A parallel genetic algorithm for adaptive hardware and its application to ECG signal classification
This paper presents a parallel genetic algorithm (GA) called the cellular compact genetic algorithm (c-cGA) and its implementation for adaptive hardware. An adaptive hardware based on the c-cGA is proposed to automate real-time classification of ECG signals. The c-cGA not only provides a strong sear...
Uloženo v:
| Vydáno v: | Neural computing & applications Ročník 22; číslo 7-8; s. 1609 - 1626 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Springer-Verlag
01.06.2013
Springer |
| Témata: | |
| ISSN: | 0941-0643, 1433-3058 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper presents a parallel genetic algorithm (GA) called the cellular compact genetic algorithm (c-cGA) and its implementation for adaptive hardware. An adaptive hardware based on the c-cGA is proposed to automate real-time classification of ECG signals. The c-cGA not only provides a strong search capability while maintaining genetic diversity using multiple GAs but also has a cellular-like structure and is a straight-forward algorithm suitable for hardware implementation. The c-cGA hardware and an adaptive digital filter structure also perform an adaptive feature selection in real time. The c-cGA is applied to a block-based neural network (BbNN) for online learning in the hardware. Using an adaptive hardware approach based on the c-cGA, an adaptive hardware system for classifying ECG signals is feasible. The proposed adaptive hardware can be implemented in a field programmable gate array (FPGA) for an adaptive embedded system applied to personalised ECG signal classifications for long-term patient monitoring. |
|---|---|
| AbstractList | This paper presents a parallel genetic algorithm (GA) called the cellular compact genetic algorithm (c-cGA) and its implementation for adaptive hardware. An adaptive hardware based on the c-cGA is proposed to automate real-time classification of ECG signals. The c-cGA not only provides a strong search capability while maintaining genetic diversity using multiple GAs but also has a cellular-like structure and is a straight-forward algorithm suitable for hardware implementation. The c-cGA hardware and an adaptive digital filter structure also perform an adaptive feature selection in real time. The c-cGA is applied to a block-based neural network (BbNN) for online learning in the hardware. Using an adaptive hardware approach based on the c-cGA, an adaptive hardware system for classifying ECG signals is feasible. The proposed adaptive hardware can be implemented in a field programmable gate array (FPGA) for an adaptive embedded system applied to personalised ECG signal classifications for long-term patient monitoring. |
| Author | Jewajinda, Yutana Chongstitvatana, Prabhas |
| Author_xml | – sequence: 1 givenname: Yutana surname: Jewajinda fullname: Jewajinda, Yutana email: yutana.jewajinda@nectec.or.th organization: National Electronics and Computer Technology Center, Department of Computer Engineering, Chulalongkorn University – sequence: 2 givenname: Prabhas surname: Chongstitvatana fullname: Chongstitvatana, Prabhas organization: Department of Computer Engineering, Chulalongkorn University |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27623614$$DView record in Pascal Francis |
| BookMark | eNp9kD1PwzAQhi1UJErhB7B5YQz4K04yVlUpSJVYYLZO_khduUlkGxD_npRUDAydbnjf5073XKNZ13cWoTtKHigh1WMipGS0IJQVpJG8aC7QnArOC07KeobmpBFjKgW_Qtcp7QkhQtblHOklHiBCCDbg1nY2e40htH30eXfAro8YDAzZf1q8g2i-IFoMncE-JwzDELyG7PsO5x6vVxucfNtBwDpASt6dwht06SAke3uaC_T-tH5bPRfb183LarktNK9FLphhtTNc0EZrQw2HigopmKsqS2lZNpRYZsBJVhIhrJGsAslBECcd1GVt-ALdT3sHSBqCi9Bpn9QQ_QHit2KVZFyOUhaITj0d-5SidX8VStTRpppsqtGmOtpUzchU_xjt8-93OYIPZ0k2kWm80rU2qn3_EUdL6Qz0A0U1izI |
| CitedBy_id | crossref_primary_10_1016_j_neucom_2014_05_033 crossref_primary_10_1007_s00521_013_1471_2 crossref_primary_10_1016_j_micpro_2023_104986 crossref_primary_10_1007_s00521_018_3925_z crossref_primary_10_1016_j_neucom_2015_05_128 crossref_primary_10_1016_j_knosys_2014_05_004 crossref_primary_10_1007_s10916_019_1443_x crossref_primary_10_1541_ieejeiss_136_1586 crossref_primary_10_1016_j_bspc_2018_03_003 crossref_primary_10_1155_2022_7564036 crossref_primary_10_1016_j_compeleceng_2016_02_004 crossref_primary_10_1007_s10489_017_1113_y crossref_primary_10_1007_s00521_017_3051_3 crossref_primary_10_1016_j_jksuci_2022_01_002 crossref_primary_10_2174_1574893618666230706112826 crossref_primary_10_2174_1573405619666230309103435 |
| Cites_doi | 10.1109/TEVC.2003.820662 10.1109/TNN.2007.900239 10.1109/4235.797971 10.1109/TBME.2006.883802 10.1109/AHS.2009.46 10.1109/TSP.2006.888883 10.1109/10.623058 10.1109/TIM.2003.816841 10.1109/AHS.2008.13 10.1109/WEAH.2009.4925661 10.1109/CEC.2008.4631161 10.1109/5.784219 10.1109/TITB.2008.923147 10.1007/0-387-31238-2 10.1109/72.914525 10.1161/01.CIR.101.23.e215 10.1109/51.932724 10.1109/TEVC.2002.800880 10.1007/978-3-540-85857-7_32 10.1007/978-3-540-85857-7_3 10.1109/CEC.2007.4424587 10.1007/978-3-540-30217-9_25 10.1109/TBME.2004.824138 10.1109/TEVC.2009.2025032 10.1109/CEC.2006.1688705 10.1080/09540090701725508 10.1007/BF02637023 10.1109/TNN.2007.891626 10.1109/TEVC.2003.814633 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London Limited 2012 2014 INIST-CNRS |
| Copyright_xml | – notice: Springer-Verlag London Limited 2012 – notice: 2014 INIST-CNRS |
| DBID | AAYXX CITATION IQODW |
| DOI | 10.1007/s00521-012-0963-9 |
| DatabaseName | CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Mathematics Applied Sciences Statistics |
| EISSN | 1433-3058 |
| EndPage | 1626 |
| ExternalDocumentID | 27623614 10_1007_s00521_012_0963_9 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB IQODW |
| ID | FETCH-LOGICAL-c384t-2d28fd3419ccd1d3a714642f77e1155910e2daf625044ed627a63a40f6fa858d3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000319769300036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0941-0643 |
| IngestDate | Mon Jul 21 09:16:26 EDT 2025 Tue Nov 18 21:26:59 EST 2025 Sat Nov 29 02:58:56 EST 2025 Fri Feb 21 02:34:27 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7-8 |
| Keywords | ECG signal classification Parallel genetic algorithm Adaptive hardware Parallel algorithm Neural computation Adaptive algorithm Adaptive system Field programmable gate array Long term variation Adaptive filter Neural network Real time Long term Implementation Learning Digital filter Genetic algorithm Classification Genetics Monitoring |
| Language | English |
| License | http://www.springer.com/tdm CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c384t-2d28fd3419ccd1d3a714642f77e1155910e2daf625044ed627a63a40f6fa858d3 |
| PageCount | 18 |
| ParticipantIDs | pascalfrancis_primary_27623614 crossref_primary_10_1007_s00521_012_0963_9 crossref_citationtrail_10_1007_s00521_012_0963_9 springer_journals_10_1007_s00521_012_0963_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-06-01 |
| PublicationDateYYYYMMDD | 2013-06-01 |
| PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2013 |
| Publisher | Springer-Verlag Springer |
| Publisher_xml | – name: Springer-Verlag – name: Springer |
| References | HuYPalreddySTompkinsWJA patient-adaptable ECG beat classifier using a mixture of experts approachIEEE Trans Biomed Eng199744989190010.1109/10.623058 Mark R, Wallen R (1987) Recommended practice for testing and reporting performance results of ventricular arrhythmia detection algorithm. Association for the Advancement of Medical Instrumentation, Arlington HamiltonPSTompkinsWJA real-time QRS detection algorithmIEEE Trans Biomed Eng198532230236 Salcedo-SanzSCruz-RoldFHeneghanCYaoXEvolutionary design of digital filters with application to sub-band coding and data transmissionIEEE Trans Signal Process200755411931203246498310.1109/TSP.2006.888883 GoldbergerALAmaralLANGlassLHausdorffJMIvanovPChMarkRGMietusJEMoodyGBPengCKStanleyHEPhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signalsCirculation200110123e215e22010.1161/01.CIR.101.23.e215 Merchant S et al (2006) FPGA implementation of evolvable block-based neural network. In: Proceeding of IEEE congress on evolutionary computation, pp 3129–3136 MelganiFBaziYClassification of electrocardiogram signals with support vector machines and particle swarm optimizationIEEE Trans Inf Technol Biomed200812566767710.1109/TITB.2008.923147 OsowskiSHoaiLTMarkiewiczTSupport vector machine based expert system for reliable heartbeat recognitionIEEE Trans Biomed Eng200451458258910.1109/TBME.2004.824138 GarrisonWGTyrellAMIntroduction to evolvable hardware: a practical guide for designing self-adaptive systems2007New JerseyWiley-IEEE Press Glette K, Torresen J, Hovin M (2009) Intermediate level FPGA reconfiguration for an online EHW pattern recognition system. In: Proceeding of international conference on adaptive hardware and system, San Francisco, pp 19–26 ChazalPO’DwyerMReillyRBAutomatic classification of heartbeats using ECG morphology and heartbeat interval featuresIEEE Trans Biomed Eng200451411961206 Cantu-PazEEfficient and accurate parallel genetic algorithms2000BostonKluwer0963.68164 Shayani H, Bentley PJ, Tyrell AM (2008) Hardware Implementation of a bio-plausible neuron model for evolution and growth of spiking neural networks on FPGA. In: Proceeding of NASA/ESA conference on adaptive hardware and systems, pp 236–243 Xin J, Steve BF, Woods JV (2008) Efficient modeling of spiking neural network on a scalable chip multiprocessor. In: Proceeding of international joint conference neural network, pp 2812–2819 LagunaPJanRCaminalPRixHThakorNVAdaptive estimation of the QRS complex wave in the electrocardiographic signal (ECG) by the Hermite model: classification and ectopic beat detectionJ Med Biol Eng Comput199534586810.1007/BF02637023 Stefatos EF, Arlan T, Hamilton A (2008) Evolutionary techniques for precise and real-time implementation of low-power FIR filters. In: Proceeding of IEEE congress on evolutionary computation, Hong Kong, pp 2701–2708 Glette K, Torrensen J, Kaufmann P, Platzner M (2008) A comparison of evolvable hardware architecture for classification tasks. In: Proceedings of the 8th international conference on evolvable systems: from biology to hardware, pp 22–33 HimavathiSFeedforward neural network implementation in FPGA using layer multiplexing for effective resource utilizationIEEE Trans Neural Netw200718388088810.1109/TNN.2007.891626 Teerakittikul P, Tempesti G, Tyrrel AM (2009) The application of evolvable hardware to fault tolerant robot control. In: Proceeding of IEEE workshop on evolvable and adaptive hardware, Nashville, pp 1–8 FernandoPRKatkooriSKeymeulenDZebulumRStoicaACustomizable FPGA IP core implementation of a general-purpose genetic algorithm engineIEEE Trans Evol Comput201014113314910.1109/TEVC.2009.2025032 HarikGLoboFGoldbergDThe compact genetic algorithmIEEE Trans Evol Comput19993428730910.1109/4235.797971 WookCRamakrishnaRSElitism-based compact genetic algorithmIEEE Trans Evol Comput20037436738510.1109/TEVC.2003.814633 JiangWKongSGBlock-Based neural networks for personalized ECG signal classificationIEEE Trans Neural Netw20071861750176110.1109/TNN.2007.900239 HeJYaoXChenYA novel and practicable on-chip adaptive lossless image compression scheme using intrinsic evolvable hardwareConnect Sci200719428129510.1080/09540090701725508 LinhTHOsowskiSStodolskiMOn-line heart beat recognition using Hermite polynomials and neuro-fuzzy networkIEEE Trans Instrum Meas20035241224123110.1109/TIM.2003.816841 Mokhtar M, Halliday DM, Tyrell AM (2008) Hippocampus-inspired spiking neural network on FPGA, In: Proceeding of international conference on evolvable systems, Lect Notes Comput Sci, Springer 5216, pp 362–371 AlbaETomassiniMParallelism and evolutionary algorithmsIEEE Trans Evol Comput20026544346310.1109/TEVC.2002.800880 MoodyGBMarkRGThe impact of the MIT-BIH arrhythmia databaseIEEE Eng Med Biol2001203455010.1109/51.932724 TorensenTIncremental evolution of a signal classification hardware architecture for prosthetic hand controlInt J Knowl Intell Eng Syst200812187199 MoonSWKongSGBlock-based neural networksIEEE Trans Neural Netw20011230731710.1109/72.914525 HiguchiTIwataMLiuYYaoXIntroduction to evolvable hardware2006New YorkSpringer10.1007/0-387-31238-2 Ahn CW, Goldberg DE, Ramakrishna RS (2004) Multiple-deme parallel estimation of distribution algorithm. In: Proceeding of parallel processing and applied mathematics, Lect Notes Comput Sci 3019, pp 544–551 YaoXEvolving artificial neural networksProc IEEE19998791423144710.1109/5.784219 DelaOssa, L, Gmez JA, Puerta JM (2004) Migration of probability models instead of individuals: an alternative when applying the island model to edas. In: proceeding of international conference on parallel problem solving in nature (PPSN 2004), pp 242–252 Jaros J, Schwarz J (2007) Parallel BMDA with probability model migration. In: Proceeding of IEEE congress on evolutionary computation, pp 1059–1066 GallagherJCVigrahamSKramerGA family of compact genetic algorithms for intrinsic evolvable hardwareIEEE Trans Evol Comput20048211112610.1109/TEVC.2003.820662 ChazalPReillyRBA patient adapting heart beat classifier using ECG morphology and heartbeat interval featuresIEEE Trans Biomed Eng200653122535254310.1109/TBME.2006.883802 GB Moody (963_CR29) 2001; 20 PR Fernando (963_CR4) 2010; 14 963_CR9 963_CR8 AL Goldberger (963_CR30) 2001; 101 963_CR26 TH Linh (963_CR21) 2003; 52 JC Gallagher (963_CR3) 2004; 8 C Wook (963_CR17) 2003; 7 T Torensen (963_CR5) 2008; 12 WG Garrison (963_CR2) 2007 Y Hu (963_CR19) 1997; 44 F Melgani (963_CR28) 2008; 12 P Laguna (963_CR20) 1995; 34 SW Moon (963_CR32) 2001; 12 J He (963_CR6) 2007; 19 T Higuchi (963_CR1) 2006 S Himavathi (963_CR37) 2007; 18 S Salcedo-Sanz (963_CR10) 2007; 55 E Cantu-Paz (963_CR12) 2000 963_CR15 963_CR18 963_CR34 963_CR11 S Osowski (963_CR22) 2004; 51 X Yao (963_CR31) 1999; 87 963_CR33 E Alba (963_CR13) 2002; 6 963_CR14 W Jiang (963_CR25) 2007; 18 963_CR36 963_CR35 P Chazal (963_CR23) 2004; 51 PS Hamilton (963_CR27) 1985; 32 G Harik (963_CR16) 1999; 3 963_CR7 P Chazal (963_CR24) 2006; 53 |
| References_xml | – reference: Teerakittikul P, Tempesti G, Tyrrel AM (2009) The application of evolvable hardware to fault tolerant robot control. In: Proceeding of IEEE workshop on evolvable and adaptive hardware, Nashville, pp 1–8 – reference: Cantu-PazEEfficient and accurate parallel genetic algorithms2000BostonKluwer0963.68164 – reference: Merchant S et al (2006) FPGA implementation of evolvable block-based neural network. In: Proceeding of IEEE congress on evolutionary computation, pp 3129–3136 – reference: WookCRamakrishnaRSElitism-based compact genetic algorithmIEEE Trans Evol Comput20037436738510.1109/TEVC.2003.814633 – reference: ChazalPReillyRBA patient adapting heart beat classifier using ECG morphology and heartbeat interval featuresIEEE Trans Biomed Eng200653122535254310.1109/TBME.2006.883802 – reference: LagunaPJanRCaminalPRixHThakorNVAdaptive estimation of the QRS complex wave in the electrocardiographic signal (ECG) by the Hermite model: classification and ectopic beat detectionJ Med Biol Eng Comput199534586810.1007/BF02637023 – reference: LinhTHOsowskiSStodolskiMOn-line heart beat recognition using Hermite polynomials and neuro-fuzzy networkIEEE Trans Instrum Meas20035241224123110.1109/TIM.2003.816841 – reference: ChazalPO’DwyerMReillyRBAutomatic classification of heartbeats using ECG morphology and heartbeat interval featuresIEEE Trans Biomed Eng200451411961206 – reference: MoodyGBMarkRGThe impact of the MIT-BIH arrhythmia databaseIEEE Eng Med Biol2001203455010.1109/51.932724 – reference: GallagherJCVigrahamSKramerGA family of compact genetic algorithms for intrinsic evolvable hardwareIEEE Trans Evol Comput20048211112610.1109/TEVC.2003.820662 – reference: HiguchiTIwataMLiuYYaoXIntroduction to evolvable hardware2006New YorkSpringer10.1007/0-387-31238-2 – reference: MoonSWKongSGBlock-based neural networksIEEE Trans Neural Netw20011230731710.1109/72.914525 – reference: Ahn CW, Goldberg DE, Ramakrishna RS (2004) Multiple-deme parallel estimation of distribution algorithm. In: Proceeding of parallel processing and applied mathematics, Lect Notes Comput Sci 3019, pp 544–551 – reference: MelganiFBaziYClassification of electrocardiogram signals with support vector machines and particle swarm optimizationIEEE Trans Inf Technol Biomed200812566767710.1109/TITB.2008.923147 – reference: HeJYaoXChenYA novel and practicable on-chip adaptive lossless image compression scheme using intrinsic evolvable hardwareConnect Sci200719428129510.1080/09540090701725508 – reference: GoldbergerALAmaralLANGlassLHausdorffJMIvanovPChMarkRGMietusJEMoodyGBPengCKStanleyHEPhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signalsCirculation200110123e215e22010.1161/01.CIR.101.23.e215 – reference: Mokhtar M, Halliday DM, Tyrell AM (2008) Hippocampus-inspired spiking neural network on FPGA, In: Proceeding of international conference on evolvable systems, Lect Notes Comput Sci, Springer 5216, pp 362–371 – reference: FernandoPRKatkooriSKeymeulenDZebulumRStoicaACustomizable FPGA IP core implementation of a general-purpose genetic algorithm engineIEEE Trans Evol Comput201014113314910.1109/TEVC.2009.2025032 – reference: GarrisonWGTyrellAMIntroduction to evolvable hardware: a practical guide for designing self-adaptive systems2007New JerseyWiley-IEEE Press – reference: AlbaETomassiniMParallelism and evolutionary algorithmsIEEE Trans Evol Comput20026544346310.1109/TEVC.2002.800880 – reference: Salcedo-SanzSCruz-RoldFHeneghanCYaoXEvolutionary design of digital filters with application to sub-band coding and data transmissionIEEE Trans Signal Process200755411931203246498310.1109/TSP.2006.888883 – reference: Mark R, Wallen R (1987) Recommended practice for testing and reporting performance results of ventricular arrhythmia detection algorithm. Association for the Advancement of Medical Instrumentation, Arlington – reference: YaoXEvolving artificial neural networksProc IEEE19998791423144710.1109/5.784219 – reference: TorensenTIncremental evolution of a signal classification hardware architecture for prosthetic hand controlInt J Knowl Intell Eng Syst200812187199 – reference: DelaOssa, L, Gmez JA, Puerta JM (2004) Migration of probability models instead of individuals: an alternative when applying the island model to edas. In: proceeding of international conference on parallel problem solving in nature (PPSN 2004), pp 242–252 – reference: Glette K, Torresen J, Hovin M (2009) Intermediate level FPGA reconfiguration for an online EHW pattern recognition system. In: Proceeding of international conference on adaptive hardware and system, San Francisco, pp 19–26 – reference: HimavathiSFeedforward neural network implementation in FPGA using layer multiplexing for effective resource utilizationIEEE Trans Neural Netw200718388088810.1109/TNN.2007.891626 – reference: HuYPalreddySTompkinsWJA patient-adaptable ECG beat classifier using a mixture of experts approachIEEE Trans Biomed Eng199744989190010.1109/10.623058 – reference: OsowskiSHoaiLTMarkiewiczTSupport vector machine based expert system for reliable heartbeat recognitionIEEE Trans Biomed Eng200451458258910.1109/TBME.2004.824138 – reference: JiangWKongSGBlock-Based neural networks for personalized ECG signal classificationIEEE Trans Neural Netw20071861750176110.1109/TNN.2007.900239 – reference: Shayani H, Bentley PJ, Tyrell AM (2008) Hardware Implementation of a bio-plausible neuron model for evolution and growth of spiking neural networks on FPGA. In: Proceeding of NASA/ESA conference on adaptive hardware and systems, pp 236–243 – reference: HarikGLoboFGoldbergDThe compact genetic algorithmIEEE Trans Evol Comput19993428730910.1109/4235.797971 – reference: Jaros J, Schwarz J (2007) Parallel BMDA with probability model migration. In: Proceeding of IEEE congress on evolutionary computation, pp 1059–1066 – reference: Stefatos EF, Arlan T, Hamilton A (2008) Evolutionary techniques for precise and real-time implementation of low-power FIR filters. In: Proceeding of IEEE congress on evolutionary computation, Hong Kong, pp 2701–2708 – reference: Glette K, Torrensen J, Kaufmann P, Platzner M (2008) A comparison of evolvable hardware architecture for classification tasks. In: Proceedings of the 8th international conference on evolvable systems: from biology to hardware, pp 22–33 – reference: HamiltonPSTompkinsWJA real-time QRS detection algorithmIEEE Trans Biomed Eng198532230236 – reference: Xin J, Steve BF, Woods JV (2008) Efficient modeling of spiking neural network on a scalable chip multiprocessor. In: Proceeding of international joint conference neural network, pp 2812–2819 – volume: 8 start-page: 111 issue: 2 year: 2004 ident: 963_CR3 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2003.820662 – volume: 18 start-page: 1750 issue: 6 year: 2007 ident: 963_CR25 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2007.900239 – volume: 3 start-page: 287 issue: 4 year: 1999 ident: 963_CR16 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.797971 – volume: 53 start-page: 2535 issue: 12 year: 2006 ident: 963_CR24 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2006.883802 – ident: 963_CR7 doi: 10.1109/AHS.2009.46 – volume: 51 start-page: 1196 issue: 4 year: 2004 ident: 963_CR23 publication-title: IEEE Trans Biomed Eng – volume: 55 start-page: 1193 issue: 4 year: 2007 ident: 963_CR10 publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2006.888883 – ident: 963_CR14 – volume: 32 start-page: 230 year: 1985 ident: 963_CR27 publication-title: IEEE Trans Biomed Eng – volume: 44 start-page: 891 issue: 9 year: 1997 ident: 963_CR19 publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.623058 – volume: 52 start-page: 1224 issue: 4 year: 2003 ident: 963_CR21 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2003.816841 – ident: 963_CR35 – ident: 963_CR33 doi: 10.1109/AHS.2008.13 – ident: 963_CR8 doi: 10.1109/WEAH.2009.4925661 – ident: 963_CR9 doi: 10.1109/CEC.2008.4631161 – volume-title: Introduction to evolvable hardware: a practical guide for designing self-adaptive systems year: 2007 ident: 963_CR2 – volume: 87 start-page: 1423 issue: 9 year: 1999 ident: 963_CR31 publication-title: Proc IEEE doi: 10.1109/5.784219 – volume: 12 start-page: 667 issue: 5 year: 2008 ident: 963_CR28 publication-title: IEEE Trans Inf Technol Biomed doi: 10.1109/TITB.2008.923147 – volume-title: Introduction to evolvable hardware year: 2006 ident: 963_CR1 doi: 10.1007/0-387-31238-2 – volume: 12 start-page: 307 year: 2001 ident: 963_CR32 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.914525 – volume: 101 start-page: e215 issue: 23 year: 2001 ident: 963_CR30 publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 20 start-page: 45 issue: 3 year: 2001 ident: 963_CR29 publication-title: IEEE Eng Med Biol doi: 10.1109/51.932724 – volume: 6 start-page: 443 issue: 5 year: 2002 ident: 963_CR13 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2002.800880 – ident: 963_CR34 doi: 10.1007/978-3-540-85857-7_32 – ident: 963_CR11 doi: 10.1007/978-3-540-85857-7_3 – ident: 963_CR18 doi: 10.1109/CEC.2007.4424587 – ident: 963_CR15 doi: 10.1007/978-3-540-30217-9_25 – volume: 51 start-page: 582 issue: 4 year: 2004 ident: 963_CR22 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2004.824138 – volume-title: Efficient and accurate parallel genetic algorithms year: 2000 ident: 963_CR12 – volume: 14 start-page: 133 issue: 1 year: 2010 ident: 963_CR4 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2009.2025032 – volume: 12 start-page: 187 year: 2008 ident: 963_CR5 publication-title: Int J Knowl Intell Eng Syst – ident: 963_CR36 doi: 10.1109/CEC.2006.1688705 – volume: 19 start-page: 281 issue: 4 year: 2007 ident: 963_CR6 publication-title: Connect Sci doi: 10.1080/09540090701725508 – volume: 34 start-page: 58 year: 1995 ident: 963_CR20 publication-title: J Med Biol Eng Comput doi: 10.1007/BF02637023 – volume: 18 start-page: 880 issue: 3 year: 2007 ident: 963_CR37 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2007.891626 – volume: 7 start-page: 367 issue: 4 year: 2003 ident: 963_CR17 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2003.814633 – ident: 963_CR26 |
| SSID | ssj0004685 |
| Score | 2.0634444 |
| Snippet | This paper presents a parallel genetic algorithm (GA) called the cellular compact genetic algorithm (c-cGA) and its implementation for adaptive hardware. An... |
| SourceID | pascalfrancis crossref springer |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 1609 |
| SubjectTerms | Applied sciences Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Computer science; control theory; systems Data Mining and Knowledge Discovery Exact sciences and technology Image Processing and Computer Vision Inference from stochastic processes; time series analysis Learning and adaptive systems Mathematics Multivariate analysis Original Article Parametric inference Probability and statistics Probability and Statistics in Computer Science Sciences and techniques of general use Statistics |
| Title | A parallel genetic algorithm for adaptive hardware and its application to ECG signal classification |
| URI | https://link.springer.com/article/10.1007/s00521-012-0963-9 |
| Volume | 22 |
| WOSCitedRecordID | wos000319769300036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-3058 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: P5Z dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-3058 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcEBCvBHjMeXACRSpS7M2PY5pgwOaEC_tVpkmgUllm9YCfx-naycQDwnOTdLKcWyntr8P4DjSdJptFPAoSBSXKJGjbElujLUKbYucbAGZfxn2-2owiK7KPu6sqnavUpKFpZ43u7k_mO7qKziF3T6PFmGJvJ1yfA3XN_cfmiELHk66triSHulXqczvlvjkjFYnmJFc7IzQ4ktmtHA4vfV_feoGrJXxJWvPFGITFsxoC9Yr7gZWHuVtSNrMoX6nqUkZ6ZBrZWSYPo6nw_zpmVEky1DjxNlC5vqy3nBqGI40G-YZ-5D0ZvmYdTvnzJWB0GsTF4u74qPi4Q7c9bq3nQteEi7wxFcy50ILZbVDeEsS3dQ-hmRHpbBhaJoufdn0jNBoAwd7Jo0ORIiBj9KzgUXVUtrfhdpoPDJ7wIRA9IwkMaCiG6DEAJu-JnPy4IWkHF4dvErycVKikTtSjDSe4ygXQoxJiLETYhzV4WQ-ZTKD4vhtcOPTds5nCLL-PsUkdTit9i4uj23283L7fxp9ACtixppBOnAItXz6Yo5gOXnNh9m0AUtn3f7VdaNQ23c64OW9 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB60CgriLdZzH3xSFpLNNsdjKfXAWsQL38KY3dVCbEsT9e87myZF8QB9zu4mzM6ZmfkG4CBSJM0m8nnkJyGXKJGjbEiutTEhmgYZ2QIyvxN0u-H9fXRZ9nFnVbV7lZIsNPWk2c3-wbShr-Dkdns8moYZSQbLAuZfXd99aIYs5nBS2GJLeqRXpTK_O-KTMVoYYkZ0MeOBFl8yo4XBOV7616cuw2LpX7LmmCFWYEr3V2Gpmt3ASlFeg6TJLOp3muqUEQ_ZVkaG6eNg1Mufnhl5sgwVDq0uZLYv6w1HmmFfsV6esQ9Jb5YPWLt1wmwZCL02sb64LT4qHq7D7XH7pnXKy4ELPPFCmXOhRGiURXhLEuUqDwPSo1KYINCuTV-6jhYKjW9hz6RWvgjQ91A6xjcYNkLlbUCtP-jrTWBCIDpaEhkwpAhQoo-up0idPDgBMYdTB6eifJyUaOR2KEYaT3CUCyLGRMTYEjGO6nA42TIcQ3H8tnjv03VOdgjS_h75JHU4qu4uLsU2-_m4rT-t3oe505uLTtw5655vw7wYT9AgftiBWj560bswm7zmvWy0V7DuO81U5wc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB-qFSmI1o_i-XHug0-VxdxmLx-Pcnq2KIdQW3wLY3ZXD2LuuMT233cmH4dSLUifs7sJs7M7M5mZ3w_gMDZ0ml0cyDhII6lRo0Td19Ja5yJ0fTKyFWT-ZTgaRTc38VXDc1q01e5tSrLuaWCUprw8nhp3PG9847-ZHAYrSS64L-MF-Ki5jp7D9R-_njVGVpycFMJweY_227Tma0u8MEwrUyxIRq4mt_grS1oZn-Haf3_2Z1ht_E5xUivKOnyw-QastZwOojnim5CeCEYDzzKbCdItbnEUmN1NZuPy_kGQhyvQ4JTvSMH9Wn9wZgXmRozLQjxLhotyIs4G54LLQ-i1KfvoXJRUPdyCn8Oz68E32RAxyNSPdCmVUZEzjPyWpqZnfAzpftXKhaHtcVqz51ll0AUMh6atCVSIgY_ac4HDqB8Z_wss5pPcboNQCtGzmsSAEUWGGgPs-YaumVsvJKXxOuC1u5CkDUo5k2VkyRxfuRJiQkJMWIhJ3IGv8ynTGqLjX4O7L7Z2PkORVfDJV-nAUbuPSXOci7eX23nX6ANYvjodJpffRxe78EnVxBqkDnuwWM4e7T4spb_LcTHrVlr8BPLR7-s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+parallel+genetic+algorithm+for+adaptive+hardware+and+its+application+to+ECG+signal+classification&rft.jtitle=Neural+computing+%26+applications&rft.au=JEWAJINDA%2C+Yutana&rft.au=CHONGSTITVATANA%2C+Prabhas&rft.date=2013-06-01&rft.pub=Springer&rft.issn=0941-0643&rft.volume=22&rft.issue=7-8&rft.spage=1609&rft.epage=1626&rft_id=info:doi/10.1007%2Fs00521-012-0963-9&rft.externalDBID=n%2Fa&rft.externalDocID=27623614 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |