Effects of PACAP on Schwann Cells: Focus on Nerve Injury
Schwann cells, the most abundant glial cells of the peripheral nervous system, represent the key players able to supply extracellular microenvironment for axonal regrowth and restoration of myelin sheaths on regenerating axons. Following nerve injury, Schwann cells respond adaptively to damage by ac...
Saved in:
| Published in: | International journal of molecular sciences Vol. 21; no. 21; p. 8233 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI
03.11.2020
|
| Subjects: | |
| ISSN: | 1422-0067, 1422-0067 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Schwann cells, the most abundant glial cells of the peripheral nervous system, represent the key players able to supply extracellular microenvironment for axonal regrowth and restoration of myelin sheaths on regenerating axons. Following nerve injury, Schwann cells respond adaptively to damage by acquiring a new phenotype. In particular, some of them localize in the distal stump to form the Bungner band, a regeneration track in the distal site of the injured nerve, whereas others produce cytokines involved in recruitment of macrophages infiltrating into the nerve damaged area for axonal and myelin debris clearance. Several neurotrophic factors, including pituitary adenylyl cyclase-activating peptide (PACAP), promote survival and axonal elongation of injured neurons. The present review summarizes the evidence existing in the literature demonstrating the autocrine and/or paracrine action exerted by PACAP to promote remyelination and ameliorate the peripheral nerve inflammatory response following nerve injury. |
|---|---|
| AbstractList | Schwann cells, the most abundant glial cells of the peripheral nervous system, represent the key players able to supply extracellular microenvironment for axonal regrowth and restoration of myelin sheaths on regenerating axons. Following nerve injury, Schwann cells respond adaptively to damage by acquiring a new phenotype. In particular, some of them localize in the distal stump to form the Bungner band, a regeneration track in the distal site of the injured nerve, whereas others produce cytokines involved in recruitment of macrophages infiltrating into the nerve damaged area for axonal and myelin debris clearance. Several neurotrophic factors, including pituitary adenylyl cyclase-activating peptide (PACAP), promote survival and axonal elongation of injured neurons. The present review summarizes the evidence existing in the literature demonstrating the autocrine and/or paracrine action exerted by PACAP to promote remyelination and ameliorate the peripheral nerve inflammatory response following nerve injury.Schwann cells, the most abundant glial cells of the peripheral nervous system, represent the key players able to supply extracellular microenvironment for axonal regrowth and restoration of myelin sheaths on regenerating axons. Following nerve injury, Schwann cells respond adaptively to damage by acquiring a new phenotype. In particular, some of them localize in the distal stump to form the Bungner band, a regeneration track in the distal site of the injured nerve, whereas others produce cytokines involved in recruitment of macrophages infiltrating into the nerve damaged area for axonal and myelin debris clearance. Several neurotrophic factors, including pituitary adenylyl cyclase-activating peptide (PACAP), promote survival and axonal elongation of injured neurons. The present review summarizes the evidence existing in the literature demonstrating the autocrine and/or paracrine action exerted by PACAP to promote remyelination and ameliorate the peripheral nerve inflammatory response following nerve injury. Schwann cells, the most abundant glial cells of the peripheral nervous system, represent the key players able to supply extracellular microenvironment for axonal regrowth and restoration of myelin sheaths on regenerating axons. Following nerve injury, Schwann cells respond adaptively to damage by acquiring a new phenotype. In particular, some of them localize in the distal stump to form the Bungner band, a regeneration track in the distal site of the injured nerve, whereas others produce cytokines involved in recruitment of macrophages infiltrating into the nerve damaged area for axonal and myelin debris clearance. Several neurotrophic factors, including pituitary adenylyl cyclase-activating peptide (PACAP), promote survival and axonal elongation of injured neurons. The present review summarizes the evidence existing in the literature demonstrating the autocrine and/or paracrine action exerted by PACAP to promote remyelination and ameliorate the peripheral nerve inflammatory response following nerve injury. |
| Author | Musumeci, Giuseppe D’Amico, Agata Grazia D’Agata, Velia Reglodi, Dora Maugeri, Grazia |
| AuthorAffiliation | 3 Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary; dora.reglodi@aok.pte.hu 1 Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy; graziamaugeri@unict.it (G.M.); g.musumeci@unict.it (G.M.) 2 Department of Drug Sciences, University of Catania, 95100 Catania, Italy; agata.damico@unict.it |
| AuthorAffiliation_xml | – name: 1 Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy; graziamaugeri@unict.it (G.M.); g.musumeci@unict.it (G.M.) – name: 3 Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary; dora.reglodi@aok.pte.hu – name: 2 Department of Drug Sciences, University of Catania, 95100 Catania, Italy; agata.damico@unict.it |
| Author_xml | – sequence: 1 givenname: Grazia surname: Maugeri fullname: Maugeri, Grazia – sequence: 2 givenname: Agata Grazia surname: D’Amico fullname: D’Amico, Agata Grazia – sequence: 3 givenname: Giuseppe orcidid: 0000-0002-8260-8890 surname: Musumeci fullname: Musumeci, Giuseppe – sequence: 4 givenname: Dora surname: Reglodi fullname: Reglodi, Dora – sequence: 5 givenname: Velia orcidid: 0000-0003-1114-8265 surname: D’Agata fullname: D’Agata, Velia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33153152$$D View this record in MEDLINE/PubMed |
| BookMark | eNptUU1Lw0AQXaRiP_TmWXL0YHS_8uVBKKHVQtGCel42m12bkuzW3aTSf29CW6kiDMww8-Y9Zt4Q9LTREoBLBG8JSeBdsaocRhjFmJATMEAUYx_CMOod1X0wdG4FISY4SM5AnxAUtIEHIJ4oJUXtPKO8xTgdLzyjvVex_OJae6ksS3fvTY1oXNd_lnYjvZleNXZ7Dk4VL5282OcReJ9O3tInf_7yOEvHc1-QmNY-jlEucK4iDglMZIYUjyRPRMZzQTIe5QlXKpdZIqEKiVSh4jQWYUZzBXkUEjICDzvedZNVMhdS15aXbG2LitstM7xgvye6WLIPs2FRGBIMaUtwvSew5rORrmZV4UR7GdfSNI5hGsSQBJR2WlfHWj8ih3e1ALwDCGucs1IxUdS8LkwnXZQMQdZ5wo49aZdu_iwdeP-FfwNC845B |
| CitedBy_id | crossref_primary_10_3390_cells12222649 crossref_primary_10_1186_s13018_025_05969_9 crossref_primary_10_1007_s10989_021_10204_0 crossref_primary_10_1186_s13195_023_01334_2 crossref_primary_10_3389_fcell_2025_1603752 crossref_primary_10_1016_j_biopha_2023_116024 crossref_primary_10_3390_biom13081193 crossref_primary_10_1007_s12015_023_10510_8 crossref_primary_10_1016_j_neuroscience_2023_03_009 crossref_primary_10_1111_cns_13752 crossref_primary_10_3892_ijo_2022_5462 crossref_primary_10_4103_1673_5374_387992 crossref_primary_10_3389_fnmol_2022_1087550 crossref_primary_10_1007_s12031_022_01985_0 crossref_primary_10_1111_jcmm_17897 crossref_primary_10_1016_j_npep_2023_102386 crossref_primary_10_3390_ijms25158063 crossref_primary_10_1002_adfm_202209658 crossref_primary_10_1016_j_npep_2023_102327 crossref_primary_10_3390_ijms26136081 crossref_primary_10_1007_s12031_021_01846_2 crossref_primary_10_3390_app12073435 crossref_primary_10_3390_brainsci11080994 crossref_primary_10_1016_j_mtbio_2025_101808 crossref_primary_10_1016_j_peptides_2023_171107 crossref_primary_10_1016_j_diff_2024_100813 crossref_primary_10_1007_s11481_021_10034_3 crossref_primary_10_3390_app11167373 crossref_primary_10_31083_j_jin2101033 crossref_primary_10_3390_app14051754 crossref_primary_10_3390_app12020760 crossref_primary_10_1007_s11062_025_09955_z crossref_primary_10_3390_antiox11010128 crossref_primary_10_4081_ejh_2024_3994 crossref_primary_10_3390_cells12222633 crossref_primary_10_1016_j_neuroscience_2024_06_035 crossref_primary_10_1016_j_neulet_2025_138230 crossref_primary_10_1007_s40883_024_00361_1 crossref_primary_10_3390_biomedicines9080965 crossref_primary_10_1016_j_bbi_2025_04_038 crossref_primary_10_1007_s10989_021_10162_7 crossref_primary_10_3390_ijms221910691 crossref_primary_10_1002_smll_202207331 crossref_primary_10_3390_app11167673 crossref_primary_10_3389_fncel_2022_1077441 crossref_primary_10_3390_antiox10030354 |
| Cites_doi | 10.1002/glia.20750 10.1074/jbc.271.36.22146 10.3389/fnins.2020.00805 10.1111/j.1749-6632.2000.tb06959.x 10.1002/cne.10418 10.1111/ejn.13054 10.1046/j.1365-2826.1999.00411.x 10.3171/foc.2004.16.5.2 10.1007/s12035-009-8055-2 10.1083/jcb.149.5.1157 10.1002/jcb.28293 10.1016/j.neuroscience.2007.09.084 10.1038/sj.emboj.7600309 10.1002/ana.23607 10.1016/S0169-328X(97)00335-5 10.1016/S0006-8993(96)00920-1 10.1007/BF00218961 10.1016/j.regpep.2006.06.016 10.1007/s12031-008-9087-1 10.1016/j.npep.2011.05.001 10.3389/fendo.2020.00377 10.1002/jcp.27328 10.3389/fphar.2016.00139 10.1016/j.brainresrev.2005.12.001 10.1097/MED.0000000000000218 10.3389/fncel.2019.00033 10.1111/j.1749-6632.1994.tb19825.x 10.3390/ijms20194944 10.1016/j.peptides.2017.11.003 10.1016/j.tins.2011.11.006 10.1074/mcp.R115.053744 10.1523/JNEUROSCI.0841-09.2009 10.1002/(SICI)1097-4547(19990915)57:6<953::AID-JNR21>3.0.CO;2-R 10.1007/BF00981944 10.1186/1742-2094-8-109 10.1083/jcb.201205025 10.1002/biof.1076 10.3390/ijms19092538 10.1038/371796a0 10.2170/jjphysiol.48.301 10.1523/JNEUROSCI.4083-03.2004 10.1093/brain/awaa163 10.1038/369747a0 10.1523/JNEUROSCI.23-09-03807.2003 10.1002/glia.20496 10.1523/JNEUROSCI.20-12-04635.2000 10.1038/nn.3281 10.1371/journal.pone.0018387 10.1016/j.npep.2018.04.009 10.1016/j.peptides.2007.04.002 10.1038/nrneurol.2013.227 10.1007/978-3-319-35135-3_39 10.1111/j.1749-6632.1996.tb17501.x 10.1146/annurev.neuro.30.051606.094337 10.1006/mcne.2000.0967 10.1016/0006-291X(89)91757-9 10.1159/000064942 10.3389/fnins.2019.01326 10.1016/j.yexcr.2013.11.003 10.1523/JNEUROSCI.14-11-06392.1994 10.1111/bph.12181 10.1007/BF00306107 10.1124/mol.107.035477 10.1016/j.peptides.2015.08.006 10.1016/j.neuron.2007.02.009 10.1227/01.NEU.0000358537.30354.63 10.1002/jnr.10750 10.1016/j.devcel.2013.12.002 10.1113/JP270874 10.1124/pr.109.001370 10.1016/j.brainres.2008.09.035 10.1016/j.pneurobio.2018.12.001 10.2174/138161211795589346 10.3389/fnmol.2017.00038 10.1002/jnr.21820 10.1111/j.1749-6632.2003.tb03145.x 10.1016/j.ijdevneu.2011.06.008 10.3390/ijms21082943 10.3389/fendo.2018.00090 10.1016/j.pharmthera.2008.11.006 10.1111/and.12102 10.1016/S0306-4522(98)00240-1 10.3390/ijms19040981 10.1002/glia.20766 10.1007/s00441-015-2197-5 10.1523/JNEUROSCI.1453-17.2017 10.1016/j.expneurol.2013.05.007 10.2174/138161211795589355 10.1093/brain/66.4.237 10.1016/j.pneurobio.2007.06.005 10.1007/978-3-319-35135-3 10.1002/cne.20436 10.1016/j.peptides.2019.170108 10.2174/138161211795049679 |
| ContentType | Journal Article |
| Copyright | 2020 by the authors. 2020 |
| Copyright_xml | – notice: 2020 by the authors. 2020 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.3390/ijms21218233 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1422-0067 |
| ExternalDocumentID | PMC7663204 33153152 10_3390_ijms21218233 |
| Genre | Journal Article Review |
| GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M ALIPV CGR CUY CVF ECM EIF NPM 7X8 ESTFP 5PM |
| ID | FETCH-LOGICAL-c384t-281dc2df7a0309eb1fa7ea9cbadc3ba7d9affdeb9e0f63ef6fa48c6b4df0a7633 |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000588935400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1422-0067 |
| IngestDate | Tue Nov 04 01:53:34 EST 2025 Sun Nov 09 10:30:49 EST 2025 Thu Apr 03 06:54:03 EDT 2025 Sat Nov 29 07:16:10 EST 2025 Tue Nov 18 22:28:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Keywords | peripheral nervous system PACAP regeneration neuroprotection Schwann cells |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c384t-281dc2df7a0309eb1fa7ea9cbadc3ba7d9affdeb9e0f63ef6fa48c6b4df0a7633 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 These authors contributed equally to this work. |
| ORCID | 0000-0003-1114-8265 0000-0002-8260-8890 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7663204 |
| PMID | 33153152 |
| PQID | 2458035443 |
| PQPubID | 23479 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7663204 proquest_miscellaneous_2458035443 pubmed_primary_33153152 crossref_citationtrail_10_3390_ijms21218233 crossref_primary_10_3390_ijms21218233 |
| PublicationCentury | 2000 |
| PublicationDate | 20201103 |
| PublicationDateYYYYMMDD | 2020-11-03 |
| PublicationDate_xml | – month: 11 year: 2020 text: 20201103 day: 3 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | International journal of molecular sciences |
| PublicationTitleAlternate | Int J Mol Sci |
| PublicationYear | 2020 |
| Publisher | MDPI |
| Publisher_xml | – name: MDPI |
| References | Woodley (ref_32) 2019; 13 Gaytan (ref_41) 1994; 276 Maugeri (ref_50) 2019; 119 ref_93 ref_91 Castorina (ref_78) 2008; 1241 Grothe (ref_29) 2006; 51 Buchstaller (ref_82) 2004; 24 ref_12 Brown (ref_5) 2012; 72 Rotshenker (ref_27) 2011; 8 Cavallaro (ref_65) 1995; 48 Miyata (ref_3) 1989; 164 Harrisingh (ref_90) 2004; 23 Chen (ref_23) 2007; 30 Dickson (ref_43) 2009; 121 Fontana (ref_30) 2012; 198 Li (ref_15) 1994; 369 Nakajima (ref_77) 2013; 19 Brenneman (ref_54) 2007; 28 Zhou (ref_83) 1999; 57 Maugeri (ref_59) 2019; 234 Fry (ref_28) 2007; 53 Sundler (ref_75) 1996; 805 Salzer (ref_11) 2008; 56 Seddon (ref_18) 1943; 66 Vaudry (ref_35) 2009; 61 Maugeri (ref_51) 2019; 120 Morris (ref_20) 1972; 124 Waschek (ref_58) 2013; 169 Stassart (ref_100) 2013; 16 Hannibal (ref_69) 2002; 453 Navarro (ref_85) 2007; 82 Toth (ref_52) 2020; 11 Rasband (ref_4) 2016; 15 Barres (ref_9) 2014; 28 Reglodi (ref_56) 2011; 17 Arimura (ref_68) 1994; 739 ref_81 Li (ref_95) 2001; 17 Scheib (ref_7) 2013; 9 Han (ref_14) 2013; 39 Maugeri (ref_62) 2016; 7 Martini (ref_26) 2008; 56 Lee (ref_76) 2009; 87 Arimura (ref_33) 1998; 48 Waschek (ref_42) 2000; 921 Maugeri (ref_60) 2020; 14 Armstrong (ref_87) 2008; 151 Castorina (ref_79) 2014; 322 Jessen (ref_2) 2019; 13 Reglodi (ref_46) 2012; 46 Reglodi (ref_45) 2018; 9 Maugeri (ref_49) 2018; 99 Delgado (ref_73) 2003; 992 Pilch (ref_21) 2017; 37 Armstrong (ref_84) 2003; 74 ref_53 Geuna (ref_99) 2016; 43 Burnett (ref_19) 2004; 5 Shioda (ref_72) 2015; 72 Chen (ref_71) 2006; 137 Morio (ref_70) 1996; 741 Topilko (ref_13) 1994; 371 Brushart (ref_31) 2013; 247 Seaborn (ref_57) 2011; 17 Voas (ref_6) 2009; 29 ref_61 Baskozos (ref_98) 2020; 143 Jessen (ref_1) 2016; 594 Maurel (ref_89) 2000; 20 Akassoglou (ref_97) 2000; 149 Maugeri (ref_63) 2018; 69 Waschek (ref_67) 2002; 24 Vincze (ref_92) 2011; 29 Dejda (ref_55) 2008; 36 Ushiyama (ref_40) 2007; 72 Witzel (ref_22) 2005; 485 Nakamura (ref_47) 2013; 46 Cavallaro (ref_66) 1998; 54 Pereira (ref_10) 2012; 35 ref_36 Nakamachi (ref_74) 2011; 17 Pantaloni (ref_38) 1996; 271 Meller (ref_25) 1987; 250 Liang (ref_96) 2007; 55 Vallejo (ref_94) 2009; 39 Hsieh (ref_16) 1994; 14 Reimer (ref_86) 1999; 88 Harmar (ref_34) 1998; 2 Dautzenberg (ref_39) 1999; 11 Moody (ref_37) 2016; 23 Sulaiman (ref_24) 2009; 65 Blalock (ref_80) 2003; 23 Musumeci (ref_64) 2015; 362 Vaudry (ref_44) 2000; 52 Boerboom (ref_17) 2017; 10 Zigmond (ref_88) 2019; 173 ref_48 ref_8 |
| References_xml | – volume: 56 start-page: 1532 year: 2008 ident: ref_11 article-title: Molecular domains of myelinated axons in the peripheral nervous system publication-title: Glia doi: 10.1002/glia.20750 – volume: 271 start-page: 22146 year: 1996 ident: ref_38 article-title: Alternative splicing in the N-terminal extracellular domain of the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor modulates receptor selectivity and relative potencies of PACAP-27 and PACAP-38 in phospholipase C activation publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.36.22146 – volume: 14 start-page: 805 year: 2020 ident: ref_60 article-title: Differential Vulnerability of Oculomotor versus Hypoglossal Nucleus during ALS: Involvement of PACAP publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.00805 – volume: 921 start-page: 129 year: 2000 ident: ref_42 article-title: PACAP action in nervous system development, regeneration, and neuroblastoma cell proliferation publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.2000.tb06959.x – volume: 453 start-page: 389 year: 2002 ident: ref_69 article-title: Pituitary adenylate cyclase-activating peptide in the rat central nervous system: An im- munohistochemical and in situ hybridization study publication-title: J. Comp. Neurol. doi: 10.1002/cne.10418 – volume: 43 start-page: 287 year: 2016 ident: ref_99 article-title: In vitro models for peripheral nerve regeneration publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.13054 – volume: 11 start-page: 941 year: 1999 ident: ref_39 article-title: N-terminal splice variants of the type I PACAP receptor: Isolation, characterization and ligand binding/selectivity determinants publication-title: J. Neuroendocrinol. doi: 10.1046/j.1365-2826.1999.00411.x – volume: 5 start-page: 1 year: 2004 ident: ref_19 article-title: Pathophysiology of peripheral nerve injury: A brief review publication-title: Neurosurg. Focus doi: 10.3171/foc.2004.16.5.2 – volume: 39 start-page: 90 year: 2009 ident: ref_94 article-title: PACAP signaling to dream: A camp-dependent pathway that regulates cortical astrogliogenesis publication-title: Mol. Neurobiol. doi: 10.1007/s12035-009-8055-2 – volume: 149 start-page: 1157 year: 2000 ident: ref_97 article-title: Tissue plasminogen activator-mediated fibrinolysis protects against axonal degeneration and demyelination after sciatic nerve injury publication-title: J. Cell Biol. doi: 10.1083/jcb.149.5.1157 – volume: 120 start-page: 10097 year: 2019 ident: ref_51 article-title: PACAP through EGFR transactivation preserves human corneal endothelial integrity publication-title: J. Cell Biochem. doi: 10.1002/jcb.28293 – volume: 151 start-page: 63 year: 2008 ident: ref_87 article-title: Impaired nerve regeneration and enhanced neuroinflammatory response in mice lacking pituitary Adenylyl cyclase activating peptide publication-title: Neuroscience doi: 10.1016/j.neuroscience.2007.09.084 – volume: 23 start-page: 3061 year: 2004 ident: ref_90 article-title: The Ras/Raf/ERK signalling pathway drives Schwann cell dedifferentiation publication-title: EMBO J. doi: 10.1038/sj.emboj.7600309 – volume: 72 start-page: 406 year: 2012 ident: ref_5 article-title: Schwann cell glycogen selectively supports myelinated axon function publication-title: Ann. Neurol. doi: 10.1002/ana.23607 – volume: 54 start-page: 161 year: 1998 ident: ref_66 article-title: Functional and molecular expression of PACAP/VIP receptors in the rat retina publication-title: Brain Res. Mol. Brain Res. doi: 10.1016/S0169-328X(97)00335-5 – volume: 741 start-page: 82 year: 1996 ident: ref_70 article-title: Pituitary adenylate cyclase-activating polypeptide protects rat-cultured cortical neurons from glutamate-induced cytotoxicity publication-title: Brain Res. doi: 10.1016/S0006-8993(96)00920-1 – volume: 250 start-page: 663 year: 1987 ident: ref_25 article-title: Early structural changes in the axoplasmic cytoskeleton after axotomy studied by cryofixation publication-title: Cell Tissue Res. doi: 10.1007/BF00218961 – volume: 137 start-page: 4 year: 2006 ident: ref_71 article-title: Neuroprotection by endogenous and exogenous PACAP following stroke publication-title: Regul. Pept. doi: 10.1016/j.regpep.2006.06.016 – volume: 36 start-page: 26 year: 2008 ident: ref_55 article-title: Inhibitory effect of PACAP on caspase activity in neuronal apoptosis: A better understanding towards therapeutic applications in neurodegenerative diseases publication-title: J. Mol. Neurosci. doi: 10.1007/s12031-008-9087-1 – volume: 2 start-page: 265 year: 1998 ident: ref_34 article-title: International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide publication-title: Pharmacol. Rev. – volume: 46 start-page: 61 year: 2012 ident: ref_46 article-title: Effects of pituitary adenylate cyclase activating polypeptide in the urinary system, with special emphasis on its protective effects in the kidney publication-title: Neuropeptides doi: 10.1016/j.npep.2011.05.001 – volume: 11 start-page: 377 year: 2020 ident: ref_52 article-title: Protective Effects of PACAP in Peripheral Organs publication-title: Front. Endocrinol. (Lausanne) doi: 10.3389/fendo.2020.00377 – volume: 234 start-page: 5203 year: 2019 ident: ref_59 article-title: Molecular mechanisms involved in the protective effect of pituitary adenylate cyclase-activating polypeptide in an in vitro model of amyotrophic lateral sclerosis publication-title: J. Cell Physiol. doi: 10.1002/jcp.27328 – volume: 7 start-page: 139 year: 2016 ident: ref_62 article-title: PACAP and VIP inhibit the invasiveness of glioblastoma cells exposed to hypoxia through the regulation of HIFs and EGFR expression publication-title: Front. Pharmacol. doi: 10.3389/fphar.2016.00139 – volume: 51 start-page: 293 year: 2006 ident: ref_29 article-title: Physiological function and putative therapeutic impact of the FGF-2 system in peripheral nerve regeneration—Lessons from in vivo studies in mice and rats publication-title: Brain Res. Rev. doi: 10.1016/j.brainresrev.2005.12.001 – volume: 23 start-page: 38 year: 2016 ident: ref_37 article-title: VIP/PACAP, and their receptors and cancer publication-title: Curr. Opin. Endocrinol. Diabetes Obes. doi: 10.1097/MED.0000000000000218 – volume: 13 start-page: 33 year: 2019 ident: ref_2 article-title: The Success and Failure of the Schwann Cell Response to Nerve Injury publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2019.00033 – volume: 739 start-page: 228 year: 1994 ident: ref_68 article-title: PACAP functions as a neurotrophic factor publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.1994.tb19825.x – ident: ref_53 doi: 10.3390/ijms20194944 – volume: 99 start-page: 20 year: 2018 ident: ref_49 article-title: Trophic effect of PACAP on human corneal endothelium publication-title: Peptides doi: 10.1016/j.peptides.2017.11.003 – volume: 35 start-page: 123 year: 2012 ident: ref_10 article-title: Molecular mechanisms regulating myelination in the peripheral nervous system publication-title: Trends Neurosci. doi: 10.1016/j.tins.2011.11.006 – volume: 15 start-page: 355 year: 2016 ident: ref_4 article-title: Glial Contributions to Neural Function and Disease publication-title: Mol. Cell. Proteom. doi: 10.1074/mcp.R115.053744 – volume: 29 start-page: 14408 year: 2009 ident: ref_6 article-title: Schwann cells inhibit ectopic clustering of axonal sodium channels publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0841-09.2009 – volume: 57 start-page: 953 year: 1999 ident: ref_83 article-title: Axotomy-induced changes in pituitary adenylate cyclase activating polypeptide (PACAP) and PACAP receptor gene expression in the adult rat facial motor nucleus publication-title: J. Neurosci. Res. doi: 10.1002/(SICI)1097-4547(19990915)57:6<953::AID-JNR21>3.0.CO;2-R – volume: 124 start-page: 103 year: 1972 ident: ref_20 article-title: A study of degeneration and regeneration in the divided rat sciatic nerve based on electron microscopy publication-title: Z. Zellforsch. Mikrosk. Anat. doi: 10.1007/BF00981944 – volume: 8 start-page: 109 year: 2011 ident: ref_27 article-title: Wallerian degeneration: The innate-immune response to traumatic nerve injury publication-title: J. Neuroinflammation doi: 10.1186/1742-2094-8-109 – volume: 198 start-page: 127 year: 2012 ident: ref_30 article-title: c-Jun in Schwann cells promotes axonal regeneration and motoneuron survival via paracrine signaling publication-title: J. Cell Biol. doi: 10.1083/jcb.201205025 – volume: 39 start-page: 233 year: 2013 ident: ref_14 article-title: Myelin-specific proteins: A structurally diverse group of membrane-interacting molecules publication-title: Biofactors doi: 10.1002/biof.1076 – ident: ref_48 doi: 10.3390/ijms19092538 – volume: 371 start-page: 796 year: 1994 ident: ref_13 article-title: Krox-20 controls myelination in the peripheral nervous system publication-title: Nature doi: 10.1038/371796a0 – volume: 48 start-page: 301 year: 1998 ident: ref_33 article-title: Perspectives on pituitary adenylate cyclase activating polypeptide (PACAP) in the neuroendocrine, endocrine, and nervous systems publication-title: Jpn. J. Physiol. doi: 10.2170/jjphysiol.48.301 – volume: 24 start-page: 2357 year: 2004 ident: ref_82 article-title: Efficient isolation and gene expression profiling of small numbers of neural crest stem cells and developing Schwann cells publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4083-03.2004 – volume: 143 start-page: 2009 year: 2020 ident: ref_98 article-title: Molecular and cellular correlates of human nerve regeneration: ADCYAP1/PACAP enhance nerve outgrowth publication-title: Brain doi: 10.1093/brain/awaa163 – volume: 369 start-page: 747 year: 1994 ident: ref_15 article-title: Myelination in the absence of myelin-associated glycoprotein publication-title: Nature doi: 10.1038/369747a0 – volume: 23 start-page: 3807 year: 2003 ident: ref_80 article-title: Gene microarrays in hippocampal aging: Statistical profiling identifies novel processes correlated with cognitive impairment publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-09-03807.2003 – volume: 55 start-page: 632 year: 2007 ident: ref_96 article-title: IGF-1 stimulates de novo fatty acid biosynthesis by Schwann cells during myelination publication-title: Glia doi: 10.1002/glia.20496 – volume: 20 start-page: 4635 year: 2000 ident: ref_89 article-title: Axonal regulation of Schwann cell proliferation and survival and the initial events of myelination requires PI 3-kinase activity publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-12-04635.2000 – volume: 16 start-page: 48 year: 2013 ident: ref_100 article-title: A role for Schwann cell-derived neuregulin-1 in remyelination publication-title: Nat. Neurosci. doi: 10.1038/nn.3281 – ident: ref_81 doi: 10.1371/journal.pone.0018387 – volume: 69 start-page: 84 year: 2018 ident: ref_63 article-title: PACAP and VIP regulate hypoxia-inducible factors in neuroblastoma cells exposed to hypoxia publication-title: Neuropeptides doi: 10.1016/j.npep.2018.04.009 – volume: 28 start-page: 1720 year: 2007 ident: ref_54 article-title: Neuroprotection: A comparative view of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide publication-title: Peptides doi: 10.1016/j.peptides.2007.04.002 – volume: 9 start-page: 668 year: 2013 ident: ref_7 article-title: Advances in peripheral nerve regeneration publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2013.227 – ident: ref_36 doi: 10.1007/978-3-319-35135-3_39 – volume: 805 start-page: 410 year: 1996 ident: ref_75 article-title: Pituitary adenylate cyclase-activating peptide in sensory and autonomic gan- glia: Localization and regulation publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.1996.tb17501.x – volume: 30 start-page: 209 year: 2007 ident: ref_23 article-title: Peripheral regeneration publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.30.051606.094337 – volume: 17 start-page: 761 year: 2001 ident: ref_95 article-title: Neuregulin signaling through a PI3K/Akt/Bad pathway in Schwann cell survival publication-title: Mol. Cell. Neurosci. doi: 10.1006/mcne.2000.0967 – ident: ref_8 – volume: 164 start-page: 567 year: 1989 ident: ref_3 article-title: Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(89)91757-9 – volume: 24 start-page: 14 year: 2002 ident: ref_67 article-title: Multiple actions of pituitary adenylyl cyclase activating peptide in nervous system development and regeneration publication-title: Dev. Neurosci. doi: 10.1159/000064942 – volume: 13 start-page: 1326 year: 2019 ident: ref_32 article-title: Distinct VIP and PACAP Functions in the Distal Nerve Stump During Peripheral Nerve Regeneration publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.01326 – volume: 322 start-page: 108 year: 2014 ident: ref_79 article-title: PACAP and VIP increase the expression of myelin-related proteins in rat schwannoma cells: Involvement of PAC1/VPAC2 receptor-mediated activation of PI3K/Akt signaling pathways publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2013.11.003 – volume: 14 start-page: 6392 year: 1994 ident: ref_16 article-title: Regional modulation of neurofilament organization by myelination in normal axons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.14-11-06392.1994 – volume: 169 start-page: 512 year: 2013 ident: ref_58 article-title: VIP and PACAP: Neuropeptide modulators of CNS inflammation, injury, and repair publication-title: Br. J. Pharmacol. doi: 10.1111/bph.12181 – volume: 276 start-page: 223 year: 1994 ident: ref_41 article-title: Pituitary adenylate cyclase-activating peptide (PACAP) immunolocalization in lymphoid tissues of the rat publication-title: Cell Tissue Res. doi: 10.1007/BF00306107 – volume: 72 start-page: 103 year: 2007 ident: ref_40 article-title: Differential intracellular signaling through PAC1 isoforms as a result of alternative splicing in the first extracellular domain and the third intracellular loop publication-title: Mol. Pharmacol. doi: 10.1124/mol.107.035477 – volume: 72 start-page: 202 year: 2015 ident: ref_72 article-title: PACAP as a neuroprotective factor in ischemic neuronal injuries publication-title: Peptides. doi: 10.1016/j.peptides.2015.08.006 – volume: 48 start-page: 56 year: 1995 ident: ref_65 article-title: Differentiation induces pituitary adenylate cyclase-activating polypeptide receptor expression in PC-12 cells publication-title: Mol. Pharmacol. – volume: 53 start-page: 649 year: 2007 ident: ref_28 article-title: A role for nogo receptor in macrophage clearance from injured peripheral nerve publication-title: Neuron doi: 10.1016/j.neuron.2007.02.009 – volume: 65 start-page: A105 year: 2009 ident: ref_24 article-title: Role of chronic Schwann cell denervation in poor functional recovery after nerve injuries and experimental strategies to combat it publication-title: Neurosurgery doi: 10.1227/01.NEU.0000358537.30354.63 – volume: 74 start-page: 240 year: 2003 ident: ref_84 article-title: Lymphocyte regulation of neuropeptide gene expression after neuronal injury publication-title: J. Neurosci. Res. doi: 10.1002/jnr.10750 – volume: 28 start-page: 7 year: 2014 ident: ref_9 article-title: Contrasting the glial response to axon injury in the central and peripheral nervous systems publication-title: Dev. Cell doi: 10.1016/j.devcel.2013.12.002 – volume: 594 start-page: 3521 year: 2016 ident: ref_1 article-title: The repair Schwann cell and its function in regenerating nerves publication-title: J. Physiol. doi: 10.1113/JP270874 – volume: 61 start-page: 283 year: 2009 ident: ref_35 article-title: Pituitary adenylate cyclase activating polypeptide and its receptors: 20 years after the discovery publication-title: Pharmacol. Rev. doi: 10.1124/pr.109.001370 – volume: 1241 start-page: 29 year: 2008 ident: ref_78 article-title: PACAP and VIP prevent apoptosis in schwannoma cells publication-title: Brain Res. doi: 10.1016/j.brainres.2008.09.035 – volume: 173 start-page: 102 year: 2019 ident: ref_88 article-title: Macrophage biology in the peripheral nervous system after injury publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2018.12.001 – volume: 17 start-page: 973 year: 2011 ident: ref_74 article-title: Role of PACAP in neural stem/progenitor cell and astrocyte--from neural development to neural repair publication-title: Curr Pharm. Des. doi: 10.2174/138161211795589346 – volume: 52 start-page: 269 year: 2000 ident: ref_44 article-title: Pituitary adenylate cyclase-activating polypeptide and its receptors: From structure to functions publication-title: Pharmacol. Rev. – volume: 10 start-page: 38 year: 2017 ident: ref_17 article-title: Molecular mechanisms involved in schwann cell plasticity publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2017.00038 – volume: 87 start-page: 171 year: 2009 ident: ref_76 article-title: Vasoactive intestinal peptide inhibits toll-like receptor 3-induced nitric oxide production in Schwann cells and subsequent sensory neuronal cell death in vitro publication-title: J. Neurosci. Res. doi: 10.1002/jnr.21820 – volume: 19 start-page: 174 year: 2013 ident: ref_77 article-title: Pituitary adenylate cyclase-activating peptide induces neurite outgrowth in cultured monkey trigeminal ganglion cells: Involvement of receptor PAC1 publication-title: Mol. Vis. – volume: 992 start-page: 141 year: 2003 ident: ref_73 article-title: PACAP in immunity and inflammation publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.2003.tb03145.x – volume: 29 start-page: 923 year: 2011 ident: ref_92 article-title: Role of endogenous pituitary adenylate cyclase activating polypeptide (PACAP) in myelination of the rodent brain: Lessons from PACAP-deficient mice publication-title: Int. J. Dev. Neurosci. doi: 10.1016/j.ijdevneu.2011.06.008 – ident: ref_61 doi: 10.3390/ijms21082943 – volume: 9 start-page: 90 year: 2018 ident: ref_45 article-title: Presence and Effects of Pituitary Adenylate Cyclase Activating Polypeptide Under Physiological and Pathological Conditions in the Stomach publication-title: Front. Endocrinol. (Lausanne) doi: 10.3389/fendo.2018.00090 – volume: 121 start-page: 294 year: 2009 ident: ref_43 article-title: VPAC and PAC receptors: From lig- ands to function publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2008.11.006 – ident: ref_12 – volume: 46 start-page: 465 year: 2013 ident: ref_47 article-title: Distribution of pituitary adenylate cyclase-activating polypeptide (PACAP) in the human testis and in testicular germ cell tumors publication-title: Andrologia doi: 10.1111/and.12102 – volume: 88 start-page: 213 year: 1999 ident: ref_86 article-title: Increased expression, axonal transport and release of pituitary adenylate cyclase-activating polypeptide in the cultured rat vagus nerve publication-title: Neuroscience doi: 10.1016/S0306-4522(98)00240-1 – ident: ref_91 doi: 10.3390/ijms19040981 – volume: 56 start-page: 1566 year: 2008 ident: ref_26 article-title: Interactions between Schwann cells and macrophages in injury and inherited demyelinating disease publication-title: Glia doi: 10.1002/glia.20766 – volume: 362 start-page: 45 year: 2015 ident: ref_64 article-title: Characterization of matrix metalloproteinase-2 and -9, ADAM-10 and N-cadherin expression in human glioblastoma multiforme publication-title: Cell Tissue Res. doi: 10.1007/s00441-015-2197-5 – volume: 37 start-page: 9086 year: 2017 ident: ref_21 article-title: After Nerve Injury, Lineage Tracing Shows That Myelin and Remak Schwann Cells Elongate Extensively and Branch to Form Repair Schwann Cells, Which Shorten Radically on Remyelination publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1453-17.2017 – volume: 247 start-page: 272 year: 2013 ident: ref_31 article-title: Schwann cell phenotype is regulated by axon modality and central-peripheral location and persists in vitro publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2013.05.007 – volume: 17 start-page: 962 year: 2011 ident: ref_56 article-title: Review on the protective effects of PACAP in models of neurodegenerative diseases in vitro and in vivo publication-title: Curr. Pharm. Des. doi: 10.2174/138161211795589355 – volume: 66 start-page: 237 year: 1943 ident: ref_18 article-title: Three types of nerve injury publication-title: Brain doi: 10.1093/brain/66.4.237 – volume: 82 start-page: 163 year: 2007 ident: ref_85 article-title: Neural plasticity after peripheral nerve injury and regeneration publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2007.06.005 – ident: ref_93 doi: 10.1007/978-3-319-35135-3 – volume: 485 start-page: 183 year: 2005 ident: ref_22 article-title: Pathway sampling by regenerating peripheral axons publication-title: J. Comp. Neurol. doi: 10.1002/cne.20436 – volume: 119 start-page: 170108 year: 2019 ident: ref_50 article-title: Protective effect of PACAP-38 on retinal pigmented epithelium in an in vitro and in vivo model of diabetic retinopathy through EGFR-dependent mechanism publication-title: Peptides doi: 10.1016/j.peptides.2019.170108 – volume: 17 start-page: 204 year: 2011 ident: ref_57 article-title: Protective effects of pituitary adenylate cyclase-activating polypeptide (PACAP) against apoptosis publication-title: Curr. Pharm. Des. doi: 10.2174/138161211795049679 |
| SSID | ssj0023259 |
| Score | 2.4922945 |
| SecondaryResourceType | review_article |
| Snippet | Schwann cells, the most abundant glial cells of the peripheral nervous system, represent the key players able to supply extracellular microenvironment for... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 8233 |
| SubjectTerms | Animals Axons - drug effects Axons - physiology Cell Survival - drug effects Humans Myelin Sheath - drug effects Myelin Sheath - physiology Nerve Fibers - drug effects Nerve Fibers - physiology Nerve Regeneration - drug effects Peripheral Nerve Injuries - drug therapy Peripheral Nerve Injuries - pathology Peripheral Nerve Injuries - physiopathology Peripheral Nerves - drug effects Peripheral Nerves - physiology Pituitary Adenylate Cyclase-Activating Polypeptide - pharmacology Pituitary Adenylate Cyclase-Activating Polypeptide - therapeutic use Review Schwann Cells - drug effects Schwann Cells - physiology Trauma, Nervous System - drug therapy Trauma, Nervous System - pathology Trauma, Nervous System - physiopathology |
| Title | Effects of PACAP on Schwann Cells: Focus on Nerve Injury |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33153152 https://www.proquest.com/docview/2458035443 https://pubmed.ncbi.nlm.nih.gov/PMC7663204 |
| Volume | 21 |
| WOSCitedRecordID | wos000588935400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1422-0067 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023259 issn: 1422-0067 databaseCode: 7X7 dateStart: 20000301 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1422-0067 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023259 issn: 1422-0067 databaseCode: BENPR dateStart: 20000301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1422-0067 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023259 issn: 1422-0067 databaseCode: PIMPY dateStart: 20000301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1422-0067 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023259 issn: 1422-0067 databaseCode: M2O dateStart: 20000301 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKBhIXxDflYwoSnKqINHbjmNsYHXBoicaQyqlybKfL1CZV24zBn8FfzLOdpEkZ0jhwsWLHtiK_X97zs98HQq8UpbHnc-ziMB64hMQ6G6BHXOFJJoSigcekSTZBx-NwMmFRp_Or8oW5mNMsCy8v2fK_khragNjadfYfyF1PCg3wDESHEsgO5bUIP9xaaESw0JG-Dvgizr7zLOsdqfnc2MAd56IwFwVjbfEIXOK8aPtGt08KG_ElFlU-3V4pPOtN-YgXs9Jx_cOK_0xrhv--sqhghwsAnmFHM77hO91GhXYGFXaCtFir5bJG3YmazXNpneLzFW-eVYBiqs9fcYO9ElB9tYC00ueKtpInW6_pEntlxXLY0LeBM3ZZP8ZM20qm54s1SON-1a0dYXtH8tX2iKAJ6fHT5ugbaN-nA6bNBOlkq8Rj3yTgq7_aOlPo0W-ao9vbnD90l10T3Mae5vQuulMqI86hBdE91FHZfXTLpif98QCFJZScPHEMlJw8c0ooOQZKbx0DJN1ugORYID1EX4-Hp0cf3TLThitwSDauD1qL8GVCub5xA_GdcKo4EzGXAsecSsaTRKqYKS8JsEqChJNQBDGRicdBQuFHaC_LM_UEOZQQNaA-DFIBkf0wljoYNg9IIvtYMNVFvWphpqIMQ6-zocynVxGhi17XvZc2_Mpf-r2s1ngK_FFfevFM5cV66pNB6GEd5bGLHts1r2fCGOQ9bGC7iLaoUXfQsdfbb7L0zMRgp7BT9z3y9Jrf9wzd3v4Pz9HeZlWoF-imuNik69WBQZgpwwO0_244jk6gNvI_Qy36NIq-_QZyEKdA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+PACAP+on+Schwann+Cells%3A+Focus+on+Nerve+Injury&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Maugeri%2C+Grazia&rft.au=D%E2%80%99Amico%2C+Agata+Grazia&rft.au=Musumeci%2C+Giuseppe&rft.au=Reglodi%2C+Dora&rft.date=2020-11-03&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=21&rft.issue=21&rft.spage=8233&rft_id=info:doi/10.3390%2Fijms21218233&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijms21218233 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |