An ensemble learning framework for anomaly detection in building energy consumption

During building operation, a significant amount of energy is wasted due to equipment and human-related faults. To reduce waste, today's smart buildings monitor energy usage with the aim of identifying abnormal consumption behaviour and notifying the building manager to implement appropriate ene...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energy and buildings Ročník 144; s. 191 - 206
Hlavní autoři: Araya, Daniel B., Grolinger, Katarina, ElYamany, Hany F., Capretz, Miriam A.M., Bitsuamlak, Girma
Médium: Journal Article
Jazyk:angličtina
Vydáno: Lausanne Elsevier B.V 01.06.2017
Elsevier BV
Témata:
ISSN:0378-7788, 1872-6178
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract During building operation, a significant amount of energy is wasted due to equipment and human-related faults. To reduce waste, today's smart buildings monitor energy usage with the aim of identifying abnormal consumption behaviour and notifying the building manager to implement appropriate energy-saving procedures. To this end, this research proposes a new pattern-based anomaly classifier, the collective contextual anomaly detection using sliding window (CCAD-SW) framework. The CCAD-SW framework identifies anomalous consumption patterns using overlapping sliding windows. To enhance the anomaly detection capacity of the CCAD-SW, this research also proposes the ensemble anomaly detection (EAD) framework. The EAD is a generic framework that combines several anomaly detection classifiers using majority voting. To ensure diversity of anomaly classifiers, the EAD is implemented by combining pattern-based (e.g., CCAD-SW) and prediction-based anomaly classifiers. The research was evaluated using real-world data provided by Powersmiths, located in Brampton, Ontario, Canada. Results show that the EAD framework improved the sensitivity of the CCAD-SW by 3.6% and reduced false alarm rate by 2.7%.
AbstractList During building operation, a significant amount of energy is wasted due to equipment and human-related faults. To reduce waste, today's smart buildings monitor energy usage with the aim of identifying abnormal consumption behaviour and notifying the building manager to implement appropriate energy-saving procedures. To this end, this research proposes a new pattern-based anomaly classifier, the collective contextual anomaly detection using sliding window (CCAD-SW) framework. The CCAD-SW framework identifies anomalous consumption patterns using overlapping sliding windows. To enhance the anomaly detection capacity of the CCAD-SW, this research also proposes the ensemble anomaly detection (EAD) framework. The EAD is a generic framework that combines several anomaly detection classifiers using majority voting. To ensure diversity of anomaly classifiers, the EAD is implemented by combining pattern-based (e.g., CCAD-SW) and prediction-based anomaly classifiers. The research was evaluated using real-world data provided by Powersmiths, located in Brampton, Ontario, Canada. Results show that the EAD framework improved the sensitivity of the CCAD-SW by 3.6% and reduced false alarm rate by 2.7%.
Author Bitsuamlak, Girma
Grolinger, Katarina
Capretz, Miriam A.M.
Araya, Daniel B.
ElYamany, Hany F.
Author_xml – sequence: 1
  givenname: Daniel B.
  surname: Araya
  fullname: Araya, Daniel B.
  email: dberhane@uwo.ca
  organization: Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada N6A 5B9
– sequence: 2
  givenname: Katarina
  surname: Grolinger
  fullname: Grolinger, Katarina
  email: kgroling@uwo.ca
  organization: Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada N6A 5B9
– sequence: 3
  givenname: Hany F.
  surname: ElYamany
  fullname: ElYamany, Hany F.
  email: helyama@uwo.ca
  organization: Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada N6A 5B9
– sequence: 4
  givenname: Miriam A.M.
  surname: Capretz
  fullname: Capretz, Miriam A.M.
  email: mcapretz@uwo.ca
  organization: Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada N6A 5B9
– sequence: 5
  givenname: Girma
  surname: Bitsuamlak
  fullname: Bitsuamlak, Girma
  email: gbitsuam@uwo.ca
  organization: Department of Civil and Environmental Engineering, Western University, London, Ontario, Canada N6A 5B9
BookMark eNqFkMtOwzAQRS1UJNrCJyBZYp1g52VHLFBV8ZIqsQDWlmNPKofELnYC6t-T0K7YdDWLuefO6CzQzDoLCF1TElNCi9smBlsNptVxQiiLSRKTnJ-hOeUsiQrK-AzNScp4xBjnF2gRQkMIKXJG5-htZTHYAF3VAm5BemvsFtdedvDj_CeuncfSuk62e6yhB9UbZ7Gx-O_glAULfrvHytkwdLtpfYnOa9kGuDrOJfp4fHhfP0eb16eX9WoTqZRnfUSVZFKVRVWVdclyILkGBiWrGMi61LnWNMuUThOWKuAZzZO0UFpzxVTBx0S6RDeH3p13XwOEXjRu8HY8KWiZJoTRgtExdXdIKe9C8FALZXo5_dl7aVpBiZgsikYcLYrJoiCJGC2OdP6P3nnTSb8_yd0fOBgFfBvwIigDVoE2fpQotDMnGn4Bfv6TtA
CitedBy_id crossref_primary_10_1016_j_enbuild_2019_03_041
crossref_primary_10_1016_j_enbuild_2018_01_034
crossref_primary_10_1186_s42162_024_00351_1
crossref_primary_10_1016_j_enbuild_2018_04_008
crossref_primary_10_1016_j_rser_2025_115817
crossref_primary_10_1016_j_apenergy_2020_114877
crossref_primary_10_1016_j_buildenv_2020_107212
crossref_primary_10_1038_s41598_024_51849_3
crossref_primary_10_1016_j_enbuild_2020_110404
crossref_primary_10_1016_j_jclepro_2023_140040
crossref_primary_10_1088_1742_6596_2042_1_012018
crossref_primary_10_1016_j_enbuild_2020_109892
crossref_primary_10_1016_j_enbuild_2021_111618
crossref_primary_10_1016_j_jpdc_2020_05_004
crossref_primary_10_3389_fpls_2020_624273
crossref_primary_10_3389_fenrg_2022_861563
crossref_primary_10_1016_j_compeleceng_2021_107211
crossref_primary_10_1142_S0129156425403304
crossref_primary_10_1016_j_autcon_2020_103517
crossref_primary_10_1142_S0129156425402979
crossref_primary_10_1155_stc_7847074
crossref_primary_10_1007_s13369_021_05927_7
crossref_primary_10_1109_TRO_2023_3269380
crossref_primary_10_1016_j_tej_2017_08_005
crossref_primary_10_1016_j_ijar_2020_03_005
crossref_primary_10_1109_JIOT_2022_3144127
crossref_primary_10_1016_j_suscom_2020_100427
crossref_primary_10_1109_ACCESS_2020_2975738
crossref_primary_10_1016_j_future_2022_03_001
crossref_primary_10_1016_j_jobe_2021_102179
crossref_primary_10_1016_j_apenergy_2024_123228
crossref_primary_10_1109_ACCESS_2020_3042342
crossref_primary_10_1186_s13638_020_01807_0
crossref_primary_10_1007_s10207_023_00720_z
crossref_primary_10_1109_TSG_2019_2922435
crossref_primary_10_1016_j_enbuild_2020_110492
crossref_primary_10_1016_j_engappai_2022_105775
crossref_primary_10_3390_en18184787
crossref_primary_10_3390_bdcc8080083
crossref_primary_10_1016_j_enbuild_2022_111872
crossref_primary_10_1108_IJESM_11_2017_0006
crossref_primary_10_1016_j_egyr_2022_03_205
crossref_primary_10_3390_su122410259
crossref_primary_10_3390_s20102912
crossref_primary_10_1016_j_egyr_2022_08_225
crossref_primary_10_3390_electronics11101609
crossref_primary_10_3390_en13143730
crossref_primary_10_1016_j_apenergy_2017_12_005
crossref_primary_10_1002_int_22404
crossref_primary_10_1016_j_eswa_2023_120565
crossref_primary_10_1049_cit2_12216
crossref_primary_10_3390_en17174529
crossref_primary_10_1007_s42979_025_04352_z
crossref_primary_10_1016_j_enbuild_2021_111193
crossref_primary_10_26634_jit_8_1_15717
crossref_primary_10_3390_en15228663
crossref_primary_10_1016_j_egyr_2023_06_025
crossref_primary_10_1007_s12273_025_1269_z
crossref_primary_10_1016_j_ifacol_2021_10_006
crossref_primary_10_1109_TII_2017_2740324
crossref_primary_10_1016_j_enbuild_2024_114559
crossref_primary_10_1016_j_rser_2024_114975
crossref_primary_10_3390_en14227465
crossref_primary_10_1016_j_autcon_2022_104445
crossref_primary_10_1109_TCE_2024_3354189
crossref_primary_10_1080_1206212X_2018_1533613
crossref_primary_10_1109_TSG_2018_2818167
crossref_primary_10_1016_j_enbuild_2017_11_039
crossref_primary_10_3390_info12120499
crossref_primary_10_1631_FITEE_2200053
crossref_primary_10_1007_s10479_023_05247_z
crossref_primary_10_1016_j_scs_2021_103445
crossref_primary_10_1109_ACCESS_2019_2915641
crossref_primary_10_1016_j_cose_2020_102055
crossref_primary_10_1080_24725854_2024_2417258
crossref_primary_10_1002_eng2_12449
crossref_primary_10_1007_s40518_018_0112_x
crossref_primary_10_1016_j_knosys_2019_05_026
crossref_primary_10_1016_j_solener_2022_02_053
crossref_primary_10_1002_widm_70033
crossref_primary_10_1016_j_energy_2022_125575
crossref_primary_10_3390_f12020194
crossref_primary_10_1016_j_engappai_2025_111755
crossref_primary_10_1007_s12652_022_04376_w
crossref_primary_10_1016_j_energy_2020_119505
crossref_primary_10_1016_j_desal_2024_118154
crossref_primary_10_1007_s11227_021_03787_4
crossref_primary_10_1016_j_scs_2021_103054
crossref_primary_10_1016_j_enbuild_2020_109864
crossref_primary_10_1016_j_apenergy_2021_116601
crossref_primary_10_1016_j_buildenv_2025_113257
crossref_primary_10_1016_j_enbuild_2024_113964
crossref_primary_10_1016_j_enbuild_2017_11_008
crossref_primary_10_1080_23744731_2019_1565550
crossref_primary_10_1007_s10586_024_04383_w
crossref_primary_10_3390_app13010314
crossref_primary_10_1016_j_enbuild_2024_115069
crossref_primary_10_1016_j_buildenv_2021_108066
crossref_primary_10_1016_j_neucom_2020_10_084
crossref_primary_10_1016_j_apenergy_2024_125169
crossref_primary_10_1016_j_enbenv_2024_12_005
crossref_primary_10_3390_make6020045
crossref_primary_10_1051_e3sconf_201911105017
crossref_primary_10_1016_j_scs_2021_102804
crossref_primary_10_1016_j_autcon_2018_04_006
crossref_primary_10_1016_j_jobe_2021_102812
crossref_primary_10_3390_s21041395
crossref_primary_10_1016_j_egypro_2018_08_187
crossref_primary_10_3390_en14123623
crossref_primary_10_1016_j_egyr_2023_12_045
crossref_primary_10_1016_j_enbuild_2022_112763
crossref_primary_10_1051_matecconf_202032403002
crossref_primary_10_1371_journal_pone_0250665
crossref_primary_10_3390_en13123136
crossref_primary_10_1016_j_cosrev_2024_100665
crossref_primary_10_1016_j_apenergy_2023_121030
crossref_primary_10_1016_j_enbuild_2023_113419
crossref_primary_10_1016_j_jocs_2025_102685
crossref_primary_10_1016_j_rser_2025_115478
crossref_primary_10_3390_su131910963
crossref_primary_10_1016_j_aei_2024_102810
crossref_primary_10_1016_j_buildenv_2023_110328
crossref_primary_10_1016_j_enbuild_2020_110309
crossref_primary_10_1016_j_jnca_2018_12_006
crossref_primary_10_1016_j_enbuild_2025_116447
crossref_primary_10_1016_j_jobe_2021_103139
crossref_primary_10_1007_s40860_020_00129_8
crossref_primary_10_1016_j_buildenv_2021_108057
crossref_primary_10_1016_j_scs_2019_101587
crossref_primary_10_1080_15325008_2020_1834019
crossref_primary_10_1109_ACCESS_2021_3083060
crossref_primary_10_1007_s10586_024_04440_4
crossref_primary_10_3390_s21041044
crossref_primary_10_3390_en14123654
crossref_primary_10_3390_su13063227
crossref_primary_10_1016_j_buildenv_2025_113595
crossref_primary_10_1109_ACCESS_2021_3128749
crossref_primary_10_1109_TCCN_2024_3355433
crossref_primary_10_1007_s11831_023_09977_y
crossref_primary_10_3390_en13051046
crossref_primary_10_3390_s19071568
crossref_primary_10_1016_j_enconman_2020_112535
crossref_primary_10_1088_1742_6596_2385_1_012012
crossref_primary_10_1016_j_tsep_2019_03_002
crossref_primary_10_3390_electronics13071391
crossref_primary_10_1016_j_enbuild_2025_115589
crossref_primary_10_1016_j_sajce_2025_09_001
crossref_primary_10_1093_jcde_qwad056
crossref_primary_10_1016_j_enbuild_2022_112096
Cites_doi 10.1016/j.enbuild.2015.02.052
10.1023/A:1022859003006
10.1186/s40537-014-0011-y
10.1016/j.eswa.2016.03.002
10.1016/j.apenergy.2014.02.057
10.1016/j.eswa.2015.01.010
10.1016/j.envsoft.2009.08.010
10.1007/978-1-4899-7488-4_293
10.1016/0003-2670(86)80028-9
10.1613/jair.614
10.1145/1541880.1541882
10.1007/BF00994018
10.1007/BF00058655
10.1016/j.inffus.2007.03.001
10.1023/B:MACH.0000027783.34431.42
10.4236/jbise.2013.65070
10.1007/s13312-011-0055-4
10.1016/j.neunet.2016.01.003
10.1561/2200000006
10.1016/j.enbuild.2007.06.001
10.1016/j.eswa.2010.08.067
10.1023/A:1010933404324
10.1016/j.asoc.2015.10.011
10.1088/0967-3334/35/11/2191
10.1177/0272989X8900900307
10.1016/j.rser.2014.01.088
10.1016/j.apenergy.2010.04.008
10.1016/j.enbuild.2015.11.005
10.1007/BF02985802
10.1016/j.knosys.2013.03.001
ContentType Journal Article
Copyright 2017 The Author(s)
Copyright Elsevier BV Jun 1, 2017
Copyright_xml – notice: 2017 The Author(s)
– notice: Copyright Elsevier BV Jun 1, 2017
DBID 6I.
AAFTH
AAYXX
CITATION
7ST
8FD
C1K
F28
FR3
KR7
SOI
DOI 10.1016/j.enbuild.2017.02.058
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-6178
EndPage 206
ExternalDocumentID 10_1016_j_enbuild_2017_02_058
S0378778817306904
GeographicLocations Canada
Brampton Ontario Canada
GeographicLocations_xml – name: Brampton Ontario Canada
– name: Canada
GroupedDBID --M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
SDF
SDG
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~02
~G-
--K
29G
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RPZ
SAC
SET
SEW
WUQ
ZMT
ZY4
~HD
7ST
8FD
AGCQF
C1K
F28
FR3
KR7
SOI
ID FETCH-LOGICAL-c384t-1ca7ac96bb9f975e05de7e97b7eaf9d5dd144cd3273ce8415236cdd8c7c68af93
ISICitedReferencesCount 174
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000401393000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7788
IngestDate Wed Aug 13 08:39:53 EDT 2025
Tue Nov 18 22:14:58 EST 2025
Sat Nov 29 02:27:34 EST 2025
Fri Feb 23 02:27:57 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Support vector regression
Random forest
Building energy consumption
Ensemble learning
Autoencoder
Anomaly detection
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-1ca7ac96bb9f975e05de7e97b7eaf9d5dd144cd3273ce8415236cdd8c7c68af93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://dx.doi.org/10.1016/j.enbuild.2017.02.058
PQID 1932071671
PQPubID 2045483
PageCount 16
ParticipantIDs proquest_journals_1932071671
crossref_citationtrail_10_1016_j_enbuild_2017_02_058
crossref_primary_10_1016_j_enbuild_2017_02_058
elsevier_sciencedirect_doi_10_1016_j_enbuild_2017_02_058
PublicationCentury 2000
PublicationDate 2017-06-01
2017-06-00
20170601
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Energy and buildings
PublicationYear 2017
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Lam, Wan, Cheung, Yang (bib0040) 2008; 40
Fontugne, Ortiz, Tremblay, Borgnat, Flandrin, Fukuda, Culler, Esaki (bib0155) 2013
Folino, Pisani, Sabatino (bib0210) 2016
O, H
Tsai (bib0255) 2011; 38
Chandola, Banerjee, Kumar (bib0010) 2009; 41
O.ai
Opitz, Maclin (bib0030) 1999
Jovanović, Sretenović, Živković (bib0100) 2015; 94
Grandvalet (bib0250) 2004; 55
Peña, Biscarri, Guerrero, Monedero, Léon (bib0185) 2016; 56
Nguyen, Wang, Nguyen (bib0080) 2013; 6
Capozzoli, Lauro, Khan (bib0190) 2015; 42
Breiman (bib0065) 2001; 45
Jiang, Zeng, Xu, Li (bib0180) 2014
Wrinch, El-Fouly, Wong (bib0140) 2012
Zhang, Chen, Black (bib0165) 2011
McClish (bib0125) 1989; 9
Hill, Minsker (bib0145) 2010; 25
Kumar, Indrayan (bib0115) 2011; 48
Powersmiths, Powersmiths: Power for the Future
Bellala, Marwah, Arlitt (bib0150) 2012
Team, R Core, R: A Language and Environment for Statistical Computing
Polikar (bib0035) 2012
Vapnik, Kotz (bib0095) 1982; vol. 40
Araya, Grolinger, ElYamany, Capretz, Bitsuamlak (bib0020) 2016
Jain, Smith, Culligan, Taylor (bib0110) 2014; 123
.
Geladi, Kowalski (bib0045) 1986; 185
Didaci, Giacinto, Roli (bib0205) 2002
Amozegar, Khorasani (bib0220) 2016; 76
Drăgoicea, Bucur, Pătraşcu (bib0015) 2013
Ellis, Kerr, Godbole, Lanckriet, Wing, Marshall (bib0070) 2014; 35
UNEP, United Nations Environment Program
Chou, Telaga (bib0130) 2014; 33
Dietterich (bib0265) 2000
Cabrera, Gutiérrez, Mehra (bib0200) 2008; 9
Breiman (bib0240) 1996; 24
Cortes, Vapnik (bib0090) 1995; 20
H
Zhou (bib0025) 2015
Kusiak, Li, Tang (bib0075) 2010; 87
Janetzko, Stoffel, Mittelstädt, Keim (bib0135) 2013; 38
Torres-Sospedra, Hernández-Espinosa, Fernández-Redondo (bib0245) 2011
Hastie, Tibshirani, Friedman, Franklin (bib0085) 2005; 27
Shoemaker, Hall (bib0230) 2011
Ploennigs, Chen, Schumann, Brady (bib0175) 2013
Bengio (bib0055) 2009; 2
Arjunan, Khadilkar, Ganu, Charbiwala, Singh, Singh (bib0160) 2015
Aburomman, Reaz (bib0225) 2016; 38
Pyle (bib0235) 1999
Kuncheva, Whitaker (bib0270) 2003; 51
Orsenigo, Vercellis (bib0260) 2013; 47
Hayes, Capretz (bib0195) 2015; 2
Smola, Vapnik (bib0105) 1997; 9
Hajian-Tilaki (bib0120) 2013; 4
Zhao, Mehrotra, Mohan (bib0215) 2015
Zorita, Fernández-Temprano, García-Escudero, Duque-Perez (bib0170) 2016; 110
Sakurada, Yairi (bib0060) 2014
Praus (bib0050) 2005; 3
Sakurada (10.1016/j.enbuild.2017.02.058_bib0060) 2014
Peña (10.1016/j.enbuild.2017.02.058_bib0185) 2016; 56
Cortes (10.1016/j.enbuild.2017.02.058_bib0090) 1995; 20
Orsenigo (10.1016/j.enbuild.2017.02.058_bib0260) 2013; 47
Kuncheva (10.1016/j.enbuild.2017.02.058_bib0270) 2003; 51
10.1016/j.enbuild.2017.02.058_bib0280
Jain (10.1016/j.enbuild.2017.02.058_bib0110) 2014; 123
10.1016/j.enbuild.2017.02.058_bib0275
Shoemaker (10.1016/j.enbuild.2017.02.058_bib0230) 2011
Smola (10.1016/j.enbuild.2017.02.058_bib0105) 1997; 9
Kusiak (10.1016/j.enbuild.2017.02.058_bib0075) 2010; 87
Drăgoicea (10.1016/j.enbuild.2017.02.058_bib0015) 2013
Chou (10.1016/j.enbuild.2017.02.058_bib0130) 2014; 33
Folino (10.1016/j.enbuild.2017.02.058_bib0210) 2016
Zhao (10.1016/j.enbuild.2017.02.058_bib0215) 2015
Zhang (10.1016/j.enbuild.2017.02.058_bib0165) 2011
Zhou (10.1016/j.enbuild.2017.02.058_bib0025) 2015
Aburomman (10.1016/j.enbuild.2017.02.058_bib0225) 2016; 38
Hajian-Tilaki (10.1016/j.enbuild.2017.02.058_bib0120) 2013; 4
Bengio (10.1016/j.enbuild.2017.02.058_bib0055) 2009; 2
Breiman (10.1016/j.enbuild.2017.02.058_bib0065) 2001; 45
Grandvalet (10.1016/j.enbuild.2017.02.058_bib0250) 2004; 55
Hastie (10.1016/j.enbuild.2017.02.058_bib0085) 2005; 27
Lam (10.1016/j.enbuild.2017.02.058_bib0040) 2008; 40
Dietterich (10.1016/j.enbuild.2017.02.058_bib0265) 2000
Amozegar (10.1016/j.enbuild.2017.02.058_bib0220) 2016; 76
Hayes (10.1016/j.enbuild.2017.02.058_bib0195) 2015; 2
Torres-Sospedra (10.1016/j.enbuild.2017.02.058_bib0245) 2011
Hill (10.1016/j.enbuild.2017.02.058_bib0145) 2010; 25
Vapnik (10.1016/j.enbuild.2017.02.058_bib0095) 1982; vol. 40
Opitz (10.1016/j.enbuild.2017.02.058_bib0030) 1999
Jiang (10.1016/j.enbuild.2017.02.058_bib0180) 2014
Geladi (10.1016/j.enbuild.2017.02.058_bib0045) 1986; 185
Araya (10.1016/j.enbuild.2017.02.058_bib0020) 2016
Kumar (10.1016/j.enbuild.2017.02.058_bib0115) 2011; 48
Jovanović (10.1016/j.enbuild.2017.02.058_bib0100) 2015; 94
Zorita (10.1016/j.enbuild.2017.02.058_bib0170) 2016; 110
Ploennigs (10.1016/j.enbuild.2017.02.058_bib0175) 2013
Capozzoli (10.1016/j.enbuild.2017.02.058_bib0190) 2015; 42
Tsai (10.1016/j.enbuild.2017.02.058_bib0255) 2011; 38
Chandola (10.1016/j.enbuild.2017.02.058_bib0010) 2009; 41
Nguyen (10.1016/j.enbuild.2017.02.058_bib0080) 2013; 6
Breiman (10.1016/j.enbuild.2017.02.058_bib0240) 1996; 24
Janetzko (10.1016/j.enbuild.2017.02.058_bib0135) 2013; 38
Ellis (10.1016/j.enbuild.2017.02.058_bib0070) 2014; 35
Bellala (10.1016/j.enbuild.2017.02.058_bib0150) 2012
Cabrera (10.1016/j.enbuild.2017.02.058_bib0200) 2008; 9
Pyle (10.1016/j.enbuild.2017.02.058_bib0235) 1999
Arjunan (10.1016/j.enbuild.2017.02.058_bib0160) 2015
10.1016/j.enbuild.2017.02.058_bib0285
McClish (10.1016/j.enbuild.2017.02.058_bib0125) 1989; 9
Praus (10.1016/j.enbuild.2017.02.058_bib0050) 2005; 3
Didaci (10.1016/j.enbuild.2017.02.058_bib0205) 2002
10.1016/j.enbuild.2017.02.058_bib0005
Polikar (10.1016/j.enbuild.2017.02.058_bib0035) 2012
Wrinch (10.1016/j.enbuild.2017.02.058_bib0140) 2012
Fontugne (10.1016/j.enbuild.2017.02.058_bib0155) 2013
References_xml – volume: 2
  start-page: 1
  year: 2015
  end-page: 22
  ident: bib0195
  article-title: Contextual anomaly detection framework for big sensor data
  publication-title: J. Big Data
– start-page: 23
  year: 2014
  end-page: 30
  ident: bib0180
  article-title: Real time contextual collective anomaly detection over multiple data streams
  publication-title: SIGKDD Workshop on Outlier Detection and Description under Data Diversity
– volume: 33
  start-page: 400
  year: 2014
  end-page: 411
  ident: bib0130
  article-title: Real-time detection of anomalous power consumption
  publication-title: Renew. Sustain. Energy Rev.
– start-page: 315
  year: 2016
  end-page: 331
  ident: bib0210
  article-title: A distributed intrusion detection framework based on evolved specialized ensembles of classifiers
  publication-title: Applications of Evolutionary Computation
– start-page: 514
  year: 2015
  end-page: 525
  ident: bib0215
  article-title: Ensemble algorithms for unsupervised anomaly detection
  publication-title: Current Approaches in Applied Artificial Intelligence
– year: 1999
  ident: bib0235
  article-title: Data Preparation for Data Mining
– reference: O.ai,
– start-page: 994
  year: 2012
  end-page: 1002
  ident: bib0150
  article-title: Following the electrons: methods for power management in commercial buildings
  publication-title: 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – KDD '12
– volume: 38
  start-page: 2766
  year: 2011
  end-page: 2773
  ident: bib0255
  article-title: Dimensionality reduction techniques for blog visualization
  publication-title: Expert Syst. Appl.
– volume: 48
  start-page: 277
  year: 2011
  end-page: 287
  ident: bib0115
  article-title: Receiver operating characteristic (ROC) curve for medical research.
  publication-title: Indian Pediatr.
– volume: 55
  start-page: 251
  year: 2004
  end-page: 270
  ident: bib0250
  article-title: Bagging equalizes influence
  publication-title: Mach. Learn.
– start-page: 129
  year: 2013
  end-page: 140
  ident: bib0155
  article-title: Strip, bind, and search: a method for identifying abnormal energy consumption in buildings
  publication-title: 12th International Conference on Information Processing in Sensor Networks
– start-page: 169
  year: 1999
  end-page: 198
  ident: bib0030
  article-title: Popular ensemble methods: an empirical study
  publication-title: J. Artif. Intell. Res.
– start-page: 1
  year: 2000
  end-page: 15
  ident: bib0265
  article-title: Ensemble methods in machine learning
  publication-title: Multiple Classifier Systems
– start-page: 411
  year: 2015
  end-page: 416
  ident: bib0025
  article-title: Ensemble learning
  publication-title: Encycl. Biom.
– volume: 87
  start-page: 3092
  year: 2010
  end-page: 3102
  ident: bib0075
  article-title: Modeling and optimization of hvac energy consumption
  publication-title: Appl. Energy
– start-page: 4
  year: 2014
  ident: bib0060
  article-title: Anomaly detection using autoencoders with nonlinear dimensionality reduction
  publication-title: MLSDA 2014, 2nd Workshop on Machine Learning for Sensory Data Analysis
– volume: 41
  start-page: 1
  year: 2009
  end-page: 58
  ident: bib0010
  article-title: Anomaly detection
  publication-title: ACM Comput. Surv.
– volume: 6
  start-page: 551
  year: 2013
  end-page: 560
  ident: bib0080
  article-title: Random forest classifier combined with feature selection for breast cancer diagnosis and prognostic
  publication-title: J. Biomed. Sci. Eng.
– volume: 9
  start-page: 155
  year: 1997
  end-page: 161
  ident: bib0105
  article-title: Support vector regression machines
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 40
  start-page: 828
  year: 2008
  end-page: 836
  ident: bib0040
  article-title: Principal component analysis of electricity use in office buildings
  publication-title: Energy Build.
– volume: 9
  start-page: 190
  year: 1989
  end-page: 195
  ident: bib0125
  article-title: Analyzing a portion of the ROC curve
  publication-title: Med. Decis. Mak.
– volume: 25
  start-page: 1014
  year: 2010
  end-page: 1022
  ident: bib0145
  article-title: Anomaly detection in streaming environmental sensor data: a data-driven modeling approach
  publication-title: Environ. Model. Softw.
– volume: 38
  start-page: 360
  year: 2016
  end-page: 372
  ident: bib0225
  article-title: A novel SVM-KNN-PSO ensemble method for intrusion detection system
  publication-title: Appl. Soft Comput.
– start-page: 1
  year: 2011
  end-page: 8
  ident: bib0165
  article-title: Anomaly detection in premise energy consumption data
  publication-title: 2011 IEEE Power and Energy Society General Meeting
– volume: 185
  start-page: 1
  year: 1986
  end-page: 17
  ident: bib0045
  article-title: Partial least-squares regression: a tutorial
  publication-title: Anal. Chim. Acta
– start-page: 17:1
  year: 2013
  end-page: 17:8
  ident: bib0175
  article-title: Exploiting generalized additive models for diagnosing abnormal energy use in buildings
  publication-title: 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings
– start-page: 35
  year: 2015
  end-page: 44
  ident: bib0160
  article-title: Multi-user energy consumption monitoring and anomaly detection with partial context information
  publication-title: Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib0090
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 51
  start-page: 181
  year: 2003
  end-page: 207
  ident: bib0270
  article-title: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
  publication-title: Mach. Learn.
– volume: 47
  start-page: 14
  year: 2013
  end-page: 22
  ident: bib0260
  article-title: Linear versus nonlinear dimensionality reduction for banks’ credit rating prediction
  publication-title: Knowl. Based Syst.
– volume: 4
  start-page: 627
  year: 2013
  end-page: 635
  ident: bib0120
  article-title: Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation
  publication-title: Casp. J. Internal Med.
– start-page: 1
  year: 2012
  end-page: 34
  ident: bib0035
  article-title: Ensemble learning
  publication-title: Ensemble Machine Learning
– volume: 3
  start-page: 731
  year: 2005
  end-page: 741
  ident: bib0050
  article-title: SVD-based principal component analysis of geochemical data
  publication-title: Cent. Eur. J. Chem.
– reference: UNEP, United Nations Environment Program,
– volume: 38
  start-page: 1
  year: 2013
  end-page: 11
  ident: bib0135
  article-title: Computers and graphics anomaly detection for visual analytics of power consumption data
  publication-title: Comput. Graph.
– reference: Powersmiths, Powersmiths: Power for the Future,
– start-page: 588
  year: 2011
  end-page: 595
  ident: bib0245
  article-title: Using bagging and cross-validation to improve ensembles based on penalty terms
  publication-title: Neural Information Processing
– start-page: 14
  year: 2013
  end-page: 28
  ident: bib0015
  article-title: A service oriented simulation architecture for intelligent building management
  publication-title: Exploring Services Science
– volume: vol. 40
  year: 1982
  ident: bib0095
  publication-title: Estimation of Dependences Based on Empirical Data
– reference: Team, R Core, R: A Language and Environment for Statistical Computing,
– volume: 42
  start-page: 4324
  year: 2015
  end-page: 4338
  ident: bib0190
  article-title: Fault detection analysis using data mining techniques for a cluster of smart office buildings
  publication-title: Expert Syst. Appl.
– volume: 123
  start-page: 168
  year: 2014
  end-page: 178
  ident: bib0110
  article-title: Forecasting energy consumption of multi-family residential buildings using support vector regression: investigating the impact of temporal and spatial monitoring granularity on performance accuracy
  publication-title: Appl. Energy
– reference: H
– volume: 27
  start-page: 83
  year: 2005
  end-page: 85
  ident: bib0085
  article-title: The elements of statistical learning: data mining, inference and prediction
  publication-title: Math. Intell.
– volume: 56
  start-page: 242
  year: 2016
  end-page: 255
  ident: bib0185
  article-title: Rule-based system to detect energy efficiency anomalies in smart buildings: a data mining approach
  publication-title: Expert Syst. Appl.
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: bib0055
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
– volume: 76
  start-page: 106
  year: 2016
  end-page: 121
  ident: bib0220
  article-title: An ensemble of dynamic neural network identifiers for fault detection and isolation of gas turbine engines
  publication-title: Neural Netw.
– reference: .
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0065
  article-title: Random forests
  publication-title: Mach. Learn.
– reference: O, H
– volume: 35
  start-page: 2191
  year: 2014
  end-page: 2203
  ident: bib0070
  article-title: A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers
  publication-title: Physiol. Meas.
– volume: 94
  start-page: 189
  year: 2015
  end-page: 199
  ident: bib0100
  article-title: Ensemble of various neural networks for prediction of heating energy consumption
  publication-title: Energy Build.
– start-page: 6
  year: 2011
  end-page: 15
  ident: bib0230
  article-title: Anomaly detection using ensembles
  publication-title: Multiple Classifier Systems
– start-page: 1
  year: 2016
  end-page: 8
  ident: bib0020
  article-title: Collective contextual anomaly detection framework for smart buildings
  publication-title: International Joint Conference on Neural Networks (IJCNN)
– volume: 110
  start-page: 377
  year: 2016
  end-page: 386
  ident: bib0170
  article-title: A statistical modeling approach to detect anomalies in energetic efficiency of buildings
  publication-title: Energy Build.
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: bib0240
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– start-page: 1
  year: 2012
  end-page: 6
  ident: bib0140
  article-title: Anomaly detection of building systems using energy demand frequency domain analysis
  publication-title: 2012 IEEE Power and Energy Society General Meeting
– year: 2002
  ident: bib0205
  article-title: Ensemble learning for intrusion detection in computer networks
  publication-title: Workshop Machine Learning Methods Applications
– volume: 9
  start-page: 96
  year: 2008
  end-page: 119
  ident: bib0200
  article-title: Ensemble methods for anomaly detection and distributed intrusion detection in mobile ad-hoc networks
  publication-title: Inf. Fusion
– volume: 94
  start-page: 189
  year: 2015
  ident: 10.1016/j.enbuild.2017.02.058_bib0100
  article-title: Ensemble of various neural networks for prediction of heating energy consumption
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.02.052
– volume: 51
  start-page: 181
  issue: 2
  year: 2003
  ident: 10.1016/j.enbuild.2017.02.058_bib0270
  article-title: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022859003006
– year: 1999
  ident: 10.1016/j.enbuild.2017.02.058_bib0235
– volume: 2
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.enbuild.2017.02.058_bib0195
  article-title: Contextual anomaly detection framework for big sensor data
  publication-title: J. Big Data
  doi: 10.1186/s40537-014-0011-y
– volume: 56
  start-page: 242
  year: 2016
  ident: 10.1016/j.enbuild.2017.02.058_bib0185
  article-title: Rule-based system to detect energy efficiency anomalies in smart buildings: a data mining approach
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.03.002
– start-page: 4
  year: 2014
  ident: 10.1016/j.enbuild.2017.02.058_bib0060
  article-title: Anomaly detection using autoencoders with nonlinear dimensionality reduction
– volume: 123
  start-page: 168
  year: 2014
  ident: 10.1016/j.enbuild.2017.02.058_bib0110
  article-title: Forecasting energy consumption of multi-family residential buildings using support vector regression: investigating the impact of temporal and spatial monitoring granularity on performance accuracy
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.02.057
– volume: 4
  start-page: 627
  issue: 2
  year: 2013
  ident: 10.1016/j.enbuild.2017.02.058_bib0120
  article-title: Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation
  publication-title: Casp. J. Internal Med.
– start-page: 1
  year: 2011
  ident: 10.1016/j.enbuild.2017.02.058_bib0165
  article-title: Anomaly detection in premise energy consumption data
– volume: 42
  start-page: 4324
  issue: 9
  year: 2015
  ident: 10.1016/j.enbuild.2017.02.058_bib0190
  article-title: Fault detection analysis using data mining techniques for a cluster of smart office buildings
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.01.010
– start-page: 23
  year: 2014
  ident: 10.1016/j.enbuild.2017.02.058_bib0180
  article-title: Real time contextual collective anomaly detection over multiple data streams
– volume: 25
  start-page: 1014
  issue: 9
  year: 2010
  ident: 10.1016/j.enbuild.2017.02.058_bib0145
  article-title: Anomaly detection in streaming environmental sensor data: a data-driven modeling approach
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2009.08.010
– start-page: 411
  year: 2015
  ident: 10.1016/j.enbuild.2017.02.058_bib0025
  article-title: Ensemble learning
  publication-title: Encycl. Biom.
  doi: 10.1007/978-1-4899-7488-4_293
– volume: 185
  start-page: 1
  year: 1986
  ident: 10.1016/j.enbuild.2017.02.058_bib0045
  article-title: Partial least-squares regression: a tutorial
  publication-title: Anal. Chim. Acta
  doi: 10.1016/0003-2670(86)80028-9
– start-page: 994
  year: 2012
  ident: 10.1016/j.enbuild.2017.02.058_bib0150
  article-title: Following the electrons: methods for power management in commercial buildings
– start-page: 169
  year: 1999
  ident: 10.1016/j.enbuild.2017.02.058_bib0030
  article-title: Popular ensemble methods: an empirical study
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.614
– volume: 41
  start-page: 1
  issue: 3
  year: 2009
  ident: 10.1016/j.enbuild.2017.02.058_bib0010
  article-title: Anomaly detection
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1541880.1541882
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.enbuild.2017.02.058_bib0090
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: vol. 40
  year: 1982
  ident: 10.1016/j.enbuild.2017.02.058_bib0095
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.enbuild.2017.02.058_bib0240
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– start-page: 514
  year: 2015
  ident: 10.1016/j.enbuild.2017.02.058_bib0215
  article-title: Ensemble algorithms for unsupervised anomaly detection
– ident: 10.1016/j.enbuild.2017.02.058_bib0275
– volume: 9
  start-page: 96
  issue: 1
  year: 2008
  ident: 10.1016/j.enbuild.2017.02.058_bib0200
  article-title: Ensemble methods for anomaly detection and distributed intrusion detection in mobile ad-hoc networks
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2007.03.001
– start-page: 1
  year: 2012
  ident: 10.1016/j.enbuild.2017.02.058_bib0035
  article-title: Ensemble learning
– start-page: 129
  year: 2013
  ident: 10.1016/j.enbuild.2017.02.058_bib0155
  article-title: Strip, bind, and search: a method for identifying abnormal energy consumption in buildings
– start-page: 1
  year: 2016
  ident: 10.1016/j.enbuild.2017.02.058_bib0020
  article-title: Collective contextual anomaly detection framework for smart buildings
– start-page: 35
  year: 2015
  ident: 10.1016/j.enbuild.2017.02.058_bib0160
  article-title: Multi-user energy consumption monitoring and anomaly detection with partial context information
– volume: 55
  start-page: 251
  issue: 3
  year: 2004
  ident: 10.1016/j.enbuild.2017.02.058_bib0250
  article-title: Bagging equalizes influence
  publication-title: Mach. Learn.
  doi: 10.1023/B:MACH.0000027783.34431.42
– ident: 10.1016/j.enbuild.2017.02.058_bib0005
– volume: 6
  start-page: 551
  issue: 5
  year: 2013
  ident: 10.1016/j.enbuild.2017.02.058_bib0080
  article-title: Random forest classifier combined with feature selection for breast cancer diagnosis and prognostic
  publication-title: J. Biomed. Sci. Eng.
  doi: 10.4236/jbise.2013.65070
– volume: 38
  start-page: 1
  year: 2013
  ident: 10.1016/j.enbuild.2017.02.058_bib0135
  article-title: Computers and graphics anomaly detection for visual analytics of power consumption data
  publication-title: Comput. Graph.
– volume: 48
  start-page: 277
  issue: 17
  year: 2011
  ident: 10.1016/j.enbuild.2017.02.058_bib0115
  article-title: Receiver operating characteristic (ROC) curve for medical research.
  publication-title: Indian Pediatr.
  doi: 10.1007/s13312-011-0055-4
– volume: 76
  start-page: 106
  year: 2016
  ident: 10.1016/j.enbuild.2017.02.058_bib0220
  article-title: An ensemble of dynamic neural network identifiers for fault detection and isolation of gas turbine engines
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2016.01.003
– year: 2002
  ident: 10.1016/j.enbuild.2017.02.058_bib0205
  article-title: Ensemble learning for intrusion detection in computer networks
– start-page: 1
  year: 2012
  ident: 10.1016/j.enbuild.2017.02.058_bib0140
  article-title: Anomaly detection of building systems using energy demand frequency domain analysis
– start-page: 588
  year: 2011
  ident: 10.1016/j.enbuild.2017.02.058_bib0245
  article-title: Using bagging and cross-validation to improve ensembles based on penalty terms
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.enbuild.2017.02.058_bib0055
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000006
– volume: 40
  start-page: 828
  issue: 5
  year: 2008
  ident: 10.1016/j.enbuild.2017.02.058_bib0040
  article-title: Principal component analysis of electricity use in office buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2007.06.001
– start-page: 315
  year: 2016
  ident: 10.1016/j.enbuild.2017.02.058_bib0210
  article-title: A distributed intrusion detection framework based on evolved specialized ensembles of classifiers
– start-page: 17:1
  year: 2013
  ident: 10.1016/j.enbuild.2017.02.058_bib0175
  article-title: Exploiting generalized additive models for diagnosing abnormal energy use in buildings
– volume: 38
  start-page: 2766
  issue: 3
  year: 2011
  ident: 10.1016/j.enbuild.2017.02.058_bib0255
  article-title: Dimensionality reduction techniques for blog visualization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.08.067
– volume: 3
  start-page: 731
  issue: 4
  year: 2005
  ident: 10.1016/j.enbuild.2017.02.058_bib0050
  article-title: SVD-based principal component analysis of geochemical data
  publication-title: Cent. Eur. J. Chem.
– ident: 10.1016/j.enbuild.2017.02.058_bib0285
– start-page: 6
  year: 2011
  ident: 10.1016/j.enbuild.2017.02.058_bib0230
  article-title: Anomaly detection using ensembles
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.enbuild.2017.02.058_bib0065
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 38
  start-page: 360
  year: 2016
  ident: 10.1016/j.enbuild.2017.02.058_bib0225
  article-title: A novel SVM-KNN-PSO ensemble method for intrusion detection system
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.10.011
– volume: 35
  start-page: 2191
  issue: 11
  year: 2014
  ident: 10.1016/j.enbuild.2017.02.058_bib0070
  article-title: A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/35/11/2191
– volume: 9
  start-page: 190
  issue: 3
  year: 1989
  ident: 10.1016/j.enbuild.2017.02.058_bib0125
  article-title: Analyzing a portion of the ROC curve
  publication-title: Med. Decis. Mak.
  doi: 10.1177/0272989X8900900307
– volume: 9
  start-page: 155
  year: 1997
  ident: 10.1016/j.enbuild.2017.02.058_bib0105
  article-title: Support vector regression machines
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 33
  start-page: 400
  year: 2014
  ident: 10.1016/j.enbuild.2017.02.058_bib0130
  article-title: Real-time detection of anomalous power consumption
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.01.088
– volume: 87
  start-page: 3092
  issue: 10
  year: 2010
  ident: 10.1016/j.enbuild.2017.02.058_bib0075
  article-title: Modeling and optimization of hvac energy consumption
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.04.008
– volume: 110
  start-page: 377
  year: 2016
  ident: 10.1016/j.enbuild.2017.02.058_bib0170
  article-title: A statistical modeling approach to detect anomalies in energetic efficiency of buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.11.005
– start-page: 14
  year: 2013
  ident: 10.1016/j.enbuild.2017.02.058_bib0015
  article-title: A service oriented simulation architecture for intelligent building management
– ident: 10.1016/j.enbuild.2017.02.058_bib0280
– volume: 27
  start-page: 83
  issue: 2
  year: 2005
  ident: 10.1016/j.enbuild.2017.02.058_bib0085
  article-title: The elements of statistical learning: data mining, inference and prediction
  publication-title: Math. Intell.
  doi: 10.1007/BF02985802
– start-page: 1
  year: 2000
  ident: 10.1016/j.enbuild.2017.02.058_bib0265
  article-title: Ensemble methods in machine learning
– volume: 47
  start-page: 14
  year: 2013
  ident: 10.1016/j.enbuild.2017.02.058_bib0260
  article-title: Linear versus nonlinear dimensionality reduction for banks’ credit rating prediction
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2013.03.001
SSID ssj0006571
Score 2.620431
Snippet During building operation, a significant amount of energy is wasted due to equipment and human-related faults. To reduce waste, today's smart buildings monitor...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 191
SubjectTerms Alarm systems
Anomalies
Anomaly detection
Autoencoder
Building automation
Building energy consumption
Classifiers
Consumption patterns
Energy conservation
Energy consumption
Energy efficiency
Energy usage
Ensemble learning
Fault diagnosis
Faults
Random forest
Sliding
Smart buildings
Support vector regression
Title An ensemble learning framework for anomaly detection in building energy consumption
URI https://dx.doi.org/10.1016/j.enbuild.2017.02.058
https://www.proquest.com/docview/1932071671
Volume 144
WOSCitedRecordID wos000401393000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6178
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006571
  issn: 0378-7788
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxgM8IK5iYyA_IF6qlKRxYvuxQh0XVQWJbuqb5dgO2pRmZe2mlV_BT-Y4tpNyHTzwElVJ3YvPl3PLd85B6LkChy03Oo6sOY0I-AARjwsIXBUppC4Tbpqc7vGETqdsPucfer2voRbmsqJ1za6u-PK_ihrOgbBt6ew_iLv9UDgBr0HocASxw_GvBD-q-xCamoUtiapC4qMMHCzPmjxbyGrT12ZtVGA7Fn5Adt-4ckDVFGcuW8GF9L27avPtYcWqQ43cyK5wvZvo_LqZDfSpJXBAgF639mBcbeQCdFJjBS39oJvDLC0d8ouj98PWLQIfwacpEtrRqVzurK2fOd7ScCmEsJS6uX4D4zQwo8OmbvE7FU3IlpJN3Hyvn5S_y0OcDmzTCPj_lrdHm4asGeusXXjCP30vDo8mEzEbz2cvlp8jO4fMPq_3Q1luoN0hzThozt3R2_H8XWvd86wJ4tuf3lWFvfzlN__O3_nB8jfuzOwuuuPjEDxy-LmHeqa-j25vdad8gD6OahyQhAOScIskDEjCHkm4RRI-qXHABXZIwltIeoiODsezV28iP4MjUikj6yhRkkrF86LgJaeZiTNtqOG0oEaWXGdag2yUTsELVoZZbzDNldZMUZUzeEf6CO3UZ7V5jLAiEJ7GkpVZAoogMwVhmhScEVXGOi_MHiJhp4TyDertnJRKBCbiqfAbLOwGi3goYIP30KBdtnQdWq5bwIIYhHcznfsoAEjXLT0IYhP-ll8JGwKBo57TZP_Pl5-gW92dcYB21ucX5im6qS7XJ6vzZx5o3wC4S6sm
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ensemble+learning+framework+for+anomaly+detection+in+building+energy+consumption&rft.jtitle=Energy+and+buildings&rft.au=Araya%2C+Daniel+B&rft.au=Grolinger%2C+Katarina&rft.au=Elyamany%2C+Hany+F&rft.au=Capretz%2C+Miriam+AM&rft.date=2017-06-01&rft.pub=Elsevier+BV&rft.issn=0378-7788&rft.eissn=1872-6178&rft.volume=144&rft.spage=191&rft_id=info:doi/10.1016%2Fj.enbuild.2017.02.058&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon