The six-point remainder function to all loop orders in the multi-Regge limit

A bstract We present an all-orders formula for the six-point amplitude of planar maximally supersymmetric Yang-Mills theory in the leading-logarithmic approximation of multi-Regge kinematics. In the MHV helicity configuration, our results agree with an integral formula of Lipatov and Prygarin throug...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The journal of high energy physics Ročník 2013; číslo 1; s. 1 - 24
Hlavní autor: Pennington, Jeffrey
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer-Verlag 01.01.2013
Springer Nature B.V
Témata:
ISSN:1029-8479, 1029-8479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A bstract We present an all-orders formula for the six-point amplitude of planar maximally supersymmetric Yang-Mills theory in the leading-logarithmic approximation of multi-Regge kinematics. In the MHV helicity configuration, our results agree with an integral formula of Lipatov and Prygarin through at least 14 loops. A differential equation linking the MHV and NMHV helicity configurations has a natural action in the space of functions relevant to this problem — the single-valued harmonic polylogarithms introduced by Brown. These functions depend on a single complex variable and its conjugate, w and w * , which are quadratically related to the original kinematic variables. We investigate the all-orders formula in the near-collinear limit, which is approached as |w| → 0. Up to power-suppressed terms, the resulting expansion may be organized by powers of log |w| . The leading term of this expansion agrees with the all-orders double-leading-logarithmic approximation of Bartels, Lipatov, and Prygarin. The explicit form for the sub-leading powers of log |w| is given in terms of modified Bessel functions.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP01(2013)059