Effects of PACAP on Schwann Cells: Focus on Nerve Injury

Schwann cells, the most abundant glial cells of the peripheral nervous system, represent the key players able to supply extracellular microenvironment for axonal regrowth and restoration of myelin sheaths on regenerating axons. Following nerve injury, Schwann cells respond adaptively to damage by ac...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences Vol. 21; no. 21; p. 8233
Main Authors: Maugeri, Grazia, D’Amico, Agata Grazia, Musumeci, Giuseppe, Reglodi, Dora, D’Agata, Velia
Format: Journal Article
Language:English
Published: Switzerland MDPI 03.11.2020
Subjects:
ISSN:1422-0067, 1422-0067
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Schwann cells, the most abundant glial cells of the peripheral nervous system, represent the key players able to supply extracellular microenvironment for axonal regrowth and restoration of myelin sheaths on regenerating axons. Following nerve injury, Schwann cells respond adaptively to damage by acquiring a new phenotype. In particular, some of them localize in the distal stump to form the Bungner band, a regeneration track in the distal site of the injured nerve, whereas others produce cytokines involved in recruitment of macrophages infiltrating into the nerve damaged area for axonal and myelin debris clearance. Several neurotrophic factors, including pituitary adenylyl cyclase-activating peptide (PACAP), promote survival and axonal elongation of injured neurons. The present review summarizes the evidence existing in the literature demonstrating the autocrine and/or paracrine action exerted by PACAP to promote remyelination and ameliorate the peripheral nerve inflammatory response following nerve injury.
AbstractList Schwann cells, the most abundant glial cells of the peripheral nervous system, represent the key players able to supply extracellular microenvironment for axonal regrowth and restoration of myelin sheaths on regenerating axons. Following nerve injury, Schwann cells respond adaptively to damage by acquiring a new phenotype. In particular, some of them localize in the distal stump to form the Bungner band, a regeneration track in the distal site of the injured nerve, whereas others produce cytokines involved in recruitment of macrophages infiltrating into the nerve damaged area for axonal and myelin debris clearance. Several neurotrophic factors, including pituitary adenylyl cyclase-activating peptide (PACAP), promote survival and axonal elongation of injured neurons. The present review summarizes the evidence existing in the literature demonstrating the autocrine and/or paracrine action exerted by PACAP to promote remyelination and ameliorate the peripheral nerve inflammatory response following nerve injury.Schwann cells, the most abundant glial cells of the peripheral nervous system, represent the key players able to supply extracellular microenvironment for axonal regrowth and restoration of myelin sheaths on regenerating axons. Following nerve injury, Schwann cells respond adaptively to damage by acquiring a new phenotype. In particular, some of them localize in the distal stump to form the Bungner band, a regeneration track in the distal site of the injured nerve, whereas others produce cytokines involved in recruitment of macrophages infiltrating into the nerve damaged area for axonal and myelin debris clearance. Several neurotrophic factors, including pituitary adenylyl cyclase-activating peptide (PACAP), promote survival and axonal elongation of injured neurons. The present review summarizes the evidence existing in the literature demonstrating the autocrine and/or paracrine action exerted by PACAP to promote remyelination and ameliorate the peripheral nerve inflammatory response following nerve injury.
Schwann cells, the most abundant glial cells of the peripheral nervous system, represent the key players able to supply extracellular microenvironment for axonal regrowth and restoration of myelin sheaths on regenerating axons. Following nerve injury, Schwann cells respond adaptively to damage by acquiring a new phenotype. In particular, some of them localize in the distal stump to form the Bungner band, a regeneration track in the distal site of the injured nerve, whereas others produce cytokines involved in recruitment of macrophages infiltrating into the nerve damaged area for axonal and myelin debris clearance. Several neurotrophic factors, including pituitary adenylyl cyclase-activating peptide (PACAP), promote survival and axonal elongation of injured neurons. The present review summarizes the evidence existing in the literature demonstrating the autocrine and/or paracrine action exerted by PACAP to promote remyelination and ameliorate the peripheral nerve inflammatory response following nerve injury.
Author Musumeci, Giuseppe
D’Amico, Agata Grazia
D’Agata, Velia
Reglodi, Dora
Maugeri, Grazia
AuthorAffiliation 3 Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary; dora.reglodi@aok.pte.hu
1 Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy; graziamaugeri@unict.it (G.M.); g.musumeci@unict.it (G.M.)
2 Department of Drug Sciences, University of Catania, 95100 Catania, Italy; agata.damico@unict.it
AuthorAffiliation_xml – name: 1 Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy; graziamaugeri@unict.it (G.M.); g.musumeci@unict.it (G.M.)
– name: 3 Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary; dora.reglodi@aok.pte.hu
– name: 2 Department of Drug Sciences, University of Catania, 95100 Catania, Italy; agata.damico@unict.it
Author_xml – sequence: 1
  givenname: Grazia
  surname: Maugeri
  fullname: Maugeri, Grazia
– sequence: 2
  givenname: Agata Grazia
  surname: D’Amico
  fullname: D’Amico, Agata Grazia
– sequence: 3
  givenname: Giuseppe
  orcidid: 0000-0002-8260-8890
  surname: Musumeci
  fullname: Musumeci, Giuseppe
– sequence: 4
  givenname: Dora
  surname: Reglodi
  fullname: Reglodi, Dora
– sequence: 5
  givenname: Velia
  orcidid: 0000-0003-1114-8265
  surname: D’Agata
  fullname: D’Agata, Velia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33153152$$D View this record in MEDLINE/PubMed
BookMark eNptUU1Lw0AQXaRiP_TmWXL0YHS_8uVBKKHVQtGCel42m12bkuzW3aTSf29CW6kiDMww8-Y9Zt4Q9LTREoBLBG8JSeBdsaocRhjFmJATMEAUYx_CMOod1X0wdG4FISY4SM5AnxAUtIEHIJ4oJUXtPKO8xTgdLzyjvVex_OJae6ksS3fvTY1oXNd_lnYjvZleNXZ7Dk4VL5282OcReJ9O3tInf_7yOEvHc1-QmNY-jlEucK4iDglMZIYUjyRPRMZzQTIe5QlXKpdZIqEKiVSh4jQWYUZzBXkUEjICDzvedZNVMhdS15aXbG2LitstM7xgvye6WLIPs2FRGBIMaUtwvSew5rORrmZV4UR7GdfSNI5hGsSQBJR2WlfHWj8ih3e1ALwDCGucs1IxUdS8LkwnXZQMQdZ5wo49aZdu_iwdeP-FfwNC845B
CitedBy_id crossref_primary_10_3390_cells12222649
crossref_primary_10_1186_s13018_025_05969_9
crossref_primary_10_1007_s10989_021_10204_0
crossref_primary_10_1186_s13195_023_01334_2
crossref_primary_10_3389_fcell_2025_1603752
crossref_primary_10_1016_j_biopha_2023_116024
crossref_primary_10_3390_biom13081193
crossref_primary_10_1007_s12015_023_10510_8
crossref_primary_10_1016_j_neuroscience_2023_03_009
crossref_primary_10_1111_cns_13752
crossref_primary_10_3892_ijo_2022_5462
crossref_primary_10_4103_1673_5374_387992
crossref_primary_10_3389_fnmol_2022_1087550
crossref_primary_10_1007_s12031_022_01985_0
crossref_primary_10_1111_jcmm_17897
crossref_primary_10_1016_j_npep_2023_102386
crossref_primary_10_3390_ijms25158063
crossref_primary_10_1002_adfm_202209658
crossref_primary_10_1016_j_npep_2023_102327
crossref_primary_10_3390_ijms26136081
crossref_primary_10_1007_s12031_021_01846_2
crossref_primary_10_3390_app12073435
crossref_primary_10_3390_brainsci11080994
crossref_primary_10_1016_j_mtbio_2025_101808
crossref_primary_10_1016_j_peptides_2023_171107
crossref_primary_10_1016_j_diff_2024_100813
crossref_primary_10_1007_s11481_021_10034_3
crossref_primary_10_3390_app11167373
crossref_primary_10_31083_j_jin2101033
crossref_primary_10_3390_app14051754
crossref_primary_10_3390_app12020760
crossref_primary_10_1007_s11062_025_09955_z
crossref_primary_10_3390_antiox11010128
crossref_primary_10_4081_ejh_2024_3994
crossref_primary_10_3390_cells12222633
crossref_primary_10_1016_j_neuroscience_2024_06_035
crossref_primary_10_1016_j_neulet_2025_138230
crossref_primary_10_1007_s40883_024_00361_1
crossref_primary_10_3390_biomedicines9080965
crossref_primary_10_1016_j_bbi_2025_04_038
crossref_primary_10_1007_s10989_021_10162_7
crossref_primary_10_3390_ijms221910691
crossref_primary_10_1002_smll_202207331
crossref_primary_10_3390_app11167673
crossref_primary_10_3389_fncel_2022_1077441
crossref_primary_10_3390_antiox10030354
Cites_doi 10.1002/glia.20750
10.1074/jbc.271.36.22146
10.3389/fnins.2020.00805
10.1111/j.1749-6632.2000.tb06959.x
10.1002/cne.10418
10.1111/ejn.13054
10.1046/j.1365-2826.1999.00411.x
10.3171/foc.2004.16.5.2
10.1007/s12035-009-8055-2
10.1083/jcb.149.5.1157
10.1002/jcb.28293
10.1016/j.neuroscience.2007.09.084
10.1038/sj.emboj.7600309
10.1002/ana.23607
10.1016/S0169-328X(97)00335-5
10.1016/S0006-8993(96)00920-1
10.1007/BF00218961
10.1016/j.regpep.2006.06.016
10.1007/s12031-008-9087-1
10.1016/j.npep.2011.05.001
10.3389/fendo.2020.00377
10.1002/jcp.27328
10.3389/fphar.2016.00139
10.1016/j.brainresrev.2005.12.001
10.1097/MED.0000000000000218
10.3389/fncel.2019.00033
10.1111/j.1749-6632.1994.tb19825.x
10.3390/ijms20194944
10.1016/j.peptides.2017.11.003
10.1016/j.tins.2011.11.006
10.1074/mcp.R115.053744
10.1523/JNEUROSCI.0841-09.2009
10.1002/(SICI)1097-4547(19990915)57:6<953::AID-JNR21>3.0.CO;2-R
10.1007/BF00981944
10.1186/1742-2094-8-109
10.1083/jcb.201205025
10.1002/biof.1076
10.3390/ijms19092538
10.1038/371796a0
10.2170/jjphysiol.48.301
10.1523/JNEUROSCI.4083-03.2004
10.1093/brain/awaa163
10.1038/369747a0
10.1523/JNEUROSCI.23-09-03807.2003
10.1002/glia.20496
10.1523/JNEUROSCI.20-12-04635.2000
10.1038/nn.3281
10.1371/journal.pone.0018387
10.1016/j.npep.2018.04.009
10.1016/j.peptides.2007.04.002
10.1038/nrneurol.2013.227
10.1007/978-3-319-35135-3_39
10.1111/j.1749-6632.1996.tb17501.x
10.1146/annurev.neuro.30.051606.094337
10.1006/mcne.2000.0967
10.1016/0006-291X(89)91757-9
10.1159/000064942
10.3389/fnins.2019.01326
10.1016/j.yexcr.2013.11.003
10.1523/JNEUROSCI.14-11-06392.1994
10.1111/bph.12181
10.1007/BF00306107
10.1124/mol.107.035477
10.1016/j.peptides.2015.08.006
10.1016/j.neuron.2007.02.009
10.1227/01.NEU.0000358537.30354.63
10.1002/jnr.10750
10.1016/j.devcel.2013.12.002
10.1113/JP270874
10.1124/pr.109.001370
10.1016/j.brainres.2008.09.035
10.1016/j.pneurobio.2018.12.001
10.2174/138161211795589346
10.3389/fnmol.2017.00038
10.1002/jnr.21820
10.1111/j.1749-6632.2003.tb03145.x
10.1016/j.ijdevneu.2011.06.008
10.3390/ijms21082943
10.3389/fendo.2018.00090
10.1016/j.pharmthera.2008.11.006
10.1111/and.12102
10.1016/S0306-4522(98)00240-1
10.3390/ijms19040981
10.1002/glia.20766
10.1007/s00441-015-2197-5
10.1523/JNEUROSCI.1453-17.2017
10.1016/j.expneurol.2013.05.007
10.2174/138161211795589355
10.1093/brain/66.4.237
10.1016/j.pneurobio.2007.06.005
10.1007/978-3-319-35135-3
10.1002/cne.20436
10.1016/j.peptides.2019.170108
10.2174/138161211795049679
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.3390/ijms21218233
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC7663204
33153152
10_3390_ijms21218233
Genre Journal Article
Review
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ESTFP
5PM
ID FETCH-LOGICAL-c384t-281dc2df7a0309eb1fa7ea9cbadc3ba7d9affdeb9e0f63ef6fa48c6b4df0a7633
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000588935400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1422-0067
IngestDate Tue Nov 04 01:53:34 EST 2025
Sun Nov 09 10:30:49 EST 2025
Thu Apr 03 06:54:03 EDT 2025
Sat Nov 29 07:16:10 EST 2025
Tue Nov 18 22:28:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords peripheral nervous system
PACAP
regeneration
neuroprotection
Schwann cells
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-281dc2df7a0309eb1fa7ea9cbadc3ba7d9affdeb9e0f63ef6fa48c6b4df0a7633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
These authors contributed equally to this work.
ORCID 0000-0003-1114-8265
0000-0002-8260-8890
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7663204
PMID 33153152
PQID 2458035443
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7663204
proquest_miscellaneous_2458035443
pubmed_primary_33153152
crossref_citationtrail_10_3390_ijms21218233
crossref_primary_10_3390_ijms21218233
PublicationCentury 2000
PublicationDate 20201103
PublicationDateYYYYMMDD 2020-11-03
PublicationDate_xml – month: 11
  year: 2020
  text: 20201103
  day: 3
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2020
Publisher MDPI
Publisher_xml – name: MDPI
References Woodley (ref_32) 2019; 13
Gaytan (ref_41) 1994; 276
Maugeri (ref_50) 2019; 119
ref_93
ref_91
Castorina (ref_78) 2008; 1241
Grothe (ref_29) 2006; 51
Buchstaller (ref_82) 2004; 24
ref_12
Brown (ref_5) 2012; 72
Rotshenker (ref_27) 2011; 8
Cavallaro (ref_65) 1995; 48
Miyata (ref_3) 1989; 164
Harrisingh (ref_90) 2004; 23
Chen (ref_23) 2007; 30
Dickson (ref_43) 2009; 121
Fontana (ref_30) 2012; 198
Li (ref_15) 1994; 369
Nakajima (ref_77) 2013; 19
Brenneman (ref_54) 2007; 28
Zhou (ref_83) 1999; 57
Maugeri (ref_59) 2019; 234
Fry (ref_28) 2007; 53
Sundler (ref_75) 1996; 805
Salzer (ref_11) 2008; 56
Seddon (ref_18) 1943; 66
Vaudry (ref_35) 2009; 61
Maugeri (ref_51) 2019; 120
Morris (ref_20) 1972; 124
Waschek (ref_58) 2013; 169
Stassart (ref_100) 2013; 16
Hannibal (ref_69) 2002; 453
Navarro (ref_85) 2007; 82
Toth (ref_52) 2020; 11
Rasband (ref_4) 2016; 15
Barres (ref_9) 2014; 28
Reglodi (ref_56) 2011; 17
Arimura (ref_68) 1994; 739
ref_81
Li (ref_95) 2001; 17
Scheib (ref_7) 2013; 9
Han (ref_14) 2013; 39
Maugeri (ref_62) 2016; 7
Martini (ref_26) 2008; 56
Lee (ref_76) 2009; 87
Arimura (ref_33) 1998; 48
Waschek (ref_42) 2000; 921
Maugeri (ref_60) 2020; 14
Armstrong (ref_87) 2008; 151
Castorina (ref_79) 2014; 322
Jessen (ref_2) 2019; 13
Reglodi (ref_46) 2012; 46
Reglodi (ref_45) 2018; 9
Maugeri (ref_49) 2018; 99
Delgado (ref_73) 2003; 992
Pilch (ref_21) 2017; 37
Armstrong (ref_84) 2003; 74
ref_53
Geuna (ref_99) 2016; 43
Burnett (ref_19) 2004; 5
Shioda (ref_72) 2015; 72
Chen (ref_71) 2006; 137
Morio (ref_70) 1996; 741
Topilko (ref_13) 1994; 371
Brushart (ref_31) 2013; 247
Seaborn (ref_57) 2011; 17
Voas (ref_6) 2009; 29
ref_61
Baskozos (ref_98) 2020; 143
Jessen (ref_1) 2016; 594
Maurel (ref_89) 2000; 20
Akassoglou (ref_97) 2000; 149
Maugeri (ref_63) 2018; 69
Waschek (ref_67) 2002; 24
Vincze (ref_92) 2011; 29
Dejda (ref_55) 2008; 36
Ushiyama (ref_40) 2007; 72
Witzel (ref_22) 2005; 485
Nakamura (ref_47) 2013; 46
Cavallaro (ref_66) 1998; 54
Pereira (ref_10) 2012; 35
ref_36
Nakamachi (ref_74) 2011; 17
Pantaloni (ref_38) 1996; 271
Meller (ref_25) 1987; 250
Liang (ref_96) 2007; 55
Vallejo (ref_94) 2009; 39
Hsieh (ref_16) 1994; 14
Reimer (ref_86) 1999; 88
Harmar (ref_34) 1998; 2
Dautzenberg (ref_39) 1999; 11
Moody (ref_37) 2016; 23
Sulaiman (ref_24) 2009; 65
Blalock (ref_80) 2003; 23
Musumeci (ref_64) 2015; 362
Vaudry (ref_44) 2000; 52
Boerboom (ref_17) 2017; 10
Zigmond (ref_88) 2019; 173
ref_48
ref_8
References_xml – volume: 56
  start-page: 1532
  year: 2008
  ident: ref_11
  article-title: Molecular domains of myelinated axons in the peripheral nervous system
  publication-title: Glia
  doi: 10.1002/glia.20750
– volume: 271
  start-page: 22146
  year: 1996
  ident: ref_38
  article-title: Alternative splicing in the N-terminal extracellular domain of the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor modulates receptor selectivity and relative potencies of PACAP-27 and PACAP-38 in phospholipase C activation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.36.22146
– volume: 14
  start-page: 805
  year: 2020
  ident: ref_60
  article-title: Differential Vulnerability of Oculomotor versus Hypoglossal Nucleus during ALS: Involvement of PACAP
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00805
– volume: 921
  start-page: 129
  year: 2000
  ident: ref_42
  article-title: PACAP action in nervous system development, regeneration, and neuroblastoma cell proliferation
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.2000.tb06959.x
– volume: 453
  start-page: 389
  year: 2002
  ident: ref_69
  article-title: Pituitary adenylate cyclase-activating peptide in the rat central nervous system: An im- munohistochemical and in situ hybridization study
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.10418
– volume: 43
  start-page: 287
  year: 2016
  ident: ref_99
  article-title: In vitro models for peripheral nerve regeneration
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/ejn.13054
– volume: 11
  start-page: 941
  year: 1999
  ident: ref_39
  article-title: N-terminal splice variants of the type I PACAP receptor: Isolation, characterization and ligand binding/selectivity determinants
  publication-title: J. Neuroendocrinol.
  doi: 10.1046/j.1365-2826.1999.00411.x
– volume: 5
  start-page: 1
  year: 2004
  ident: ref_19
  article-title: Pathophysiology of peripheral nerve injury: A brief review
  publication-title: Neurosurg. Focus
  doi: 10.3171/foc.2004.16.5.2
– volume: 39
  start-page: 90
  year: 2009
  ident: ref_94
  article-title: PACAP signaling to dream: A camp-dependent pathway that regulates cortical astrogliogenesis
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-009-8055-2
– volume: 149
  start-page: 1157
  year: 2000
  ident: ref_97
  article-title: Tissue plasminogen activator-mediated fibrinolysis protects against axonal degeneration and demyelination after sciatic nerve injury
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.149.5.1157
– volume: 120
  start-page: 10097
  year: 2019
  ident: ref_51
  article-title: PACAP through EGFR transactivation preserves human corneal endothelial integrity
  publication-title: J. Cell Biochem.
  doi: 10.1002/jcb.28293
– volume: 151
  start-page: 63
  year: 2008
  ident: ref_87
  article-title: Impaired nerve regeneration and enhanced neuroinflammatory response in mice lacking pituitary Adenylyl cyclase activating peptide
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2007.09.084
– volume: 23
  start-page: 3061
  year: 2004
  ident: ref_90
  article-title: The Ras/Raf/ERK signalling pathway drives Schwann cell dedifferentiation
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600309
– volume: 72
  start-page: 406
  year: 2012
  ident: ref_5
  article-title: Schwann cell glycogen selectively supports myelinated axon function
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.23607
– volume: 54
  start-page: 161
  year: 1998
  ident: ref_66
  article-title: Functional and molecular expression of PACAP/VIP receptors in the rat retina
  publication-title: Brain Res. Mol. Brain Res.
  doi: 10.1016/S0169-328X(97)00335-5
– volume: 741
  start-page: 82
  year: 1996
  ident: ref_70
  article-title: Pituitary adenylate cyclase-activating polypeptide protects rat-cultured cortical neurons from glutamate-induced cytotoxicity
  publication-title: Brain Res.
  doi: 10.1016/S0006-8993(96)00920-1
– volume: 250
  start-page: 663
  year: 1987
  ident: ref_25
  article-title: Early structural changes in the axoplasmic cytoskeleton after axotomy studied by cryofixation
  publication-title: Cell Tissue Res.
  doi: 10.1007/BF00218961
– volume: 137
  start-page: 4
  year: 2006
  ident: ref_71
  article-title: Neuroprotection by endogenous and exogenous PACAP following stroke
  publication-title: Regul. Pept.
  doi: 10.1016/j.regpep.2006.06.016
– volume: 36
  start-page: 26
  year: 2008
  ident: ref_55
  article-title: Inhibitory effect of PACAP on caspase activity in neuronal apoptosis: A better understanding towards therapeutic applications in neurodegenerative diseases
  publication-title: J. Mol. Neurosci.
  doi: 10.1007/s12031-008-9087-1
– volume: 2
  start-page: 265
  year: 1998
  ident: ref_34
  article-title: International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide
  publication-title: Pharmacol. Rev.
– volume: 46
  start-page: 61
  year: 2012
  ident: ref_46
  article-title: Effects of pituitary adenylate cyclase activating polypeptide in the urinary system, with special emphasis on its protective effects in the kidney
  publication-title: Neuropeptides
  doi: 10.1016/j.npep.2011.05.001
– volume: 11
  start-page: 377
  year: 2020
  ident: ref_52
  article-title: Protective Effects of PACAP in Peripheral Organs
  publication-title: Front. Endocrinol. (Lausanne)
  doi: 10.3389/fendo.2020.00377
– volume: 234
  start-page: 5203
  year: 2019
  ident: ref_59
  article-title: Molecular mechanisms involved in the protective effect of pituitary adenylate cyclase-activating polypeptide in an in vitro model of amyotrophic lateral sclerosis
  publication-title: J. Cell Physiol.
  doi: 10.1002/jcp.27328
– volume: 7
  start-page: 139
  year: 2016
  ident: ref_62
  article-title: PACAP and VIP inhibit the invasiveness of glioblastoma cells exposed to hypoxia through the regulation of HIFs and EGFR expression
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2016.00139
– volume: 51
  start-page: 293
  year: 2006
  ident: ref_29
  article-title: Physiological function and putative therapeutic impact of the FGF-2 system in peripheral nerve regeneration—Lessons from in vivo studies in mice and rats
  publication-title: Brain Res. Rev.
  doi: 10.1016/j.brainresrev.2005.12.001
– volume: 23
  start-page: 38
  year: 2016
  ident: ref_37
  article-title: VIP/PACAP, and their receptors and cancer
  publication-title: Curr. Opin. Endocrinol. Diabetes Obes.
  doi: 10.1097/MED.0000000000000218
– volume: 13
  start-page: 33
  year: 2019
  ident: ref_2
  article-title: The Success and Failure of the Schwann Cell Response to Nerve Injury
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2019.00033
– volume: 739
  start-page: 228
  year: 1994
  ident: ref_68
  article-title: PACAP functions as a neurotrophic factor
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.1994.tb19825.x
– ident: ref_53
  doi: 10.3390/ijms20194944
– volume: 99
  start-page: 20
  year: 2018
  ident: ref_49
  article-title: Trophic effect of PACAP on human corneal endothelium
  publication-title: Peptides
  doi: 10.1016/j.peptides.2017.11.003
– volume: 35
  start-page: 123
  year: 2012
  ident: ref_10
  article-title: Molecular mechanisms regulating myelination in the peripheral nervous system
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2011.11.006
– volume: 15
  start-page: 355
  year: 2016
  ident: ref_4
  article-title: Glial Contributions to Neural Function and Disease
  publication-title: Mol. Cell. Proteom.
  doi: 10.1074/mcp.R115.053744
– volume: 29
  start-page: 14408
  year: 2009
  ident: ref_6
  article-title: Schwann cells inhibit ectopic clustering of axonal sodium channels
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0841-09.2009
– volume: 57
  start-page: 953
  year: 1999
  ident: ref_83
  article-title: Axotomy-induced changes in pituitary adenylate cyclase activating polypeptide (PACAP) and PACAP receptor gene expression in the adult rat facial motor nucleus
  publication-title: J. Neurosci. Res.
  doi: 10.1002/(SICI)1097-4547(19990915)57:6<953::AID-JNR21>3.0.CO;2-R
– volume: 124
  start-page: 103
  year: 1972
  ident: ref_20
  article-title: A study of degeneration and regeneration in the divided rat sciatic nerve based on electron microscopy
  publication-title: Z. Zellforsch. Mikrosk. Anat.
  doi: 10.1007/BF00981944
– volume: 8
  start-page: 109
  year: 2011
  ident: ref_27
  article-title: Wallerian degeneration: The innate-immune response to traumatic nerve injury
  publication-title: J. Neuroinflammation
  doi: 10.1186/1742-2094-8-109
– volume: 198
  start-page: 127
  year: 2012
  ident: ref_30
  article-title: c-Jun in Schwann cells promotes axonal regeneration and motoneuron survival via paracrine signaling
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201205025
– volume: 39
  start-page: 233
  year: 2013
  ident: ref_14
  article-title: Myelin-specific proteins: A structurally diverse group of membrane-interacting molecules
  publication-title: Biofactors
  doi: 10.1002/biof.1076
– ident: ref_48
  doi: 10.3390/ijms19092538
– volume: 371
  start-page: 796
  year: 1994
  ident: ref_13
  article-title: Krox-20 controls myelination in the peripheral nervous system
  publication-title: Nature
  doi: 10.1038/371796a0
– volume: 48
  start-page: 301
  year: 1998
  ident: ref_33
  article-title: Perspectives on pituitary adenylate cyclase activating polypeptide (PACAP) in the neuroendocrine, endocrine, and nervous systems
  publication-title: Jpn. J. Physiol.
  doi: 10.2170/jjphysiol.48.301
– volume: 24
  start-page: 2357
  year: 2004
  ident: ref_82
  article-title: Efficient isolation and gene expression profiling of small numbers of neural crest stem cells and developing Schwann cells
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4083-03.2004
– volume: 143
  start-page: 2009
  year: 2020
  ident: ref_98
  article-title: Molecular and cellular correlates of human nerve regeneration: ADCYAP1/PACAP enhance nerve outgrowth
  publication-title: Brain
  doi: 10.1093/brain/awaa163
– volume: 369
  start-page: 747
  year: 1994
  ident: ref_15
  article-title: Myelination in the absence of myelin-associated glycoprotein
  publication-title: Nature
  doi: 10.1038/369747a0
– volume: 23
  start-page: 3807
  year: 2003
  ident: ref_80
  article-title: Gene microarrays in hippocampal aging: Statistical profiling identifies novel processes correlated with cognitive impairment
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-09-03807.2003
– volume: 55
  start-page: 632
  year: 2007
  ident: ref_96
  article-title: IGF-1 stimulates de novo fatty acid biosynthesis by Schwann cells during myelination
  publication-title: Glia
  doi: 10.1002/glia.20496
– volume: 20
  start-page: 4635
  year: 2000
  ident: ref_89
  article-title: Axonal regulation of Schwann cell proliferation and survival and the initial events of myelination requires PI 3-kinase activity
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-12-04635.2000
– volume: 16
  start-page: 48
  year: 2013
  ident: ref_100
  article-title: A role for Schwann cell-derived neuregulin-1 in remyelination
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3281
– ident: ref_81
  doi: 10.1371/journal.pone.0018387
– volume: 69
  start-page: 84
  year: 2018
  ident: ref_63
  article-title: PACAP and VIP regulate hypoxia-inducible factors in neuroblastoma cells exposed to hypoxia
  publication-title: Neuropeptides
  doi: 10.1016/j.npep.2018.04.009
– volume: 28
  start-page: 1720
  year: 2007
  ident: ref_54
  article-title: Neuroprotection: A comparative view of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide
  publication-title: Peptides
  doi: 10.1016/j.peptides.2007.04.002
– volume: 9
  start-page: 668
  year: 2013
  ident: ref_7
  article-title: Advances in peripheral nerve regeneration
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2013.227
– ident: ref_36
  doi: 10.1007/978-3-319-35135-3_39
– volume: 805
  start-page: 410
  year: 1996
  ident: ref_75
  article-title: Pituitary adenylate cyclase-activating peptide in sensory and autonomic gan- glia: Localization and regulation
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.1996.tb17501.x
– volume: 30
  start-page: 209
  year: 2007
  ident: ref_23
  article-title: Peripheral regeneration
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.30.051606.094337
– volume: 17
  start-page: 761
  year: 2001
  ident: ref_95
  article-title: Neuregulin signaling through a PI3K/Akt/Bad pathway in Schwann cell survival
  publication-title: Mol. Cell. Neurosci.
  doi: 10.1006/mcne.2000.0967
– ident: ref_8
– volume: 164
  start-page: 567
  year: 1989
  ident: ref_3
  article-title: Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/0006-291X(89)91757-9
– volume: 24
  start-page: 14
  year: 2002
  ident: ref_67
  article-title: Multiple actions of pituitary adenylyl cyclase activating peptide in nervous system development and regeneration
  publication-title: Dev. Neurosci.
  doi: 10.1159/000064942
– volume: 13
  start-page: 1326
  year: 2019
  ident: ref_32
  article-title: Distinct VIP and PACAP Functions in the Distal Nerve Stump During Peripheral Nerve Regeneration
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.01326
– volume: 322
  start-page: 108
  year: 2014
  ident: ref_79
  article-title: PACAP and VIP increase the expression of myelin-related proteins in rat schwannoma cells: Involvement of PAC1/VPAC2 receptor-mediated activation of PI3K/Akt signaling pathways
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2013.11.003
– volume: 14
  start-page: 6392
  year: 1994
  ident: ref_16
  article-title: Regional modulation of neurofilament organization by myelination in normal axons
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.14-11-06392.1994
– volume: 169
  start-page: 512
  year: 2013
  ident: ref_58
  article-title: VIP and PACAP: Neuropeptide modulators of CNS inflammation, injury, and repair
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.12181
– volume: 276
  start-page: 223
  year: 1994
  ident: ref_41
  article-title: Pituitary adenylate cyclase-activating peptide (PACAP) immunolocalization in lymphoid tissues of the rat
  publication-title: Cell Tissue Res.
  doi: 10.1007/BF00306107
– volume: 72
  start-page: 103
  year: 2007
  ident: ref_40
  article-title: Differential intracellular signaling through PAC1 isoforms as a result of alternative splicing in the first extracellular domain and the third intracellular loop
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.107.035477
– volume: 72
  start-page: 202
  year: 2015
  ident: ref_72
  article-title: PACAP as a neuroprotective factor in ischemic neuronal injuries
  publication-title: Peptides.
  doi: 10.1016/j.peptides.2015.08.006
– volume: 48
  start-page: 56
  year: 1995
  ident: ref_65
  article-title: Differentiation induces pituitary adenylate cyclase-activating polypeptide receptor expression in PC-12 cells
  publication-title: Mol. Pharmacol.
– volume: 53
  start-page: 649
  year: 2007
  ident: ref_28
  article-title: A role for nogo receptor in macrophage clearance from injured peripheral nerve
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.02.009
– volume: 65
  start-page: A105
  year: 2009
  ident: ref_24
  article-title: Role of chronic Schwann cell denervation in poor functional recovery after nerve injuries and experimental strategies to combat it
  publication-title: Neurosurgery
  doi: 10.1227/01.NEU.0000358537.30354.63
– volume: 74
  start-page: 240
  year: 2003
  ident: ref_84
  article-title: Lymphocyte regulation of neuropeptide gene expression after neuronal injury
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.10750
– volume: 28
  start-page: 7
  year: 2014
  ident: ref_9
  article-title: Contrasting the glial response to axon injury in the central and peripheral nervous systems
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2013.12.002
– volume: 594
  start-page: 3521
  year: 2016
  ident: ref_1
  article-title: The repair Schwann cell and its function in regenerating nerves
  publication-title: J. Physiol.
  doi: 10.1113/JP270874
– volume: 61
  start-page: 283
  year: 2009
  ident: ref_35
  article-title: Pituitary adenylate cyclase activating polypeptide and its receptors: 20 years after the discovery
  publication-title: Pharmacol. Rev.
  doi: 10.1124/pr.109.001370
– volume: 1241
  start-page: 29
  year: 2008
  ident: ref_78
  article-title: PACAP and VIP prevent apoptosis in schwannoma cells
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2008.09.035
– volume: 173
  start-page: 102
  year: 2019
  ident: ref_88
  article-title: Macrophage biology in the peripheral nervous system after injury
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2018.12.001
– volume: 17
  start-page: 973
  year: 2011
  ident: ref_74
  article-title: Role of PACAP in neural stem/progenitor cell and astrocyte--from neural development to neural repair
  publication-title: Curr Pharm. Des.
  doi: 10.2174/138161211795589346
– volume: 52
  start-page: 269
  year: 2000
  ident: ref_44
  article-title: Pituitary adenylate cyclase-activating polypeptide and its receptors: From structure to functions
  publication-title: Pharmacol. Rev.
– volume: 10
  start-page: 38
  year: 2017
  ident: ref_17
  article-title: Molecular mechanisms involved in schwann cell plasticity
  publication-title: Front. Mol. Neurosci.
  doi: 10.3389/fnmol.2017.00038
– volume: 87
  start-page: 171
  year: 2009
  ident: ref_76
  article-title: Vasoactive intestinal peptide inhibits toll-like receptor 3-induced nitric oxide production in Schwann cells and subsequent sensory neuronal cell death in vitro
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.21820
– volume: 19
  start-page: 174
  year: 2013
  ident: ref_77
  article-title: Pituitary adenylate cyclase-activating peptide induces neurite outgrowth in cultured monkey trigeminal ganglion cells: Involvement of receptor PAC1
  publication-title: Mol. Vis.
– volume: 992
  start-page: 141
  year: 2003
  ident: ref_73
  article-title: PACAP in immunity and inflammation
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.2003.tb03145.x
– volume: 29
  start-page: 923
  year: 2011
  ident: ref_92
  article-title: Role of endogenous pituitary adenylate cyclase activating polypeptide (PACAP) in myelination of the rodent brain: Lessons from PACAP-deficient mice
  publication-title: Int. J. Dev. Neurosci.
  doi: 10.1016/j.ijdevneu.2011.06.008
– ident: ref_61
  doi: 10.3390/ijms21082943
– volume: 9
  start-page: 90
  year: 2018
  ident: ref_45
  article-title: Presence and Effects of Pituitary Adenylate Cyclase Activating Polypeptide Under Physiological and Pathological Conditions in the Stomach
  publication-title: Front. Endocrinol. (Lausanne)
  doi: 10.3389/fendo.2018.00090
– volume: 121
  start-page: 294
  year: 2009
  ident: ref_43
  article-title: VPAC and PAC receptors: From lig- ands to function
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2008.11.006
– ident: ref_12
– volume: 46
  start-page: 465
  year: 2013
  ident: ref_47
  article-title: Distribution of pituitary adenylate cyclase-activating polypeptide (PACAP) in the human testis and in testicular germ cell tumors
  publication-title: Andrologia
  doi: 10.1111/and.12102
– volume: 88
  start-page: 213
  year: 1999
  ident: ref_86
  article-title: Increased expression, axonal transport and release of pituitary adenylate cyclase-activating polypeptide in the cultured rat vagus nerve
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(98)00240-1
– ident: ref_91
  doi: 10.3390/ijms19040981
– volume: 56
  start-page: 1566
  year: 2008
  ident: ref_26
  article-title: Interactions between Schwann cells and macrophages in injury and inherited demyelinating disease
  publication-title: Glia
  doi: 10.1002/glia.20766
– volume: 362
  start-page: 45
  year: 2015
  ident: ref_64
  article-title: Characterization of matrix metalloproteinase-2 and -9, ADAM-10 and N-cadherin expression in human glioblastoma multiforme
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-015-2197-5
– volume: 37
  start-page: 9086
  year: 2017
  ident: ref_21
  article-title: After Nerve Injury, Lineage Tracing Shows That Myelin and Remak Schwann Cells Elongate Extensively and Branch to Form Repair Schwann Cells, Which Shorten Radically on Remyelination
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1453-17.2017
– volume: 247
  start-page: 272
  year: 2013
  ident: ref_31
  article-title: Schwann cell phenotype is regulated by axon modality and central-peripheral location and persists in vitro
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2013.05.007
– volume: 17
  start-page: 962
  year: 2011
  ident: ref_56
  article-title: Review on the protective effects of PACAP in models of neurodegenerative diseases in vitro and in vivo
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/138161211795589355
– volume: 66
  start-page: 237
  year: 1943
  ident: ref_18
  article-title: Three types of nerve injury
  publication-title: Brain
  doi: 10.1093/brain/66.4.237
– volume: 82
  start-page: 163
  year: 2007
  ident: ref_85
  article-title: Neural plasticity after peripheral nerve injury and regeneration
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2007.06.005
– ident: ref_93
  doi: 10.1007/978-3-319-35135-3
– volume: 485
  start-page: 183
  year: 2005
  ident: ref_22
  article-title: Pathway sampling by regenerating peripheral axons
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.20436
– volume: 119
  start-page: 170108
  year: 2019
  ident: ref_50
  article-title: Protective effect of PACAP-38 on retinal pigmented epithelium in an in vitro and in vivo model of diabetic retinopathy through EGFR-dependent mechanism
  publication-title: Peptides
  doi: 10.1016/j.peptides.2019.170108
– volume: 17
  start-page: 204
  year: 2011
  ident: ref_57
  article-title: Protective effects of pituitary adenylate cyclase-activating polypeptide (PACAP) against apoptosis
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/138161211795049679
SSID ssj0023259
Score 2.4922945
SecondaryResourceType review_article
Snippet Schwann cells, the most abundant glial cells of the peripheral nervous system, represent the key players able to supply extracellular microenvironment for...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 8233
SubjectTerms Animals
Axons - drug effects
Axons - physiology
Cell Survival - drug effects
Humans
Myelin Sheath - drug effects
Myelin Sheath - physiology
Nerve Fibers - drug effects
Nerve Fibers - physiology
Nerve Regeneration - drug effects
Peripheral Nerve Injuries - drug therapy
Peripheral Nerve Injuries - pathology
Peripheral Nerve Injuries - physiopathology
Peripheral Nerves - drug effects
Peripheral Nerves - physiology
Pituitary Adenylate Cyclase-Activating Polypeptide - pharmacology
Pituitary Adenylate Cyclase-Activating Polypeptide - therapeutic use
Review
Schwann Cells - drug effects
Schwann Cells - physiology
Trauma, Nervous System - drug therapy
Trauma, Nervous System - pathology
Trauma, Nervous System - physiopathology
Title Effects of PACAP on Schwann Cells: Focus on Nerve Injury
URI https://www.ncbi.nlm.nih.gov/pubmed/33153152
https://www.proquest.com/docview/2458035443
https://pubmed.ncbi.nlm.nih.gov/PMC7663204
Volume 21
WOSCitedRecordID wos000588935400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1422-0067
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023259
  issn: 1422-0067
  databaseCode: 7X7
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1422-0067
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023259
  issn: 1422-0067
  databaseCode: BENPR
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1422-0067
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023259
  issn: 1422-0067
  databaseCode: PIMPY
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1422-0067
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023259
  issn: 1422-0067
  databaseCode: M2O
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKBhIXxDflYwoSnKqINHbjmNsYHXBoicaQyqlybKfL1CZV24zBn8FfzLOdpEkZ0jhwsWLHtiK_X97zs98HQq8UpbHnc-ziMB64hMQ6G6BHXOFJJoSigcekSTZBx-NwMmFRp_Or8oW5mNMsCy8v2fK_khragNjadfYfyF1PCg3wDESHEsgO5bUIP9xaaESw0JG-Dvgizr7zLOsdqfnc2MAd56IwFwVjbfEIXOK8aPtGt08KG_ElFlU-3V4pPOtN-YgXs9Jx_cOK_0xrhv--sqhghwsAnmFHM77hO91GhXYGFXaCtFir5bJG3YmazXNpneLzFW-eVYBiqs9fcYO9ElB9tYC00ueKtpInW6_pEntlxXLY0LeBM3ZZP8ZM20qm54s1SON-1a0dYXtH8tX2iKAJ6fHT5ugbaN-nA6bNBOlkq8Rj3yTgq7_aOlPo0W-ao9vbnD90l10T3Mae5vQuulMqI86hBdE91FHZfXTLpif98QCFJZScPHEMlJw8c0ooOQZKbx0DJN1ugORYID1EX4-Hp0cf3TLThitwSDauD1qL8GVCub5xA_GdcKo4EzGXAsecSsaTRKqYKS8JsEqChJNQBDGRicdBQuFHaC_LM_UEOZQQNaA-DFIBkf0wljoYNg9IIvtYMNVFvWphpqIMQ6-zocynVxGhi17XvZc2_Mpf-r2s1ngK_FFfevFM5cV66pNB6GEd5bGLHts1r2fCGOQ9bGC7iLaoUXfQsdfbb7L0zMRgp7BT9z3y9Jrf9wzd3v4Pz9HeZlWoF-imuNik69WBQZgpwwO0_244jk6gNvI_Qy36NIq-_QZyEKdA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+PACAP+on+Schwann+Cells%3A+Focus+on+Nerve+Injury&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Maugeri%2C+Grazia&rft.au=D%E2%80%99Amico%2C+Agata+Grazia&rft.au=Musumeci%2C+Giuseppe&rft.au=Reglodi%2C+Dora&rft.date=2020-11-03&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=21&rft.issue=21&rft.spage=8233&rft_id=info:doi/10.3390%2Fijms21218233&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijms21218233
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon