A parallel genetic algorithm for adaptive hardware and its application to ECG signal classification

This paper presents a parallel genetic algorithm (GA) called the cellular compact genetic algorithm (c-cGA) and its implementation for adaptive hardware. An adaptive hardware based on the c-cGA is proposed to automate real-time classification of ECG signals. The c-cGA not only provides a strong sear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications Jg. 22; H. 7-8; S. 1609 - 1626
Hauptverfasser: Jewajinda, Yutana, Chongstitvatana, Prabhas
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer-Verlag 01.06.2013
Springer
Schlagworte:
ISSN:0941-0643, 1433-3058
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a parallel genetic algorithm (GA) called the cellular compact genetic algorithm (c-cGA) and its implementation for adaptive hardware. An adaptive hardware based on the c-cGA is proposed to automate real-time classification of ECG signals. The c-cGA not only provides a strong search capability while maintaining genetic diversity using multiple GAs but also has a cellular-like structure and is a straight-forward algorithm suitable for hardware implementation. The c-cGA hardware and an adaptive digital filter structure also perform an adaptive feature selection in real time. The c-cGA is applied to a block-based neural network (BbNN) for online learning in the hardware. Using an adaptive hardware approach based on the c-cGA, an adaptive hardware system for classifying ECG signals is feasible. The proposed adaptive hardware can be implemented in a field programmable gate array (FPGA) for an adaptive embedded system applied to personalised ECG signal classifications for long-term patient monitoring.
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-012-0963-9