delineation of the clinical target volume using anatomically constrained 3D expansion of the gross tumor volume
  publication-title: Radiother Oncol
– volume: 61
  start-page: 1229
  year: 2019
  end-page: 1237
  ident: b0660
  article-title: Radiogenomic analysis of PTEN mutation in glioblastoma using preoperative multi-parametric magnetic resonance imaging
  publication-title: Neuroradiology
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b0845
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J Mach Learn Res
– volume: 26
  start-page: 1045
  year: 2013
  end-page: 1057
  ident: b0285
  article-title: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository
  publication-title: J Digit Imaging
– volume: 6
  start-page: 1
  year: 2016
  end-page: 6
  ident: b1125
  article-title: Multiparametric MRI-based differentiation of WHO grade II/III glioma and WHO grade IV glioblastoma
  publication-title: Sci Rep
– year: 2018
  ident: b0120
  article-title: Systematic Review & Meta-Analysis: Automation tools to help your review
  publication-title: In: 16th Australian Conference on Personality & Individual Differences: Advances and Challenges in Personality and Individual Differences-Theories and Applications
– volume: 43
  start-page: 326
  year: 2019
  ident: b0085
  article-title: A new approach for brain tumor segmentation and classification based on score level fusion using transfer learning
  publication-title: J Med Syst
– volume: 106
  start-page: 199
  year: 2018
  end-page: 208
  ident: b0995
  article-title: On differentiation between vasogenic edema and non-enhancing tumor in high-grade glioma patients using a support vector machine classifier based upon pre and post-surgery MRI images
  publication-title: Eur J Radiol
– volume: 34
  start-page: 463
  year: 1992
  end-page: 469
  ident: b1115
  article-title: Magnetic resonance imaging and histopathology of cerebral gliomas
  publication-title: Neuroradiology
– volume: 35
  start-page: 1240
  year: 2016
  end-page: 1251
  ident: b0855
  article-title: Brain tumor segmentation using convolutional neural networks in MRI images
  publication-title: IEEE Trans Med Imaging
– reference: Kayalibay B, Jensen G, van der Smagt P (2017) CNN-based segmentation of medical imaging data. arXiv Prepr arXiv170103056.
– volume: 78
  start-page: 4786
  year: 2018
  end-page: 4789
  ident: b0805
  article-title: LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity
  publication-title: Cancer Res
– volume: 9
  start-page: 1671
  year: 2018
  end-page: 1682
  ident: b1150
  article-title: Grading glioma by radiomics with feature selection based on mutual information
  publication-title: J Ambient Intell Humaniz Comput
– volume: 140
  start-page: 249
  year: 2017
  end-page: 257
  ident: b0535
  article-title: Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma
  publication-title: Comput Methods Programs Biomed
– volume: 30
  start-page: 2142
  year: 2020
  end-page: 2151
  ident: b0575
  article-title: Diffusion-and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma
  publication-title: Eur Radiol
– year: 2020
  ident: b0055
  article-title: The diagnostic value of quantitative texture analysis of conventional MRI sequences using artificial neural networks in grading gliomas
  publication-title: Clin Radiol
– volume: 3
  start-page: 993
  year: 2003
  end-page: 1022
  ident: b0160
  article-title: Latent dirichlet allocation
  publication-title: J Mach Learn Res
– volume: 34
  start-page: 1993
  year: 2014
  end-page: 2024
  ident: b0760
  article-title: The multimodal brain tumor image segmentation benchmark (BRATS)
  publication-title: IEEE Trans Med Imaging
– volume: 170
  start-page: 51
  year: 2019
  end-page: 58
  ident: b1130
  article-title: PROBAST: a tool to assess the risk of bias and applicability of prediction model studies
  publication-title: Ann Intern Med
– volume: 142
  start-page: 299
  year: 2019
  end-page: 307
  ident: b1245
  article-title: Machine learning reveals multimodal MRI patterns predictive of isocitrate dehydrogenase and 1p/19q status in diffuse low-and high-grade gliomas
  publication-title: J Neurooncol
– volume: 43
  start-page: 113
  year: 2019
  ident: b0625
  article-title: Glioma Tumor Grade Identification Using Artificial Intelligent Techniques
  publication-title: J Med Syst
– volume: 18
  start-page: e315
  year: 2017
  end-page: e329
  ident: b1120
  article-title: European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas
  publication-title: Lancet Oncol
– volume: 375
  start-page: 1216
  year: 2016
  ident: b0810
  article-title: Predicting the future—big data, machine learning, and clinical medicine
  publication-title: N Engl J Med
– volume: 40
  start-page: 418
  year: 2019
  end-page: 425
  ident: b0450
  article-title: Accurate patient-specific machine learning models of glioblastoma invasion using transfer learning
  publication-title: Am J Neuroradiol
– volume: 9
  start-page: 1
  year: 2019
  end-page: 10
  ident: b1205
  article-title: Radiomic features and multilayer perceptron network classifier: a robust MRI classification strategy for distinguishing glioblastoma from primary central nervous system lymphoma
  publication-title: Sci Rep
– volume: 6
  start-page: 821
  year: 2011
  end-page: 828
  ident: b1210
  article-title: Investigating machine learning techniques for MRI-based classification of brain neoplasms
  publication-title: Int J Comput Assist Radiol Surg
– volume: 49
  start-page: 105
  year: 2018
  end-page: 116
  ident: b1135
  article-title: Building medical image classifiers with very limited data using segmentation networks
  publication-title: Med Image Anal
– year: 2020
  ident: b0185
  article-title: Ethical thinking machines in surgery and the requirement for clinical leadership
  publication-title: Am J Surg
– volume: 42
  start-page: 6725
  year: 2015
  end-page: 6735
  ident: b1175
  article-title: Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma
  publication-title: Med Phys
– volume: 125
  start-page: e688
  year: 2019
  end-page: e696
  ident: b0645
  article-title: Prediction of IDH1 Mutation Status in Glioblastoma Using Machine Learning Technique Based on Quantitative Radiomic Data
  publication-title: World Neurosurg
– volume: 28
  start-page: 3832
  year: 2018
  end-page: 3839
  ident: b1045
  article-title: Primary central nervous system lymphoma and atypical glioblastoma: differentiation using radiomics approach
  publication-title: Eur Radiol
– volume: 170
  start-page: W1
  year: 2019
  end-page: W33
  ident: b0785
  article-title: PROBAST: a tool to assess risk of bias and applicability of prediction model studies: explanation and elaboration
  publication-title: Ann Intern Med
– volume: 58
  start-page: R97
  year: 2013
  ident: b0135
  article-title: A survey of MRI-based medical image analysis for brain tumor studies
  publication-title: Phys Med Biol
– volume: 9
  year: 2016
  ident: b0200
  article-title: Complication avoidance with pre-operative screening: insights from the Seattle spine team
  publication-title: Curr Rev Musculoskelet Med
– volume: 9
  start-page: 453
  year: 2008
  end-page: 461
  ident: b0175
  article-title: Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas
  publication-title: Lancet Oncol
– start-page: 770
  year: 2016
  end-page: 778
  ident: b0420
  article-title: Deep residual learning for image recognition
  publication-title: In: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 278
  start-page: 563
  year: 2016
  end-page: 577
  ident: b0365
  article-title: Radiomics: images are more than pictures, they are data
  publication-title: Radiology
– volume: 41
  start-page: 2305
  year: 2018
  end-page: 2318
  ident: b0320
  article-title: Denoising prior driven deep neural network for image restoration
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 19
  start-page: 109
  year: 2017
  end-page: 117
  ident: b1220
  article-title: Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas
  publication-title: Neuro Oncol
– volume: 39
  start-page: 2187
  year: 2018
  end-page: 2193
  ident: b0480
  article-title: Shape features of the lesion habitat to differentiate brain tumor progression from pseudoprogression on routine multiparametric MRI: a multisite study
  publication-title: Am J Neuroradiol
– volume: 28
  start-page: 1127
  year: 2015
  end-page: 1135
  ident: b0800
  article-title: A simple and intelligent approach for brain MRI classification
  publication-title: J Intell Fuzzy Syst
– reference: Chen T, Li M, Li Y, Lin M, Wang N, Wang M, Xiao T, Xu B, Zhang C, Zhang Z (2015) Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems. arXiv Prepr arXiv151201274
– volume: 99
  start-page: 154
  year: 2018
  end-page: 160
  ident: b0275
  article-title: Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T
  publication-title: Comput Biol Med
– volume: 107
  start-page: 15
  year: 2019
  end-page: 27
  ident: b1040
  article-title: Contrast enhancement is a prognostic factor in IDH1/2 mutant, but not in wild-type WHO grade II/III glioma as confirmed by machine learning
  publication-title: Eur J Cancer
– volume: 54
  start-page: 514
  year: 2003
  end-page: 520
  ident: b0585
  article-title: Epilepsy in low-grade gliomas: The impact on cognitive function and quality of life
  publication-title: Ann Neurol Off J Am Neurol Assoc Child Neurol Soc
– volume: 29
  start-page: 4430
  year: 2011
  end-page: 4435
  ident: b0005
  article-title: Compromised health-related quality of life in patients with low-grade glioma
  publication-title: J Clin Oncol
– volume: 98
  start-page: 39
  year: 2018
  end-page: 47
  ident: b0165
  article-title: Machine learning based brain tumour segmentation on limited data using local texture and abnormality
  publication-title: Comput Biol Med
– volume: 39
  start-page: 1201
  year: 2018
  end-page: 1207
  ident: b0235
  article-title: Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas
  publication-title: Am J Neuroradiol
– volume: 29
  start-page: 102
  year: 2019
  end-page: 127
  ident: b0745
  article-title: An overview of deep learning in medical imaging focusing on MRI
  publication-title: Z Med Phys
– volume: 23
  start-page: 4375
  year: 2019
  end-page: 4385
  ident: b0690
  article-title: Machine-learning based radiogenomics analysis of MRI features and metagenes in glioblastoma multiforme patients with different survival time
  publication-title: J Cell Mol Med
– volume: 78
  start-page: 572
  year: 2016
  end-page: 580
  ident: b0030
  article-title: Imaging surrogates of infiltration obtained via multiparametric imaging pattern analysis predict subsequent location of recurrence of glioblastoma
  publication-title: Neurosurgery
– volume: 18
  start-page: 44
  year: 2019
  ident: b0620
  article-title: Machine learning-based texture analysis of contrast-enhanced MR imaging to differentiate between glioblastoma and primary central nervous system lymphoma
  publication-title: Magn Reson Med Sci
– volume: 53
  start-page: 647
  year: 2018
  end-page: 654
  ident: b0860
  article-title: Clinical evaluation of a multiparametric deep learning model for glioblastoma segmentation using heterogeneous magnetic resonance imaging data from clinical routine
  publication-title: Invest Radiol
– volume: 29
  start-page: 1891
  year: 2010
  end-page: 1900
  ident: b0100
  article-title: ‘Bench to behavior’: translating comparative effectiveness research into improved clinical practice
  publication-title: Health Aff
– volume: 33
  start-page: 1065
  year: 2012
  end-page: 1071
  ident: b1215
  article-title: Survival analysis of patients with high-grade gliomas based on data mining of imaging variables
  publication-title: Am J Neuroradiol
– volume: 46
  start-page: 115
  year: 2017
  end-page: 123
  ident: b1250
  article-title: Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group prediction
  publication-title: J Magn Reson Imaging
– reference: Cheng J. Brain tumor dataset; 2017.
– year: 2017
  ident: b0195
  article-title: The Seattle spine score: Predicting 30-day complication risk in adult spinal deformity surgery
  publication-title: J Clin Neurosci
– reference: Rehurek R, Sojka P., Software framework for topic modelling with large corpora. In: In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks. Citeseer; 2010.
– volume: 39
  start-page: 37
  year: 2018
  end-page: 42
  ident: b0835
  article-title: Prediction of IDH1-mutation and 1p/19q-codeletion status using preoperative MR imaging phenotypes in lower grade gliomas
  publication-title: Am J Neuroradiol
– volume: 29
  start-page: 3325
  year: 2019
  end-page: 3337
  ident: b1070
  article-title: A radiomics nomogram may improve the prediction of IDH genotype for astrocytoma before surgery
  publication-title: Eur Radiol
– volume: 34
  start-page: 1326
  year: 2013
  end-page: 1333
  ident: b0350
  article-title: Multimodal MR imaging (diffusion, perfusion, and spectroscopy): is it possible to distinguish oligodendroglial tumor grade and 1p/19q codeletion in the pretherapeutic diagnosis?
  publication-title: Am J Neuroradiol
– volume: 13
  start-page: 297
  year: 2009
  end-page: 311
  ident: b0865
  article-title: Simulation of brain tumors in MR images for evaluation of segmentation efficacy
  publication-title: Med Image Anal
– volume: 115
  start-page: 3
  year: 2011
  end-page: 8
  ident: b0960
  article-title: An extent of resection threshold for newly diagnosed glioblastomas
  publication-title: J Neurosurg
– volume: 50
  start-page: 1295
  year: 2019
  end-page: 1306
  ident: b1000
  article-title: Glioma grading using a machine-learning framework based on optimized features obtained from T1 perfusion MRI and volumes of tumor components
  publication-title: J Magn Reson Imaging
– volume: 11
  start-page: 437
  year: 2009
  end-page: 445
  ident: b0975
  article-title: Intracranial low-grade gliomas in adults: 30-year experience with long-term follow-up at Mayo Clinic
  publication-title: Neuro Oncol
– volume: 31
  start-page: 1567
  year: 2013
  end-page: 1577
  ident: b1055
  article-title: Investigating brain tumor differentiation with diffusion and perfusion metrics at 3T MRI using pattern recognition techniques
  publication-title: Magn Reson Imaging
– volume: 173
  start-page: 84
  year: 2018
  end-page: 90
  ident: b1160
  article-title: Glioblastoma and primary central nervous system lymphoma: preoperative differentiation by using MRI-based 3D texture analysis
  publication-title: Clin Neurol Neurosurg
– volume: 14
  start-page: 2349
  year: 2013
  ident: 10.1016/j.jocn.2021.04.043_b0310
  article-title: Orange: data mining toolbox in Python
  publication-title: J Mach Learn Res
– volume: 30
  start-page: 877
  year: 2020
  ident: 10.1016/j.jocn.2021.04.043_b0590
  article-title: Radiogenomics of lower-grade gliomas: machine learning–based MRI texture analysis for predicting 1p/19q codeletion status
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06492-2
– volume: 87
  start-page: 290
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0080
  article-title: Big data analysis for brain tumor detection: Deep convolutional neural networks
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2018.04.065
– volume: 154
  start-page: 1361
  year: 2012
  ident: 10.1016/j.jocn.2021.04.043_b0395
  article-title: The relationship between Cho/NAA and glioma metabolism: implementation for margin delineation of cerebral gliomas
  publication-title: Acta Neurochir (Wien)
  doi: 10.1007/s00701-012-1418-x
– volume: 27
  start-page: 3509
  year: 2017
  ident: 10.1016/j.jocn.2021.04.043_b1200
  article-title: Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma
  publication-title: Eur Radiol
  doi: 10.1007/s00330-016-4653-3
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.jocn.2021.04.043_b0630
  article-title: A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-10649-8
– volume: 20
  start-page: 433
  year: 2010
  ident: 10.1016/j.jocn.2021.04.043_b0330
  article-title: Hybrid intelligent techniques for MRI brain images classification
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2009.07.002
– volume: 3
  start-page: 68
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0780
  article-title: Classification using deep learning neural networks for brain tumors
  publication-title: Futur Comput Informatics J
  doi: 10.1016/j.fcij.2017.12.001
– volume: 30
  start-page: 469
  year: 2017
  ident: 10.1016/j.jocn.2021.04.043_b0035
  article-title: Predicting deletion of chromosomal arms 1p/19q in low-grade gliomas from MR images using machine intelligence
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-017-9984-3
– volume: 44
  start-page: 5234
  year: 2017
  ident: 10.1016/j.jocn.2021.04.043_b1255
  article-title: Brain tumor segmentation using holistically nested neural networks in MRI images
  publication-title: Med Phys
  doi: 10.1002/mp.12481
– year: 2011
  ident: 10.1016/j.jocn.2021.04.043_b0790
– volume: 11
  start-page: 1457
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0990
  article-title: Brain tumor classification using convolutional neural networks
  publication-title: Biomed Pharmacol J
  doi: 10.13005/bpj/1511
– volume: 64
  start-page: 1230
  year: 2010
  ident: 10.1016/j.jocn.2021.04.043_b1265
  article-title: Support vector machines in DSC-based glioma imaging: Suggestions for optimal characterization
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22495
– volume: 98
  start-page: 39
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0165
  article-title: Machine learning based brain tumour segmentation on limited data using local texture and abnormality
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.05.005
– volume: 23
  start-page: 59
  year: 2013
  ident: 10.1016/j.jocn.2021.04.043_b0130
  article-title: Integrated segmentation of brain tumor images for radiotherapy and neurosurgery
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.22037
– volume: 48
  start-page: 330
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0375
  article-title: Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.25970
– volume: 6
  start-page: 245
  year: 2017
  ident: 10.1016/j.jocn.2021.04.043_b0170
  article-title: Optimal database combinations for literature searches in systematic reviews: a prospective exploratory study
  publication-title: Syst Rev
  doi: 10.1186/s13643-017-0644-y
– volume: 61
  start-page: 2633
  year: 2014
  ident: 10.1016/j.jocn.2021.04.043_b0460
  article-title: Brain tumor segmentation based on local independent projection-based classification
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2325410
– volume: 48
  start-page: 1518
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b1090
  article-title: Radiomics strategy for glioma grading using texture features from multiparametric MRI
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.26010
– volume: 173
  start-page: 84
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b1160
  article-title: Glioblastoma and primary central nervous system lymphoma: preoperative differentiation by using MRI-based 3D texture analysis
  publication-title: Clin Neurol Neurosurg
  doi: 10.1016/j.clineuro.2018.08.004
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.jocn.2021.04.043_b0845
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J Mach Learn Res
– ident: 10.1016/j.jocn.2021.04.043_b0935
  doi: 10.1007/978-3-319-24574-4_28
– volume: 26
  start-page: 1045
  year: 2013
  ident: 10.1016/j.jocn.2021.04.043_b0285
  article-title: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-013-9622-7
– volume: 151
  start-page: 264
  year: 2009
  ident: 10.1016/j.jocn.2021.04.043_b0775
  article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-151-4-200908180-00135
– volume: 121
  start-page: 1115
  year: 2014
  ident: 10.1016/j.jocn.2021.04.043_b0380
  article-title: Residual tumor volume versus extent of resection: predictors of survival after surgery for glioblastoma
  publication-title: J Neurosurg
  doi: 10.3171/2014.7.JNS132449
– volume: 27
  start-page: 81
  year: 2010
  ident: 10.1016/j.jocn.2021.04.043_b1170
  article-title: Morphological and flow cytometric analysis of cell infiltration in glioblastoma: a comparison of autopsy brain and neuroimaging
  publication-title: Brain Tumor Pathol
  doi: 10.1007/s10014-010-0275-7
– volume: 275
  start-page: 228
  year: 2015
  ident: 10.1016/j.jocn.2021.04.043_b0340
  article-title: A generic support vector machine model for preoperative glioma survival associations
  publication-title: Radiology
  doi: 10.1148/radiol.14140770
– volume: 28
  start-page: 106
  year: 2015
  ident: 10.1016/j.jocn.2021.04.043_b0895
  article-title: Machine learning methods for the classification of gliomas: initial results using features extracted from MR spectroscopy
  publication-title: Neuroradiol J
  doi: 10.1177/1971400915576637
– start-page: 89
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b1180
  article-title: Deep learning and its applications to natural language processing
– start-page: 3
  year: 2010
  ident: 10.1016/j.jocn.2021.04.043_b0140
  article-title: Theano: A CPU and GPU math compiler in Python
– volume: 2
  start-page: 1
  year: 2011
  ident: 10.1016/j.jocn.2021.04.043_b0220
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/1961189.1961199
– volume: 54
  start-page: 7
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b1095
  article-title: Ten-year survival in glioblastoma. A systematic review
  publication-title: J Clin Neurosci
  doi: 10.1016/j.jocn.2018.05.002
– volume: 28
  start-page: 1
  year: 2008
  ident: 10.1016/j.jocn.2021.04.043_b0615
  article-title: Building predictive models in R using the caret package
  publication-title: J Stat Softw
  doi: 10.18637/jss.v028.i05
– volume: 6
  start-page: 34002
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0770
  article-title: Deep learning with mixed supervision for brain tumor segmentation
  publication-title: J Med Imaging
  doi: 10.1117/1.JMI.6.3.034002
– volume: 29
  start-page: 1891
  year: 2010
  ident: 10.1016/j.jocn.2021.04.043_b0100
  article-title: ‘Bench to behavior’: translating comparative effectiveness research into improved clinical practice
  publication-title: Health Aff
  doi: 10.1377/hlthaff.2010.0696
– volume: 38
  start-page: 1695
  year: 2017
  ident: 10.1016/j.jocn.2021.04.043_b0715
  article-title: Relationship between glioblastoma heterogeneity and survival time: an MR imaging texture analysis
  publication-title: Am J Neuroradiol
  doi: 10.3174/ajnr.A5279
– ident: 10.1016/j.jocn.2021.04.043_b0540
– volume: 19
  start-page: 109
  year: 2017
  ident: 10.1016/j.jocn.2021.04.043_b1220
  article-title: Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/now121
– ident: 10.1016/j.jocn.2021.04.043_b0110
– volume: 26
  start-page: 1062
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0720
  article-title: Conventional MR-based preoperative nomograms for prediction of IDH/1p19q subtype in low-grade glioma
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2018.09.022
– volume: 99
  start-page: 154
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0275
  article-title: Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.06.009
– volume: 114
  start-page: 97
  year: 2007
  ident: 10.1016/j.jocn.2021.04.043_b0730
  article-title: The 2007 WHO classification of tumours of the central nervous system
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-007-0243-4
– volume: 34
  start-page: 463
  year: 1992
  ident: 10.1016/j.jocn.2021.04.043_b1115
  article-title: Magnetic resonance imaging and histopathology of cerebral gliomas
  publication-title: Neuroradiology
  doi: 10.1007/BF00598951
– volume: 53
  start-page: 73
  year: 2013
  ident: 10.1016/j.jocn.2021.04.043_b0500
  article-title: MRI brain classification using texture features, fuzzy weighting and support vector machine
  publication-title: Prog Electromagn Res
  doi: 10.2528/PIERB13052805
– volume: 451
  start-page: 128
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0875
  article-title: Differentiation of glioblastoma from solitary brain metastases using radiomic machine-learning classifiers
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2019.02.054
– volume: 5
  start-page: 396
  year: 2014
  ident: 10.1016/j.jocn.2021.04.043_b0470
  article-title: Voxel-based clustered imaging by multiparameter diffusion tensor images for glioma grading
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2014.08.001
– volume: 102
  year: 2020
  ident: 10.1016/j.jocn.2021.04.043_b0475
  article-title: An enhanced deep learning approach for brain cancer MRI images classification using residual networks
  publication-title: Artif Intell Med
– year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0270
  article-title: Keras: The python deep learning library
  publication-title: Astrophys Source Code Libr.
– volume: 25
  start-page: 751
  year: 2017
  ident: 10.1016/j.jocn.2021.04.043_b0880
  article-title: A new approach to develop computer-aided diagnosis scheme of breast mass classification using deep learning technology
  publication-title: J Xray Sci Technol
– volume: 12
  start-page: 804
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b1195
  article-title: Glioma grading on conventional MR images: a deep learning study with transfer learning
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2018.00804
– volume: 22
  start-page: 402
  year: 2020
  ident: 10.1016/j.jocn.2021.04.043_b0115
  article-title: A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noz199
– volume: 36
  start-page: 61
  year: 2017
  ident: 10.1016/j.jocn.2021.04.043_b0530
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.10.004
– volume: 375
  start-page: 1216
  year: 2016
  ident: 10.1016/j.jocn.2021.04.043_b0810
  article-title: Predicting the future—big data, machine learning, and clinical medicine
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp1606181
– volume: 43
  start-page: 98
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b1240
  article-title: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.10.002
– volume: 77
  start-page: e104
  year: 2017
  ident: 10.1016/j.jocn.2021.04.043_b0385
  article-title: Computational radiomics system to decode the radiographic phenotype
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-17-0339
– year: 2017
  ident: 10.1016/j.jocn.2021.04.043_b0900
– volume: 105
  start-page: 784
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b1065
  article-title: Radiomics Analysis for Glioma Malignancy Evaluation Using Diffusion Kurtosis and Tensor Imaging
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2019.07.011
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0795
  article-title: Prediction of malignant glioma grades using contrast-enhanced T1-weighted and T2-weighted magnetic resonance images based on a radiomic analysis
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-55922-0
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.jocn.2021.04.043_b0680
  article-title: Deep Learning based Radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma
  publication-title: Sci Rep
– volume: 65
  start-page: 1943
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0700
  article-title: A cascaded deep convolutional neural network for joint segmentation and genotype prediction of brainstem gliomas
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2018.2845706
– volume: 131
  start-page: 803
  year: 2016
  ident: 10.1016/j.jocn.2021.04.043_b0735
  article-title: The 2016 World Health Organization classification of tumors of the central nervous system: a summary
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-016-1545-1
– volume: 37
  start-page: 1488
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0885
  article-title: Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2820120
– volume: 54
  start-page: 514
  year: 2003
  ident: 10.1016/j.jocn.2021.04.043_b0585
  article-title: Epilepsy in low-grade gliomas: The impact on cognitive function and quality of life
  publication-title: Ann Neurol Off J Am Neurol Assoc Child Neurol Soc
– volume: 281
  start-page: 907
  year: 2016
  ident: 10.1016/j.jocn.2021.04.043_b0555
  article-title: Radiogenomics of glioblastoma: machine learning–based classification of molecular characteristics by using multiparametric and multiregional MR imaging features
  publication-title: Radiology
  doi: 10.1148/radiol.2016161382
– year: 2017
  ident: 10.1016/j.jocn.2021.04.043_b0075
  article-title: A distinctive approach in brain tumor detection and classification using MRI
  publication-title: Pattern Recognit Lett
– volume: 122
  start-page: e812
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0565
  article-title: Apparent Diffusion Coefficient as a Predictive Biomarker for Survival in Patients with Treatment-Naive Glioblastoma Using Quantitative Multiparametric Magnetic Resonance Profiling
  publication-title: World Neurosurg
  doi: 10.1016/j.wneu.2018.10.151
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0095
  article-title: Lesion location implemented magnetic resonance imaging radiomics for predicting IDH and TERT promoter mutations in grade II/III gliomas
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-30273-4
– volume: 34
  start-page: 2274
  year: 2012
  ident: 10.1016/j.jocn.2021.04.043_b0015
  article-title: SLIC superpixels compared to state-of-the-art superpixel methods
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.120
– volume: 5
  start-page: 21219
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0905
  article-title: Radiomic signature of infiltration in peritumoral edema predicts subsequent recurrence in glioblastoma: implications for personalized radiotherapy planning
  publication-title: J Med Imaging
  doi: 10.1117/1.JMI.5.2.021219
– volume: 50
  start-page: 1295
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b1000
  article-title: Glioma grading using a machine-learning framework based on optimized features obtained from T1 perfusion MRI and volumes of tumor components
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.26704
– volume: 18
  start-page: 1680
  year: 2016
  ident: 10.1016/j.jocn.2021.04.043_b0230
  article-title: Multimodal imaging patterns predict survival in recurrent glioblastoma patients treated with bevacizumab
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/now086
– ident: 10.1016/j.jocn.2021.04.043_b1145
  doi: 10.1155/2017/8054939
– volume: 78
  start-page: 4786
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0805
  article-title: LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-18-0125
– volume: 39
  start-page: 37
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0835
  article-title: Prediction of IDH1-mutation and 1p/19q-codeletion status using preoperative MR imaging phenotypes in lower grade gliomas
  publication-title: Am J Neuroradiol
  doi: 10.3174/ajnr.A5421
– volume: 107
  start-page: 359
  year: 2012
  ident: 10.1016/j.jocn.2021.04.043_b0520
  article-title: Glioblastoma survival in the United States before and during the temozolomide era
  publication-title: J Neurooncol
  doi: 10.1007/s11060-011-0749-4
– volume: 32
  start-page: 105
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0430
  article-title: AdaptAhead optimization algorithm for learning deep CNN applied to MRI segmentation
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-018-0107-6
– volume: 9
  start-page: 453
  year: 2008
  ident: 10.1016/j.jocn.2021.04.043_b0175
  article-title: Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(08)70125-6
– volume: 28
  start-page: 1127
  year: 2015
  ident: 10.1016/j.jocn.2021.04.043_b0800
  article-title: A simple and intelligent approach for brain MRI classification
  publication-title: J Intell Fuzzy Syst
– ident: 10.1016/j.jocn.2021.04.043_b1165
  doi: 10.1016/j.nicl.2017.10.030
– volume: 43
  start-page: 113
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0625
  article-title: Glioma Tumor Grade Identification Using Artificial Intelligent Techniques
  publication-title: J Med Syst
  doi: 10.1007/s10916-019-1228-2
– volume: 34
  start-page: 1993
  year: 2014
  ident: 10.1016/j.jocn.2021.04.043_b0760
  article-title: The multimodal brain tumor image segmentation benchmark (BRATS)
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2014.2377694
– start-page: 125
  year: 2016
  ident: 10.1016/j.jocn.2021.04.043_b0415
  article-title: Deep learning trends for focal brain pathology segmentation in MRI
– volume: 49
  start-page: 105
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b1135
  article-title: Building medical image classifiers with very limited data using segmentation networks
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2018.07.010
– ident: 10.1016/j.jocn.2021.04.043_b0240
  doi: 10.5244/C.28.6
– ident: 10.1016/j.jocn.2021.04.043_b0305
  doi: 10.1155/2018/4940593
– volume: 130
  start-page: 172
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0825
  article-title: A machine learning-based prediction model of H3K27M mutations in brainstem gliomas using conventional MRI and clinical features
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2018.07.011
– ident: 10.1016/j.jocn.2021.04.043_b0920
– volume: 17
  start-page: 5938
  year: 2016
  ident: 10.1016/j.jocn.2021.04.043_b0150
  article-title: mlr: Machine Learning in R
  publication-title: J Mach Learn Res
– volume: 254
  start-page: 564
  year: 2010
  ident: 10.1016/j.jocn.2021.04.043_b0125
  article-title: Glioblastoma multiforme regional genetic and cellular expression patterns: influence on anatomic and physiologic MR imaging
  publication-title: Radiology
  doi: 10.1148/radiol.09090663
– ident: 10.1016/j.jocn.2021.04.043_b0525
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b1205
  article-title: Radiomic features and multilayer perceptron network classifier: a robust MRI classification strategy for distinguishing glioblastoma from primary central nervous system lymphoma
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-42276-w
– volume: 30
  start-page: 2142
  year: 2020
  ident: 10.1016/j.jocn.2021.04.043_b0575
  article-title: Diffusion-and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06548-3
– ident: 10.1016/j.jocn.2021.04.043_b0890
– volume: 20
  start-page: 1068
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0025
  article-title: In vivo evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signature
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noy033
– volume: 14
  start-page: 8
  year: 2016
  ident: 10.1016/j.jocn.2021.04.043_b0300
  article-title: Wasted research when systematic reviews fail to provide a complete and up-to-date evidence synthesis: the example of lung cancer
  publication-title: BMC Med
  doi: 10.1186/s12916-016-0555-0
– volume: 170
  start-page: 51
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b1130
  article-title: PROBAST: a tool to assess the risk of bias and applicability of prediction model studies
  publication-title: Ann Intern Med
  doi: 10.7326/M18-1376
– start-page: 675
  year: 2014
  ident: 10.1016/j.jocn.2021.04.043_b0510
  article-title: Caffe: Convolutional architecture for fast feature embedding
– volume: 7
  start-page: 102010
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b1050
  article-title: Comparison of Feature Selection Methods and Machine Learning Classifiers for Radiomics Analysis in Glioma Grading
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2928975
– volume: 166
  start-page: 39
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0970
  article-title: Fully automatic brain tumor segmentation using end-to-end incremental deep neural networks in MRI images
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2018.09.007
– volume: 13
  start-page: 1333
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0705
  article-title: Overall survival time prediction for high-grade glioma patients based on large-scale brain functional networks
  publication-title: Brain Imaging Behav
  doi: 10.1007/s11682-018-9949-2
– volume: 13
  start-page: 297
  year: 2009
  ident: 10.1016/j.jocn.2021.04.043_b0865
  article-title: Simulation of brain tumors in MR images for evaluation of segmentation efficacy
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2008.11.002
– volume: 22
  start-page: 393
  year: 2020
  ident: 10.1016/j.jocn.2021.04.043_b1030
  article-title: Automated machine learning based on radiomics features predicts H3 K27M mutation in midline gliomas of the brain
  publication-title: Neuro Oncol
– volume: 60
  start-page: 188
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b1105
  article-title: Imaging biomarker analysis of advanced multiparametric MRI for glioma grading
  publication-title: Phys Medica
  doi: 10.1016/j.ejmp.2019.03.014
– volume: 43
  start-page: 294
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b1085
  article-title: Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images
  publication-title: J Med Syst
  doi: 10.1007/s10916-019-1416-0
– ident: 10.1016/j.jocn.2021.04.043_b1080
– start-page: 1
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0070
  article-title: Detection of brain tumor based on features fusion and machine learning
  publication-title: J Ambient Intell Humaniz Comput
– volume: 41
  start-page: 453
  year: 2016
  ident: 10.1016/j.jocn.2021.04.043_b0595
  article-title: Delineation and diagnosis of brain tumors from post contrast T1-weighted MR images using rough granular computing and random forest
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.01.022
– ident: 10.1016/j.jocn.2021.04.043_b1235
  doi: 10.1155/2016/8356294
– volume: 10
  year: 2015
  ident: 10.1016/j.jocn.2021.04.043_b0445
  article-title: Multi-parametric MRI and texture analysis to visualize spatial histologic heterogeneity and tumor extent in glioblastoma
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0141506
– volume: 45
  start-page: 3120
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0570
  article-title: Improving resolution of MR images with an adversarial network incorporating images with different contrast
  publication-title: Med Phys
  doi: 10.1002/mp.12945
– volume: 20
  start-page: 1381
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0830
  article-title: Radiomics MRI phenotyping with machine learning to predict the grade of lower-grade gliomas: a study focused on nonenhancing tumors
  publication-title: Korean J Radiol
  doi: 10.3348/kjr.2018.0814
– volume: 3
  start-page: 993
  year: 2003
  ident: 10.1016/j.jocn.2021.04.043_b0160
  article-title: Latent dirichlet allocation
  publication-title: J Mach Learn Res
– volume: 115
  start-page: 3
  year: 2011
  ident: 10.1016/j.jocn.2021.04.043_b0960
  article-title: An extent of resection threshold for newly diagnosed glioblastomas
  publication-title: J Neurosurg
  doi: 10.3171/2011.2.JNS10998
– volume: 7
  start-page: 4275
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0425
  article-title: A modified deep convolutional neural network for abnormal brain image classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2885639
– volume: 31
  start-page: 1567
  year: 2013
  ident: 10.1016/j.jocn.2021.04.043_b1055
  article-title: Investigating brain tumor differentiation with diffusion and perfusion metrics at 3T MRI using pattern recognition techniques
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2013.06.010
– volume: 9
  year: 2016
  ident: 10.1016/j.jocn.2021.04.043_b0200
  article-title: Complication avoidance with pre-operative screening: insights from the Seattle spine team
  publication-title: Curr Rev Musculoskelet Med
  doi: 10.1007/s12178-016-9351-x
– ident: 10.1016/j.jocn.2021.04.043_b0255
– ident: 10.1016/j.jocn.2021.04.043_b0315
– volume: 24
  start-page: 6288
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b1260
  article-title: A coclinical radiogenomic validation study: conserved magnetic resonance radiomic appearance of periostin-expressing glioblastoma in patients and xenograft models
  publication-title: Clin cancer Res
  doi: 10.1158/1078-0432.CCR-17-3420
– volume: 36
  start-page: 345
  year: 2015
  ident: 10.1016/j.jocn.2021.04.043_b1100
  article-title: A framework for multimodal imaging-based prognostic model building: preliminary study on multimodal MRI in glioblastoma multiforme
  publication-title: IRBM
  doi: 10.1016/j.irbm.2015.08.001
– volume: 58
  start-page: R97
  year: 2013
  ident: 10.1016/j.jocn.2021.04.043_b0135
  article-title: A survey of MRI-based medical image analysis for brain tumor studies
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/58/13/R97
– volume: 39
  start-page: 63
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0090
  article-title: Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2018.10.004
– ident: 10.1016/j.jocn.2021.04.043_b0915
– start-page: 1
  year: 2015
  ident: 10.1016/j.jocn.2021.04.043_b1060
  article-title: Going deeper with convolutions
– volume: 140
  start-page: 297
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0405
  article-title: Non-invasive genotype prediction of chromosome 1p/19q co-deletion by development and validation of an MRI-based radiomics signature in lower-grade gliomas
  publication-title: J Neurooncol
  doi: 10.1007/s11060-018-2953-y
– ident: 10.1016/j.jocn.2021.04.043_b0635
  doi: 10.1186/s13643-019-0974-z
– ident: 10.1016/j.jocn.2021.04.043_b0250
– volume: 142
  start-page: 299
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b1245
  article-title: Machine learning reveals multimodal MRI patterns predictive of isocitrate dehydrogenase and 1p/19q status in diffuse low-and high-grade gliomas
  publication-title: J Neurooncol
  doi: 10.1007/s11060-019-03096-0
– ident: 10.1016/j.jocn.2021.04.043_b0145
– volume: 23
  start-page: 45
  year: 1997
  ident: 10.1016/j.jocn.2021.04.043_b1020
  article-title: SUSAN—a new approach to low level image processing
  publication-title: Int J Comput Vis
  doi: 10.1023/A:1007963824710
– year: 2017
  ident: 10.1016/j.jocn.2021.04.043_b0325
  article-title: Diffusion tensor image features predict IDH genotype in newly diagnosed WHO grade II/III gliomas
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-13679-4
– volume: 6
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0260
  article-title: Classification of the glioma grading using radiomics analysis
  publication-title: PeerJ
  doi: 10.7717/peerj.5982
– volume: 9
  start-page: 85
  year: 2008
  ident: 10.1016/j.jocn.2021.04.043_b0930
  article-title: Handsearching still a valuable element of the systematic review
  publication-title: Evid Based Dent
  doi: 10.1038/sj.ebd.6400602
– volume: 19
  start-page: 128
  year: 2017
  ident: 10.1016/j.jocn.2021.04.043_b0440
  article-title: Radiogenomics to characterize regional genetic heterogeneity in glioblastoma
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/now135
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0495
  article-title: Prediction of pseudoprogression versus progression using machine learning algorithm in glioblastoma
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-31007-2
– volume: 42
  start-page: 6725
  year: 2015
  ident: 10.1016/j.jocn.2021.04.043_b1175
  article-title: Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma
  publication-title: Med Phys
  doi: 10.1118/1.4934373
– volume: 6
  start-page: 821
  year: 2011
  ident: 10.1016/j.jocn.2021.04.043_b1210
  article-title: Investigating machine learning techniques for MRI-based classification of brain neoplasms
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-011-0559-3
– year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0665
  article-title: Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature
  publication-title: Eur Radiol
  doi: 10.1007/s00330-017-5267-0
– volume: 43
  start-page: 186
  year: 2016
  ident: 10.1016/j.jocn.2021.04.043_b1035
  article-title: A non-invasive methodology for the grade identification of astrocytoma using image processing and artificial intelligence techniques
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.08.036
– volume: 13
  start-page: 337
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0945
  article-title: Detection and classification of brain tumours from MRI images using faster R-CNN
  publication-title: Teh Glas
  doi: 10.31803/tg-20190712095507
– volume: 39
  start-page: 613
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b1190
  article-title: A deep learning model integrating SK-TPCNN and random forests for brain tumor segmentation in MRI
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2019.06.003
– volume: 11
  start-page: 437
  year: 2009
  ident: 10.1016/j.jocn.2021.04.043_b0975
  article-title: Intracranial low-grade gliomas in adults: 30-year experience with long-term follow-up at Mayo Clinic
  publication-title: Neuro Oncol
  doi: 10.1215/15228517-2008-102
– start-page: 1
  year: 2020
  ident: 10.1016/j.jocn.2021.04.043_b0265
  article-title: Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction
  publication-title: Eur Radiol
– start-page: 55
  year: 2014
  ident: 10.1016/j.jocn.2021.04.043_b0755
  article-title: The Stanford CoreNLP natural language processing toolkit
– volume: 48
  start-page: 916
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b1225
  article-title: Radiomics strategy for molecular subtype stratification of lower-grade glioma: detecting IDH and TP53 mutations based on multimodal MRI
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.25960
– volume: 83
  start-page: 102
  year: 2017
  ident: 10.1016/j.jocn.2021.04.043_b0435
  article-title: Quantitative glioma grading using transformed gray-scale invariant textures of MRI
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.02.012
– volume: 121
  start-page: 81
  year: 2020
  ident: 10.1016/j.jocn.2021.04.043_b0280
  article-title: A full systematic review was completed in 2 weeks using automation tools: a case study
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2020.01.008
– volume: 30
  start-page: 622
  year: 2017
  ident: 10.1016/j.jocn.2021.04.043_b0605
  article-title: Residual deep convolutional neural network predicts MGMT methylation status
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-017-0009-z
– volume: 24
  start-page: 1073
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0225
  article-title: Residual convolutional neural network for the determination of IDH status in low-and high-grade gliomas from MR imaging
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-17-2236
– volume: 289
  start-page: 797
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0105
  article-title: Radiomic MRI phenotyping of glioblastoma: improving survival prediction
  publication-title: Radiology
  doi: 10.1148/radiol.2018180200
– ident: 10.1016/j.jocn.2021.04.043_b1015
– volume: 9
  start-page: 1671
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b1150
  article-title: Grading glioma by radiomics with feature selection based on mutual information
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-018-0883-3
– volume: 29
  start-page: 3325
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b1070
  article-title: A radiomics nomogram may improve the prediction of IDH genotype for astrocytoma before surgery
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06056-4
– volume: 8
  start-page: 47816
  year: 2017
  ident: 10.1016/j.jocn.2021.04.043_b1230
  article-title: Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.18001
– volume: 38
  start-page: 135
  year: 2020
  ident: 10.1016/j.jocn.2021.04.043_b0060
  article-title: Machine learning-based quantitative texture analysis of conventional MRI combined with ADC maps for assessment of IDH1 mutation in high-grade gliomas
  publication-title: Jpn J Radiol
  doi: 10.1007/s11604-019-00902-7
– volume: 41
  start-page: 2305
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0320
  article-title: Denoising prior driven deep neural network for image restoration
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2018.2873610
– volume: 8
  start-page: 128
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0850
  article-title: Combining multimodal imaging and treatment features improves machine learning-based prognostic assessment in patients with glioblastoma multiforme
  publication-title: Cancer Med
  doi: 10.1002/cam4.1908
– volume: 13
  start-page: 2171
  year: 2012
  ident: 10.1016/j.jocn.2021.04.043_b0355
  article-title: DEAP: Evolutionary algorithms made easy
  publication-title: J Mach Learn Res
– volume: 6
  start-page: 648
  year: 2009
  ident: 10.1016/j.jocn.2021.04.043_b1185
  article-title: New advances that enable identification of glioblastoma recurrence
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2009.150
– volume: 27
  start-page: 475
  year: 2006
  ident: 10.1016/j.jocn.2021.04.043_b0210
  article-title: Update on brain tumor imaging: from anatomy to physiology
  publication-title: Am J Neuroradiol
– volume: 59
  start-page: 18
  year: 2017
  ident: 10.1016/j.jocn.2021.04.043_b0400
  article-title: A non-invasive and adaptive CAD system to detect brain tumor from T2-weighted MRIs using customized Otsu’s thresholding with prominent features and supervised learning
  publication-title: Signal Process Image Commun
  doi: 10.1016/j.image.2017.05.013
– volume: 40
  start-page: 418
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0450
  article-title: Accurate patient-specific machine learning models of glioblastoma invasion using transfer learning
  publication-title: Am J Neuroradiol
– year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0345
  article-title: Investigating risk factors and predicting complications in deep brain stimulation surgery with machine learning algorithms
  publication-title: World Neurosurg.
– volume: 28
  start-page: 3832
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b1045
  article-title: Primary central nervous system lymphoma and atypical glioblastoma: differentiation using radiomics approach
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5368-4
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.jocn.2021.04.043_b0640
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 140
  start-page: 249
  year: 2017
  ident: 10.1016/j.jocn.2021.04.043_b0535
  article-title: Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2016.12.018
– volume: 61
  start-page: 1229
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0660
  article-title: Radiogenomic analysis of PTEN mutation in glioblastoma using preoperative multi-parametric magnetic resonance imaging
  publication-title: Neuroradiology
  doi: 10.1007/s00234-019-02244-7
– volume: 61
  start-page: 748
  year: 2008
  ident: 10.1016/j.jocn.2021.04.043_b0950
  article-title: No consensus exists on search reporting methods for systematic reviews
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2007.10.009
– volume: 106
  start-page: 199
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0995
  article-title: On differentiation between vasogenic edema and non-enhancing tumor in high-grade glioma patients using a support vector machine classifier based upon pre and post-surgery MRI images
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2018.07.018
– volume: 352
  start-page: 987
  year: 2005
  ident: 10.1016/j.jocn.2021.04.043_b1025
  article-title: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa043330
– volume: 38
  start-page: 1145
  year: 2017
  ident: 10.1016/j.jocn.2021.04.043_b0045
  article-title: Differentiation of enhancing glioma and primary central nervous system lymphoma by texture-based machine learning
  publication-title: Am J Neuroradiol
  doi: 10.3174/ajnr.A5173
– year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0120
  article-title: Systematic Review & Meta-Analysis: Automation tools to help your review
– volume: 33
  start-page: 1065
  year: 2012
  ident: 10.1016/j.jocn.2021.04.043_b1215
  article-title: Survival analysis of patients with high-grade gliomas based on data mining of imaging variables
  publication-title: Am J Neuroradiol
  doi: 10.3174/ajnr.A2939
– volume: 177
  start-page: 69
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0065
  article-title: Brain tumor detection using statistical and machine learning method
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2019.05.015
– volume: 9
  start-page: 382
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0685
  article-title: Multimodal 3D DenseNet for IDH genotype prediction in gliomas
  publication-title: Genes (Basel)
  doi: 10.3390/genes9080382
– volume: 29
  start-page: 102
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0745
  article-title: An overview of deep learning in medical imaging focusing on MRI
  publication-title: Z Med Phys
  doi: 10.1016/j.zemedi.2018.11.002
– volume: 39
  start-page: 693
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0840
  article-title: Whole-tumor histogram and texture analyses of DTI for evaluation of IDH1-mutation and 1p/19q-codeletion status in World Health Organization grade II gliomas
  publication-title: Am J Neuroradiol
  doi: 10.3174/ajnr.A5569
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0360
  article-title: Integration of machine learning and mechanistic models accurately predicts variation in cell density of glioblastoma using multiparametric MRI
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-46296-4
– volume: 5
  start-page: 1
  year: 2014
  ident: 10.1016/j.jocn.2021.04.043_b0020
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nat Commun
– ident: 10.1016/j.jocn.2021.04.043_b0710
– volume: 18
  start-page: 44
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0620
  article-title: Machine learning-based texture analysis of contrast-enhanced MR imaging to differentiate between glioblastoma and primary central nervous system lymphoma
  publication-title: Magn Reson Med Sci
  doi: 10.2463/mrms.mp.2017-0178
– volume: 22
  start-page: 94
  year: 2015
  ident: 10.1016/j.jocn.2021.04.043_b1110
  article-title: The evolving molecular genetics of low-grade glioma
  publication-title: Adv Anat Pathol
  doi: 10.1097/PAP.0000000000000049
– volume: 39
  start-page: 2187
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0480
  article-title: Shape features of the lesion habitat to differentiate brain tumor progression from pseudoprogression on routine multiparametric MRI: a multisite study
  publication-title: Am J Neuroradiol
  doi: 10.3174/ajnr.A5858
– volume: 28
  start-page: 356
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0670
  article-title: MRI features can predict EGFR expression in lower grade gliomas: a voxel-based radiomic analysis
  publication-title: Eur Radiol
  doi: 10.1007/s00330-017-4964-z
– volume: 46
  start-page: 1581
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0050
  article-title: Highly accelerated, model-free diffusion tensor MRI reconstruction using neural networks
  publication-title: Med Phys
  doi: 10.1002/mp.13400
– volume: 267
  start-page: 823
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0695
  article-title: Measuring processes of care in palliative surgery: a novel approach using natural language processing
  publication-title: Ann Surg
  doi: 10.1097/SLA.0000000000002579
– volume: 16
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0765
  article-title: The significant cost of systematic reviews and meta-analyses: A call for greater involvement of machine learning to assess the promise of clinical trials
  publication-title: Contemp Clin trials Commun
– volume: 45
  start-page: 1150
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0040
  article-title: Deep learning for segmentation of brain tumors: Impact of cross-institutional training and testing
  publication-title: Med Phys
  doi: 10.1002/mp.12752
– volume: 59
  start-page: 947
  year: 2002
  ident: 10.1016/j.jocn.2021.04.043_b0985
  article-title: How often are nonenhancing supratentorial gliomas malignant? A population study
  publication-title: Neurology
  doi: 10.1212/WNL.59.6.947
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0155
  article-title: Texture analysis-and support vector machine-assisted diffusional kurtosis imaging may allow in vivo gliomas grading and IDH-mutation status prediction: a preliminary study
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-24438-4
– volume: 107
  start-page: 15
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b1040
  article-title: Contrast enhancement is a prognostic factor in IDH1/2 mutant, but not in wild-type WHO grade II/III glioma as confirmed by machine learning
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2018.10.019
– volume: 26
  start-page: 4509
  year: 2017
  ident: 10.1016/j.jocn.2021.04.043_b0515
  article-title: Deep convolutional neural network for inverse problems in imaging
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2017.2713099
– volume: 28
  start-page: 3640
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0675
  article-title: Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: a multicentre study
  publication-title: Eur Radiol
  doi: 10.1007/s00330-017-5302-1
– volume: 18
  start-page: e315
  year: 2017
  ident: 10.1016/j.jocn.2021.04.043_b1120
  article-title: European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(17)30194-8
– volume: 101
  start-page: 1931
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b1155
  article-title: Use of natural language processing algorithms to identify common data elements in operative notes for total hip arthroplasty
  publication-title: JBJS
  doi: 10.2106/JBJS.19.00071
– volume: 145
  start-page: 543
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b1140
  article-title: Radiomics-based machine learning methods for isocitrate dehydrogenase genotype prediction of diffuse gliomas
  publication-title: J Cancer Res Clin Oncol
  doi: 10.1007/s00432-018-2787-1
– volume: 139
  start-page: 491
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0725
  article-title: Machine learning: a useful radiological adjunct in determination of a newly diagnosed glioma’s grade and IDH status
  publication-title: J Neurooncol
  doi: 10.1007/s11060-018-2895-4
– volume: 37
  start-page: 1775
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0245
  article-title: Multi-label nonlinear matrix completion with transductive multi-task feature selection for joint MGMT and IDH1 status prediction of patient with high-grade gliomas
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2807590
– volume: 27
  start-page: 709
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0965
  article-title: Overall survival prediction in glioblastoma multiforme patients from volumetric, shape and texture features using machine learning
  publication-title: Surg Oncol
  doi: 10.1016/j.suronc.2018.09.002
– volume: 35
  start-page: 184
  year: 2015
  ident: 10.1016/j.jocn.2021.04.043_b0370
  article-title: DALSA: domain adaptation for supervised learning from sparsely annotated MR images
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2015.2463078
– volume: 146
  start-page: 37
  year: 2020
  ident: 10.1016/j.jocn.2021.04.043_b1010
  article-title: Automated delineation of the clinical target volume using anatomically constrained 3D expansion of the gross tumor volume
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2020.01.028
– volume: 13
  start-page: 563
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b1005
  article-title: MRI radiomics analysis of molecular alterations in low-grade gliomas
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-017-1691-5
– volume: 8
  start-page: 1287
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0295
  article-title: Biopsy Confirmed Glioma Recurrence Predicted by Multi-Modal Neuroimaging Metrics
  publication-title: J Clin Med
  doi: 10.3390/jcm8091287
– volume: 10
  start-page: 6484
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0545
  article-title: Pre-surgical connectome features predict IDH status in diffuse gliomas
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.27301
– volume: 1–19
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0190
  article-title: Machine learning applications to clinical decision support in neurosurgery: an artificial intelligence augmented systematic review
  publication-title: Neurosurg Rev
– volume: 17:iv1–iv62
  year: 2015
  ident: 10.1016/j.jocn.2021.04.043_b0820
  article-title: CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012
  publication-title: Neuro Oncol
– volume: 39
  start-page: 1201
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0235
  article-title: Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas
  publication-title: Am J Neuroradiol
  doi: 10.3174/ajnr.A5667
– volume: 76
  start-page: 572
  year: 2011
  ident: 10.1016/j.jocn.2021.04.043_b0390
  article-title: The risk of getting worse: surgically acquired deficits, perioperative complications, and functional outcomes after primary resection of glioblastoma
  publication-title: World Neurosurg
  doi: 10.1016/j.wneu.2011.06.014
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.jocn.2021.04.043_b0655
  article-title: A fully-automatic multiparametric radiomics model: towards reproducible and prognostic imaging signature for prediction of overall survival in glioblastoma multiforme
  publication-title: Sci Rep
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.jocn.2021.04.043_b0180
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 23
  start-page: 4375
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0690
  article-title: Machine-learning based radiogenomics analysis of MRI features and metagenes in glioblastoma multiforme patients with different survival time
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.14328
– volume: 30
  start-page: 823
  year: 2020
  ident: 10.1016/j.jocn.2021.04.043_b1075
  article-title: Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06441-z
– volume: 16
  start-page: 643
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0980
  article-title: Applications of machine learning using electronic medical records in spine surgery
  publication-title: Neurospine
  doi: 10.14245/ns.1938386.193
– volume: 29
  start-page: 4430
  year: 2011
  ident: 10.1016/j.jocn.2021.04.043_b0005
  article-title: Compromised health-related quality of life in patients with low-grade glioma
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2011.35.5750
– volume: 46
  start-page: 115
  year: 2017
  ident: 10.1016/j.jocn.2021.04.043_b1250
  article-title: Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group prediction
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.25497
– volume: 62
  start-page: 753
  year: 2008
  ident: 10.1016/j.jocn.2021.04.043_b0955
  article-title: Glioma extent of resection and its impact on patient outcome
  publication-title: Neurosurgery
  doi: 10.1227/01.neu.0000318159.21731.cf
– year: 1997
  ident: 10.1016/j.jocn.2021.04.043_b0290
  article-title: Brainweb: Online interface to a 3D MRI simulated brain database
  publication-title: NeuroImage. Citeseer.
– volume: 24
  start-page: 4429
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0740
  article-title: Machine learning–based radiomics for molecular subtyping of gliomas
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-17-3445
– volume: 40
  start-page: 47
  year: 2014
  ident: 10.1016/j.jocn.2021.04.043_b0335
  article-title: Machine learning in preoperative glioma MRI: Survival associations by perfusion-based support vector machine outperforms traditional MRI
  publication-title: J Magn Reson imaging
  doi: 10.1002/jmri.24390
– volume: 49
  start-page: 808
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0925
  article-title: Noninvasive prediction of IDH1 mutation and ATRX expression loss in low-grade gliomas using multiparametric MR radiomic features
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.26240
– volume: 6
  start-page: 1
  year: 2016
  ident: 10.1016/j.jocn.2021.04.043_b1125
  article-title: Multiparametric MRI-based differentiation of WHO grade II/III glioma and WHO grade IV glioblastoma
  publication-title: Sci Rep
  doi: 10.1038/srep35142
– volume: 308
  start-page: 1881
  year: 2012
  ident: 10.1016/j.jocn.2021.04.043_b0485
  article-title: Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low-grade gliomas
  publication-title: JAMA
  doi: 10.1001/jama.2012.12807
– volume: 278
  start-page: 563
  year: 2016
  ident: 10.1016/j.jocn.2021.04.043_b0365
  article-title: Radiomics: images are more than pictures, they are data
  publication-title: Radiology
  doi: 10.1148/radiol.2015151169
– volume: 170
  start-page: W1
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0785
  article-title: PROBAST: a tool to assess risk of bias and applicability of prediction model studies: explanation and elaboration
  publication-title: Ann Intern Med
  doi: 10.7326/M18-1377
– year: 2020
  ident: 10.1016/j.jocn.2021.04.043_b0185
  article-title: Ethical thinking machines in surgery and the requirement for clinical leadership
  publication-title: Am J Surg
  doi: 10.1016/j.amjsurg.2020.06.073
– volume: 53
  start-page: 647
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0860
  article-title: Clinical evaluation of a multiparametric deep learning model for glioblastoma segmentation using heterogeneous magnetic resonance imaging data from clinical routine
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000484
– ident: 10.1016/j.jocn.2021.04.043_b0610
– year: 2020
  ident: 10.1016/j.jocn.2021.04.043_b0055
  article-title: The diagnostic value of quantitative texture analysis of conventional MRI sequences using artificial neural networks in grading gliomas
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2019.12.008
– volume: 35
  start-page: 1240
  year: 2016
  ident: 10.1016/j.jocn.2021.04.043_b0855
  article-title: Brain tumor segmentation using convolutional neural networks in MRI images
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2538465
– volume: 60
  start-page: 1297
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0580
  article-title: Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI
  publication-title: Neuroradiology
  doi: 10.1007/s00234-018-2091-4
– volume: 36
  start-page: 176
  year: 2016
  ident: 10.1016/j.jocn.2021.04.043_b0205
  article-title: Natural language processing technologies in radiology research and clinical applications
  publication-title: Radiographics
  doi: 10.1148/rg.2016150080
– volume: 34
  start-page: 1326
  year: 2013
  ident: 10.1016/j.jocn.2021.04.043_b0350
  article-title: Multimodal MR imaging (diffusion, perfusion, and spectroscopy): is it possible to distinguish oligodendroglial tumor grade and 1p/19q codeletion in the pretherapeutic diagnosis?
  publication-title: Am J Neuroradiol
  doi: 10.3174/ajnr.A3352
– volume: 8
  start-page: 27
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0550
  article-title: Noninvasive grading of glioma tumor using magnetic resonance imaging with convolutional neural networks
  publication-title: Appl Sci
  doi: 10.3390/app8010027
– ident: 10.1016/j.jocn.2021.04.043_b0010
– ident: 10.1016/j.jocn.2021.04.043_b0815
  doi: 10.1007/978-3-319-31204-0_9
– volume: 43
  start-page: 5889
  year: 2016
  ident: 10.1016/j.jocn.2021.04.043_b0870
  article-title: Stratification of pseudoprogression and true progression of glioblastoma multiform based on longitudinal diffusion tensor imaging without segmentation
  publication-title: Med Phys
  doi: 10.1118/1.4963812
– volume: 33
  start-page: 296
  year: 2011
  ident: 10.1016/j.jocn.2021.04.043_b0455
  article-title: Support vector machine multiparametric MRI identification of pseudoprogression from tumor recurrence in patients with resected glioblastoma
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.22432
– volume: 56
  start-page: 2287
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0215
  article-title: Prediction of survival with multi-scale radiomic analysis in glioblastoma patients
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-018-1858-4
– volume: 43
  start-page: 2835
  year: 2016
  ident: 10.1016/j.jocn.2021.04.043_b0600
  article-title: MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas
  publication-title: Med Phys
  doi: 10.1118/1.4948668
– volume: 78
  start-page: 572
  year: 2016
  ident: 10.1016/j.jocn.2021.04.043_b0030
  article-title: Imaging surrogates of infiltration obtained via multiparametric imaging pattern analysis predict subsequent location of recurrence of glioblastoma
  publication-title: Neurosurgery
  doi: 10.1227/NEU.0000000000001202
– year: 2017
  ident: 10.1016/j.jocn.2021.04.043_b0195
  article-title: The Seattle spine score: Predicting 30-day complication risk in adult spinal deformity surgery
  publication-title: J Clin Neurosci
  doi: 10.1016/j.jocn.2017.06.012
– volume: 37
  start-page: 1943
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0750
  article-title: Concatenated and connected random forests with multiscale patch driven active contour model for automated brain tumor segmentation of MR images
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2805821
– volume: 35
  start-page: 18
  year: 2017
  ident: 10.1016/j.jocn.2021.04.043_b0410
  article-title: Brain tumor segmentation with deep neural networks
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.05.004
– start-page: 770
  year: 2016
  ident: 10.1016/j.jocn.2021.04.043_b0420
  article-title: Deep residual learning for image recognition
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0910
  article-title: Radiomic MRI signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond IDH1
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-22739-2
– volume: 30
  start-page: 844
  year: 2020
  ident: 10.1016/j.jocn.2021.04.043_b0650
  article-title: Advanced imaging parameters improve the prediction of diffuse lower-grade gliomas subtype, IDH mutant with no 1p19q codeletion: added value to the T2/FLAIR mismatch sign
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06395-2
– volume: 9
  start-page: 1201
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0505
  article-title: Machine-learning based classification of glioblastoma using delta-radiomic features derived from dynamic susceptibility contrast enhanced magnetic resonance images: Introduction
  publication-title: Quant Imaging Med Surg
  doi: 10.21037/qims.2019.07.01
– volume: 164
  start-page: 114
  year: 2018
  ident: 10.1016/j.jocn.2021.04.043_b0490
  article-title: Quantitative texture analysis in the prediction of IDH status in low-grade gliomas
  publication-title: Clin Neurol Neurosurg
  doi: 10.1016/j.clineuro.2017.12.007
– volume: 125
  start-page: e688
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0645
  article-title: Prediction of IDH1 Mutation Status in Glioblastoma Using Machine Learning Technique Based on Quantitative Radiomic Data
  publication-title: World Neurosurg
  doi: 10.1016/j.wneu.2019.01.157
– volume: 30
  start-page: 174
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0940
  article-title: Multi-grade brain tumor classification using deep CNN with extensive data augmentation
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2018.12.003
– volume: 59
  year: 2020
  ident: 10.1016/j.jocn.2021.04.043_b0465
  article-title: Application of innovative image processing methods and AdaBound-SE-DenseNet to optimize the diagnosis performance of meningiomas and gliomas
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.101926
– volume: 43
  start-page: 326
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0085
  article-title: A new approach for brain tumor segmentation and classification based on score level fusion using transfer learning
  publication-title: J Med Syst
  doi: 10.1007/s10916-019-1453-8
– volume: 20
  start-page: 728
  year: 2019
  ident: 10.1016/j.jocn.2021.04.043_b0560
  article-title: Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(19)30098-1
SSID ssj0009430
Score 2.5544558
SecondaryResourceType review_article
Snippet [Display omitted] oMachine learning has been widely applied to MRI to detect and diagnose gliomas.oNon-invasive detection of genetics has the potential to...
Glioma is the most common primary intraparenchymal tumor of the brain and the 5-year survival rate of high-grade glioma is poor. Magnetic resonance imaging...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 177
SubjectTerms Brain tumor classification
Convolutional neural networks
Deep learning
FLAIR
Glioblastoma
Glioma
Glioma grading
Image processing
Machine learning
Multimodal neuroimaging
Neurosurgery
Radiomics
T1-MR image
T2-MR image
Title Machine learning applications to neuroimaging for glioma detection and classification: An artificial intelligence augmented systematic review
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0967586821002241
https://dx.doi.org/10.1016/j.jocn.2021.04.043
https://www.proquest.com/docview/2540721550
Volume 89
WOSCitedRecordID wos000659912500030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1532-2653
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009430
  issn: 0967-5868
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DSFeEFcxLpOReKsyNYm9JLxVMASIVSAN1LfIdpySqk2mNSkT_4G_x-_h-BIn69TBHpCqqLJqK835cnxsf-c7CL0KYZEc5BLWJjHJPMJy6TGAgQehEQ8J92Wu8yu-fYomk3g6TT4PBr_bXJj1IirL-OIiOfuvpoY2MLZKnb2Bud2g0ADfwehwBbPD9Z8Mf6LpkbKtBzEb9s-oVaipJSyLpSlPpFiGs0VRLdkwk7W0hcNVrpsKqxWPyNE_xqVSRCqs5ETR1_JkzUyLe2ZXlKF_bIl-XUZmT1CzO-BvxPcF0376S1OUC_BBbw9d7L9assIkdU_YT1YWPVLRWhHDDWmHlV4nnOAG1llIdaeq0LIK7L5H4DuOrNvABBdPY1OUp_XlphyRdca-LRBj5nXfVLu-MmWY3Yv54bwSSg838LX0rdGOuqzPvTFvOjZjS5Sbp2qMVI2Rjgh8wh20F0Q0AW-7N_5wPP3YyUETXQXH_QebzmWYh5t3si1k2ggedER0eg_dtcbEYwPB-2ggywfo9oklazxEvywScYtE3EcirivcRyIGJGKDROyQiAGJ-DISX-MxNDsc4j4OscMh7nCIDQ4foa_vjk_fvPds9Q9PhDGpPUKyjLOMExqRTOQR53kYCS5GgkYSlrmC8pCxmNI4h-fGYlg68ITlCRF-lkUQhj9Gu2VVyicI06OM5xCKqpmfJLnPfJaI4ChR1I1Rwsg-8tsHnAorja8qtCzS7abdR0PX58wIw1z767C1W9q-YDBJpwDCa3tR18u-iCbQ_Wu_ly00Upgt1BEgK2XVrNKAakFESkdPb3T_z9Cd7h18jnbr80a-QLfEui5W5wdoJ5rGBxbjfwBShe30
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+applications+to+neuroimaging+for+glioma+detection+and+classification%3A+An+artificial+intelligence+augmented+systematic+review&rft.jtitle=Journal+of+clinical+neuroscience&rft.au=Buchlak%2C+Quinlan+D.&rft.au=Esmaili%2C+Nazanin&rft.au=Leveque%2C+Jean-Christophe&rft.au=Bennett%2C+Christine&rft.date=2021-07-01&rft.issn=0967-5868&rft.volume=89&rft.spage=177&rft.epage=198&rft_id=info:doi/10.1016%2Fj.jocn.2021.04.043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jocn_2021_04_043
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-5868&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-5868&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-5868&client=summon