BrainTract: segmentation of white matter fiber tractography and analysis of structural connectivity using hybrid convolutional neural network
[Display omitted] •This work introduces DISAU-Net for WM fiber tract segmentation in brain dMRI data.•Combines Inception-ResNet-V2 and Dense-Inception with SAU-Net.•Gray Wolf Optimization used to tune CNN classifier parameters.•Achieves 97.10% accuracy and 96.27% dice score on HCP dataset. Tractogra...
Saved in:
| Published in: | Neuroscience Vol. 580; pp. 218 - 230 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Inc
06.08.2025
|
| Subjects: | |
| ISSN: | 0306-4522, 1873-7544, 1873-7544 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | [Display omitted]
•This work introduces DISAU-Net for WM fiber tract segmentation in brain dMRI data.•Combines Inception-ResNet-V2 and Dense-Inception with SAU-Net.•Gray Wolf Optimization used to tune CNN classifier parameters.•Achieves 97.10% accuracy and 96.27% dice score on HCP dataset.
Tractography uses diffusion Magnetic Resonance Imaging (dMRI) to noninvasively reconstruct brain white matter (WM) tracts, with Convolutional Neural Network (CNNs) like U-Net significantly advancing accuracy in medical image segmentation. This work proposes a metaheuristic optimization algorithm-based CNN architecture. This architecture combines the Inception-ResNet-V2 module and the densely connecting convolutional module (DI) into the Spatial Attention U-Net (SAU-Net) architecture for segmenting WM fiber tracts and analyzing the brain’s structural connectivity. The proposed network model (DISAU-Net) consists of the following parts are; First, the Inception-ResNet-V2 block is used to replace the standard convolutional layers and expand the network’s width; Second, the Dense-Inception block is used to extract features and deepen the network without the need for any additional parameters; Third, the down-sampling block is used to speed up training by decreasing the size of feature maps, and the up-sampling block is used to increase the maps’ resolution. In addition, the parameter existing in the classifiers is randomly selected with the Gray Wolf Optimization (GWO) technique to boost the performance of the CNN architecture. We validated our method by segmenting WM tracts on dMRI scans of 280 subjects from the human connectome project (HCP) database. The proposed method is far more efficient than current methods. It offers unprecedented quantitative evaluation with high tract segmentation consistency, achieving accuracy of 97.10%, dice score of 96.88%, recall 95.74%, f1-score 94.79% for fiber tracts. The results showed that the proposed method is a potential approach for segmenting WM fiber tracts and analyzing the brain’s structural connectivity. |
|---|---|
| AbstractList | [Display omitted]
•This work introduces DISAU-Net for WM fiber tract segmentation in brain dMRI data.•Combines Inception-ResNet-V2 and Dense-Inception with SAU-Net.•Gray Wolf Optimization used to tune CNN classifier parameters.•Achieves 97.10% accuracy and 96.27% dice score on HCP dataset.
Tractography uses diffusion Magnetic Resonance Imaging (dMRI) to noninvasively reconstruct brain white matter (WM) tracts, with Convolutional Neural Network (CNNs) like U-Net significantly advancing accuracy in medical image segmentation. This work proposes a metaheuristic optimization algorithm-based CNN architecture. This architecture combines the Inception-ResNet-V2 module and the densely connecting convolutional module (DI) into the Spatial Attention U-Net (SAU-Net) architecture for segmenting WM fiber tracts and analyzing the brain’s structural connectivity. The proposed network model (DISAU-Net) consists of the following parts are; First, the Inception-ResNet-V2 block is used to replace the standard convolutional layers and expand the network’s width; Second, the Dense-Inception block is used to extract features and deepen the network without the need for any additional parameters; Third, the down-sampling block is used to speed up training by decreasing the size of feature maps, and the up-sampling block is used to increase the maps’ resolution. In addition, the parameter existing in the classifiers is randomly selected with the Gray Wolf Optimization (GWO) technique to boost the performance of the CNN architecture. We validated our method by segmenting WM tracts on dMRI scans of 280 subjects from the human connectome project (HCP) database. The proposed method is far more efficient than current methods. It offers unprecedented quantitative evaluation with high tract segmentation consistency, achieving accuracy of 97.10%, dice score of 96.88%, recall 95.74%, f1-score 94.79% for fiber tracts. The results showed that the proposed method is a potential approach for segmenting WM fiber tracts and analyzing the brain’s structural connectivity. Tractography uses diffusion Magnetic Resonance Imaging (dMRI) to noninvasively reconstruct brain white matter (WM) tracts, with Convolutional Neural Network (CNNs) like U-Net significantly advancing accuracy in medical image segmentation. This work proposes a metaheuristic optimization algorithm-based CNN architecture. This architecture combines the Inception-ResNet-V2 module and the densely connecting convolutional module (DI) into the Spatial Attention U-Net (SAU-Net) architecture for segmenting WM fiber tracts and analyzing the brain's structural connectivity. The proposed network model (DISAU-Net) consists of the following parts are; First, the Inception-ResNet-V2 block is used to replace the standard convolutional layers and expand the network's width; Second, the Dense-Inception block is used to extract features and deepen the network without the need for any additional parameters; Third, the down-sampling block is used to speed up training by decreasing the size of feature maps, and the up-sampling block is used to increase the maps' resolution. In addition, the parameter existing in the classifiers is randomly selected with the Gray Wolf Optimization (GWO) technique to boost the performance of the CNN architecture. We validated our method by segmenting WM tracts on dMRI scans of 280 subjects from the human connectome project (HCP) database. The proposed method is far more efficient than current methods. It offers unprecedented quantitative evaluation with high tract segmentation consistency, achieving accuracy of 97.10%, dice score of 96.88%, recall 95.74%, f1-score 94.79% for fiber tracts. The results showed that the proposed method is a potential approach for segmenting WM fiber tracts and analyzing the brain's structural connectivity.Tractography uses diffusion Magnetic Resonance Imaging (dMRI) to noninvasively reconstruct brain white matter (WM) tracts, with Convolutional Neural Network (CNNs) like U-Net significantly advancing accuracy in medical image segmentation. This work proposes a metaheuristic optimization algorithm-based CNN architecture. This architecture combines the Inception-ResNet-V2 module and the densely connecting convolutional module (DI) into the Spatial Attention U-Net (SAU-Net) architecture for segmenting WM fiber tracts and analyzing the brain's structural connectivity. The proposed network model (DISAU-Net) consists of the following parts are; First, the Inception-ResNet-V2 block is used to replace the standard convolutional layers and expand the network's width; Second, the Dense-Inception block is used to extract features and deepen the network without the need for any additional parameters; Third, the down-sampling block is used to speed up training by decreasing the size of feature maps, and the up-sampling block is used to increase the maps' resolution. In addition, the parameter existing in the classifiers is randomly selected with the Gray Wolf Optimization (GWO) technique to boost the performance of the CNN architecture. We validated our method by segmenting WM tracts on dMRI scans of 280 subjects from the human connectome project (HCP) database. The proposed method is far more efficient than current methods. It offers unprecedented quantitative evaluation with high tract segmentation consistency, achieving accuracy of 97.10%, dice score of 96.88%, recall 95.74%, f1-score 94.79% for fiber tracts. The results showed that the proposed method is a potential approach for segmenting WM fiber tracts and analyzing the brain's structural connectivity. Tractography uses diffusion Magnetic Resonance Imaging (dMRI) to noninvasively reconstruct brain white matter (WM) tracts, with Convolutional Neural Network (CNNs) like U-Net significantly advancing accuracy in medical image segmentation. This work proposes a metaheuristic optimization algorithm-based CNN architecture. This architecture combines the Inception-ResNet-V2 module and the densely connecting convolutional module (DI) into the Spatial Attention U-Net (SAU-Net) architecture for segmenting WM fiber tracts and analyzing the brain's structural connectivity. The proposed network model (DISAU-Net) consists of the following parts are; First, the Inception-ResNet-V2 block is used to replace the standard convolutional layers and expand the network's width; Second, the Dense-Inception block is used to extract features and deepen the network without the need for any additional parameters; Third, the down-sampling block is used to speed up training by decreasing the size of feature maps, and the up-sampling block is used to increase the maps' resolution. In addition, the parameter existing in the classifiers is randomly selected with the Gray Wolf Optimization (GWO) technique to boost the performance of the CNN architecture. We validated our method by segmenting WM tracts on dMRI scans of 280 subjects from the human connectome project (HCP) database. The proposed method is far more efficient than current methods. It offers unprecedented quantitative evaluation with high tract segmentation consistency, achieving accuracy of 97.10%, dice score of 96.88%, recall 95.74%, f1-score 94.79% for fiber tracts. The results showed that the proposed method is a potential approach for segmenting WM fiber tracts and analyzing the brain's structural connectivity. |
| Author | Kumar, Puranam Revanth Jha, Rajesh Kumar Shilpa, B |
| Author_xml | – sequence: 1 givenname: Puranam Revanth orcidid: 0000-0002-9141-9901 surname: Kumar fullname: Kumar, Puranam Revanth email: revanth123451.rk@gmail.com organization: Department of Electronics and Communication Engineering, Faculty of Science and Technology (IcfaiTech), ICFAI Foundation for Higher Education, Hyderabad, India – sequence: 2 givenname: B surname: Shilpa fullname: Shilpa, B organization: Department of Electronics and Communication Engineering, Faculty of Science and Technology (IcfaiTech), ICFAI Foundation for Higher Education, Hyderabad, India – sequence: 3 givenname: Rajesh Kumar orcidid: 0000-0002-5903-8105 surname: Jha fullname: Jha, Rajesh Kumar organization: Department of Electronics and Communication Engineering, Faculty of Science and Technology (IcfaiTech), ICFAI Foundation for Higher Education, Hyderabad, India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40543891$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc1u1DAUhS3Uik5bXgFFrNgk-Cd_7o4WWpAqddOuLce5nvE0sQfbmSoPwTvjMANCrGrJPgt_91zde87RiXUWEPpAcEEwqT9tCwuTd0EZsAoKimlV4LrAJXuDVqRtWN5UZXmCVpjhOi8rSs_QeQhbnE5VsrforFy05WSFfl57aeyjlypeZQHWI9goo3E2czp72ZgI2ShjBJ9p06U3LqRbe7nbzJm0fbpymIMJCx-in1ScvBwy5awFFc3exDmbgrHrbDN33vTLz94N09IjccskvyW-OP98iU61HAK8O-oFerr9-njzLb9_uPt-8_k-V6wtY06k5oTQtiVlR-quktBzzrjulUojcwVMa6mw5FzzuumwbKoKOlVS0gHutWYX6OPBd-fdjwlCFKMJCoZBWnBTEIxSymvGG5LQ90d06kboxc6bUfpZ_FlhAq4OgEqRBA_6L0KwWPISW_FvXmLJS-BapLxS8ZdDMaRp9wa8OFK98Wl9onfmdTbX_9mowVij5PAM82tNfgHlAsEw |
| Cites_doi | 10.1016/j.mri.2021.10.017 10.1109/TMI.2019.2902073 10.1109/ISBI53787.2023.10230547 10.1007/s13760-023-02301-2 10.1109/TMI.2011.2138152 10.1016/j.neuroimage.2022.119550 10.1007/978-3-030-87234-2_47 10.1002/mrm.28937 10.1016/j.array.2021.100101 10.31887/DCNS.2010.12.4/tschulte 10.1007/s11065-015-9291-z 10.1016/j.neuroimage.2020.116993 10.1016/j.neunet.2020.03.001 10.1162/imag_a_00060 10.1016/j.imed.2023.10.001 10.1007/s11682-015-9474-5 10.1007/978-3-030-32248-9_70 10.3389/fnhum.2021.721206 10.1109/ISBI52829.2022.9761541 10.1016/j.neuroimage.2018.07.070 10.1038/s41597-025-04932-x 10.1016/j.neuroimage.2021.118739 10.1038/s41593-019-0575-0 10.1016/j.neuroimage.2021.118870 10.1016/j.media.2021.102094 10.1016/j.mri.2024.05.009 10.1007/s12046-024-02536-6 10.1007/s00429-025-02914-8 10.1016/j.media.2020.101761 10.1016/j.neuroimage.2020.117070 |
| ContentType | Journal Article |
| Copyright | 2025 International Brain Research Organization (IBRO) Copyright © 2025 International Brain Research Organization (IBRO). Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2025 International Brain Research Organization (IBRO) – notice: Copyright © 2025 International Brain Research Organization (IBRO). Published by Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.neuroscience.2025.06.043 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1873-7544 |
| EndPage | 230 |
| ExternalDocumentID | 40543891 10_1016_j_neuroscience_2025_06_043 S0306452225007316 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -DZ -~X .1- .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5RE 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABCQJ ABFNM ABFRF ABJNI ABLJU ABMAC ABTEW ACDAQ ACGFO ACGFS ACIUM ACLOT ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMQ IHE J1W KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OP~ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSN SSZ T5K UNMZH Z5R ~G- ~HD AGCQF .55 .GJ 29N 53G 5VS 9DU AAQXK AAYXX ABWVN ABXDB ACRPL ADMUD ADNMO AGHFR AGQPQ AHHHB ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SNS WUQ X7M YYP ZGI ZXP AFCTW AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 |
| ID | FETCH-LOGICAL-c384t-1af91128814b16b5aed9939fdcc0309ce3ffac0a99f967b0a755ebc421be0dff3 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001523479700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-4522 1873-7544 |
| IngestDate | Thu Oct 02 22:32:40 EDT 2025 Tue Jul 22 01:41:52 EDT 2025 Sat Nov 29 07:43:48 EST 2025 Sat Aug 16 17:00:55 EDT 2025 Tue Oct 14 19:26:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | DenseNet White matter tract segmentation Spatial Attention U-Net Grey wolf optimization Diffusion magnetic resonance imaging |
| Language | English |
| License | Copyright © 2025 International Brain Research Organization (IBRO). Published by Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c384t-1af91128814b16b5aed9939fdcc0309ce3ffac0a99f967b0a755ebc421be0dff3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-5903-8105 0000-0002-9141-9901 |
| PMID | 40543891 |
| PQID | 3222963971 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_3222963971 pubmed_primary_40543891 crossref_primary_10_1016_j_neuroscience_2025_06_043 elsevier_sciencedirect_doi_10_1016_j_neuroscience_2025_06_043 elsevier_clinicalkey_doi_10_1016_j_neuroscience_2025_06_043 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-06 |
| PublicationDateYYYYMMDD | 2025-08-06 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-06 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neuroscience |
| PublicationTitleAlternate | Neuroscience |
| PublicationYear | 2025 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Spann (b0190) 2015 Schulte, Müller-Oehring, Pfefferbaum, Sullivan (b0145) 2010; 12 Udayakumar, Subhashini (b0105) 2024; 32 Colon-Perez, Triplett, Bohsali (b0160) 2016; 10 Zekelman, Fan, Nikos (b0135) 2022; 246 Iglesias, Liu, Thompson, Tu (b0170) 2011; 30 Sotiropoulos, Thiebaut de Schotten, Haber, Forkel (b0030) 2025; 230 Gupta (b0185) 2015 Zhang, Fan, Daducci, Alessandro, He, Yong, Schiavi, Simona, Seguin, Caio, Smith, Robert E., Yeh, Chun, Zhao, Tengda, and Lauren J. O’Donnell. “Quantitative mapping of the brain’s structural connectivity using diffusion MRI tractography: A review.” NeuroImage 249, (2022): 118870. https://doi.org/10.1016/j.neuroimage.2021.118870. Benou, Riklin Raviv (b0200) 2019; vol 11766 Farnia, Makkiabadi, Leemans (b0015) 2025; 1–27 Li, Bo, de Groot, Marius, Steketee, Rebecca M., Meijboom, Rozanna, Smits, Marion, Vernooij, Meike W., Ikram, M. A., Liu, Jiren, Niessen, Wiro J., and Esther E. Bron. “Neuro4Neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging.” NeuroImage 218, (2020): 116993. https://doi.org/10.1016/j.neuroimage.2020.116993. Chen, Yuqian, Zhang, Fan, Zekelman, Leo R., Xue, Tengfei, Zhang, Chaoyi, Song, Yang, Makris, Nikos, Rathi, Yogesh, Cai, Weidong, and Lauren J. “TractGraphCNN: anatomically informed graph CNN for classification using diffusion MRI tractography.” ArXiv, (2023). https://doi.org/10.48550/arXiv.2301.01911. Lu, Li, Ye (b0095) 2021 Mueller, Lim, Hemmy, Camchong (b0130) 2015; 25 Babaeeghazvini, Parinaz, M., Laura, Gooijers, Jolien, Swinnen, Stephan P., and Andreas Daffertshofer. “Brain Structural and Functional Connectivity: A Review of Combined Works of Diffusion Magnetic Resonance Imaging and Electro-Encephalography.” Frontiers in Human Neuroscience 15, 2021. https://doi.org/10.3389/fnhum.2021.721206. Konell, Junior, Dos Santos, Salmon (b0035) 2024; 111 Xu, Dong, Lee, OrHara, Asano, Jeong (b0050) 2019; 38 Zhang, Fan, Cetin Karayumak, Suheyla, Hoffmann, Nico, Rathi, Yogesh, Golby, Alexandra J., and Lauren J. O’Donnell. “Deep white matter analysis (DeepWMA): Fast and consistent tractography segmentation.” Medical Image Analysis 65, (2020): 101761. https://doi.org/10.1016/j.media.2020.101761. Dimitrova, Chalavi, Vissia, Barker, Perez, Veltman, Reinders (b0020) 2025; 116383 Román, Claudio, Hernández, Cecilia, Figueroa, Miguel, Houenou, Josselin, Poupon, Cyril, Mangin, Jean, and Pamela Guevara. “Superficial white matter bundle atlas based on hierarchical fiber clustering over probabilistic tractography data.” NeuroImage 262, (2022): 119550. https://doi.org/10.1016/j.neuroimage.2022.119550. Jose Pedro Manzano Patron, Steen Moeller, Jesper L.R. Andersson, Kamil Ugurbil, Essa Yacoub, Stamatios N. Sotiropoulos; Denoising diffusion MRI: Considerations and implications for analysis. Imaging Neuroscience 2024; 2 1–29. https://doi.org/10.1162/imag_a_00060. Kumar, Jha, Katti (b0045) 2023 Kohli, Arora (b0100) 2018; 5 Puranam Revanth Kumar (b0010) 2024; 4 H. Li, Z. Liang, C. Zhang, R.-Y. Liu, J. Li, W. Zhang, D. Liang, B. Shen, X. Zhang, Y. Ge, J. Zhang, and L. Ying, “Superdti: Ultrafast dti and fiber tractography with deep learning.” Magnetic resonance in medicine, pp. 1-14, 2021. https://doi.org/10.1002/mrm.28937. Puranam Revanth Kumar, B Shilpa, Rajesh Kumar Jha, B Deevena Raju, and Thayyaba Khatoon Mohammed, “Inpainting Non-Anatomical Objects in Brain Imaging using Enhanced Deep Convolutional Autoencoder Network”, Sadhana, vol. 49, article number 181, pp. 1-13, 2024. https://doi.org/10.1007/s12046-024-02536-6. Zhu, Li, Cao, Shen, Xu, Xu, Wu (b0040) 2025; 12 Vázquez, Andrea, López-López, Narciso, Sánchez, Alexis, Houenou, Josselin, Poupon, Cyril, Mangin, Jean, Hernández, Cecilia, and Pamela Guevara. “FFClust: Fast fiber clustering for large tractography datasets for a detailed study of brain connectivity.” NeuroImage 220, (2020): 117070. https://doi.org/10.1016/j.neuroimage.2020.117070. Elam Jennifer, Glasser Matthew, Harms Michael (b0140) 2021; 244 Xue, Tengfei, Zhang, Fan, Zhang, Chaoyi, Chen, Yuqian, Song, Yang, Makris, Nikos, Rathi, Yogesh, Cai, Weidong, and Lauren J, “Supwma: Consistent and Efficient Tractography Parcellation of Superficial White Matter with Deep Learning,” 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), Kolkata, India, 2022, pp. 1-5. 10.1109/ISBI52829.2022.9761541. Rheault, Francois, Bayrak, Roza G., Wang, Xuan, Schilling, Kurt G., Greer, Jasmine M., Hansen, Colin B., Kerley, Cailey et al. “TractEM: Evaluation of protocols for deterministic tractography white matter atlas.” Magnetic Resonance Imaging 85, (2022): 44-56. https://doi.org/10.1016/j.mri.2021.10.017. Lazar (b0115) 2010; no. 7 Liu, Cirong, Ye, Frank Q., Newman, John D., Szczupak, Diego, Tian, Xiaoguang, Yen, Cecil C., Majka, Piotr et al. “A resource for the detailed 3D mapping of white matter pathways in the marmoset brain.” Nature Neuroscience 23, no. 2 (2020): 271-280. https://doi.org/10.1038/s41593-019-0575-0. Chen, Yuqian, Zhang, Chaoyi, Song, Yang, Makris, Nikos, Rathi, Yogesh, Cai, Weidong, Zhang, Fan, and Lauren J. Deep Fiber Clustering: Anatomically Informed Unsupervised Deep Learning for Fast and Effective White Matter Parcellation. Lecture Notes in Computer Science, vol.12907. pp 497–507, 2021. https://doi.org/10.1007/978-3-030-87234-2_47. Guo, Chen, Du, Van Den Hengel, Shi, Tan (b0060) 2020; 126 Wasserthal, Jakob, Neher, Peter, and Klaus H. Maier-Hein. “TractSeg - Fast and accurate white matter tract segmentation.” NeuroImage 183, (2018): 239-253. https://doi.org/10.1016/j.neuroimage.2018.07.070. Nunez-Yanez, Hosseinabady (b0110) 2021; 12 Mueller (10.1016/j.neuroscience.2025.06.043_b0130) 2015; 25 10.1016/j.neuroscience.2025.06.043_b0195 10.1016/j.neuroscience.2025.06.043_b0150 10.1016/j.neuroscience.2025.06.043_b0090 10.1016/j.neuroscience.2025.06.043_b0070 Kohli (10.1016/j.neuroscience.2025.06.043_b0100) 2018; 5 Farnia (10.1016/j.neuroscience.2025.06.043_b0015) 2025; 1–27 Benou (10.1016/j.neuroscience.2025.06.043_b0200) 2019; vol 11766 Xu (10.1016/j.neuroscience.2025.06.043_b0050) 2019; 38 Sotiropoulos (10.1016/j.neuroscience.2025.06.043_b0030) 2025; 230 Iglesias (10.1016/j.neuroscience.2025.06.043_b0170) 2011; 30 Nunez-Yanez (10.1016/j.neuroscience.2025.06.043_b0110) 2021; 12 Zekelman (10.1016/j.neuroscience.2025.06.043_b0135) 2022; 246 Udayakumar (10.1016/j.neuroscience.2025.06.043_b0105) 2024; 32 Elam Jennifer (10.1016/j.neuroscience.2025.06.043_b0140) 2021; 244 10.1016/j.neuroscience.2025.06.043_b0175 10.1016/j.neuroscience.2025.06.043_b0155 10.1016/j.neuroscience.2025.06.043_b0085 Zhu (10.1016/j.neuroscience.2025.06.043_b0040) 2025; 12 10.1016/j.neuroscience.2025.06.043_b0180 Kumar (10.1016/j.neuroscience.2025.06.043_b0045) 2023 10.1016/j.neuroscience.2025.06.043_b0080 Lazar (10.1016/j.neuroscience.2025.06.043_b0115) 2010; no. 7 Colon-Perez (10.1016/j.neuroscience.2025.06.043_b0160) 2016; 10 Guo (10.1016/j.neuroscience.2025.06.043_b0060) 2020; 126 Konell (10.1016/j.neuroscience.2025.06.043_b0035) 2024; 111 Schulte (10.1016/j.neuroscience.2025.06.043_b0145) 2010; 12 Dimitrova (10.1016/j.neuroscience.2025.06.043_b0020) 2025; 116383 Gupta (10.1016/j.neuroscience.2025.06.043_b0185) 2015 Spann (10.1016/j.neuroscience.2025.06.043_b0190) 2015 10.1016/j.neuroscience.2025.06.043_b0025 10.1016/j.neuroscience.2025.06.043_b0005 10.1016/j.neuroscience.2025.06.043_b0125 10.1016/j.neuroscience.2025.06.043_b0065 10.1016/j.neuroscience.2025.06.043_b0120 Puranam Revanth Kumar (10.1016/j.neuroscience.2025.06.043_b0010) 2024; 4 Lu (10.1016/j.neuroscience.2025.06.043_b0095) 2021 10.1016/j.neuroscience.2025.06.043_b0165 |
| References_xml | – reference: Zhang, Fan, Cetin Karayumak, Suheyla, Hoffmann, Nico, Rathi, Yogesh, Golby, Alexandra J., and Lauren J. O’Donnell. “Deep white matter analysis (DeepWMA): Fast and consistent tractography segmentation.” Medical Image Analysis 65, (2020): 101761. https://doi.org/10.1016/j.media.2020.101761. – reference: Román, Claudio, Hernández, Cecilia, Figueroa, Miguel, Houenou, Josselin, Poupon, Cyril, Mangin, Jean, and Pamela Guevara. “Superficial white matter bundle atlas based on hierarchical fiber clustering over probabilistic tractography data.” NeuroImage 262, (2022): 119550. https://doi.org/10.1016/j.neuroimage.2022.119550. – reference: Vázquez, Andrea, López-López, Narciso, Sánchez, Alexis, Houenou, Josselin, Poupon, Cyril, Mangin, Jean, Hernández, Cecilia, and Pamela Guevara. “FFClust: Fast fiber clustering for large tractography datasets for a detailed study of brain connectivity.” NeuroImage 220, (2020): 117070. https://doi.org/10.1016/j.neuroimage.2020.117070. – volume: 244 year: 2021 ident: b0140 article-title: The Human Connectome Project: a retrospective publication-title: Neuroimage – volume: 111 start-page: 217 year: 2024 end-page: 228 ident: b0035 article-title: Assessment of U-Net in the segmentation of short tracts: Transferring to clinical MRI routine publication-title: Magn. Reson. Imaging – volume: 32 start-page: 1041 year: 2024 end-page: 1059 ident: b0105 article-title: Connectome-based schizophrenia prediction using structural connectivity-Deep Graph Neural Network (sc-DGNN) publication-title: J. Xray Sci. Technol. – volume: 12 start-page: 1 year: 2025 end-page: 12 ident: b0040 article-title: 7 Tesla multimodal MRI dataset of ex-vivo human brain publication-title: Sci. Data – reference: Chen, Yuqian, Zhang, Fan, Zekelman, Leo R., Xue, Tengfei, Zhang, Chaoyi, Song, Yang, Makris, Nikos, Rathi, Yogesh, Cai, Weidong, and Lauren J. “TractGraphCNN: anatomically informed graph CNN for classification using diffusion MRI tractography.” ArXiv, (2023). https://doi.org/10.48550/arXiv.2301.01911. – year: 2015 ident: b0185 article-title: Diffusion tensor imaging of the brain: towards quantitative clinical tools. University of Nice - Sophia Antipolis publication-title: Doctoral Dissertation – volume: 246 year: 2022 ident: b0135 article-title: White matter association tracts underlying language and theory of mind: an investigation of 809 brains from the Human Connectome Project publication-title: Neuroimage – volume: 116383 year: 2025 ident: b0020 article-title: Brain white matter structural connectivity of trauma and trauma-related dissociation disorders and symptoms publication-title: Psychiatry Res. – reference: Puranam Revanth Kumar, B Shilpa, Rajesh Kumar Jha, B Deevena Raju, and Thayyaba Khatoon Mohammed, “Inpainting Non-Anatomical Objects in Brain Imaging using Enhanced Deep Convolutional Autoencoder Network”, Sadhana, vol. 49, article number 181, pp. 1-13, 2024. https://doi.org/10.1007/s12046-024-02536-6. – year: 2023 ident: b0045 article-title: Brain tissue segmentation in neurosurgery: a systematic analysis for quantitative tractography approaches publication-title: Acta Neurol. Belg. – reference: H. Li, Z. Liang, C. Zhang, R.-Y. Liu, J. Li, W. Zhang, D. Liang, B. Shen, X. Zhang, Y. Ge, J. Zhang, and L. Ying, “Superdti: Ultrafast dti and fiber tractography with deep learning.” Magnetic resonance in medicine, pp. 1-14, 2021. https://doi.org/10.1002/mrm.28937. – reference: Li, Bo, de Groot, Marius, Steketee, Rebecca M., Meijboom, Rozanna, Smits, Marion, Vernooij, Meike W., Ikram, M. A., Liu, Jiren, Niessen, Wiro J., and Esther E. Bron. “Neuro4Neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging.” NeuroImage 218, (2020): 116993. https://doi.org/10.1016/j.neuroimage.2020.116993. – volume: 5 start-page: 458 year: 2018 end-page: 472 ident: b0100 article-title: Chaotic grey wolf optimization algorithm for constrained optimization problems publication-title: J. Comput. Des. Eng. – volume: no. 7 start-page: 821 year: 2010 ident: b0115 publication-title: Mapping Brain Anatomical Connectivity Using White Matter Tractography. NMR in Biomedicine 23 – volume: 1–27 year: 2025 ident: b0015 article-title: A review on learning-based algorithms for tractography and human brain white matter tracts recognition publication-title: Neuroradiology – year: 2015 ident: b0190 article-title: Structural connectivity in the human brain: Analysis of network measures. Institute of Medical Engineering Technical University of Graz Kronesgasse publication-title: Master Thesis – reference: Wasserthal, Jakob, Neher, Peter, and Klaus H. Maier-Hein. “TractSeg - Fast and accurate white matter tract segmentation.” NeuroImage 183, (2018): 239-253. https://doi.org/10.1016/j.neuroimage.2018.07.070. – volume: 12 year: 2021 ident: b0110 article-title: Sparse and dense matrix multiplication hardware for heterogeneous multi-precision neural networks publication-title: Array – volume: 30 start-page: 1617 year: 2011 end-page: 1634 ident: b0170 article-title: Robust brain extraction across datasets and comparison with publicly available methods publication-title: IEEE Trans. Med. Imaging – reference: Zhang, Fan, Daducci, Alessandro, He, Yong, Schiavi, Simona, Seguin, Caio, Smith, Robert E., Yeh, Chun, Zhao, Tengda, and Lauren J. O’Donnell. “Quantitative mapping of the brain’s structural connectivity using diffusion MRI tractography: A review.” NeuroImage 249, (2022): 118870. https://doi.org/10.1016/j.neuroimage.2021.118870. – volume: 25 start-page: 250 year: 2015 ident: b0130 article-title: Diffusion MRI and its Role in Neuropsychology publication-title: Neuropsychol. Rev. – volume: 12 start-page: 554 year: 2010 end-page: 560 ident: b0145 article-title: Neurocircuitry of emotion and cognition in alcoholism: contributions from white matter fiber tractography publication-title: Dialogues Clin. Neurosci. – reference: Chen, Yuqian, Zhang, Chaoyi, Song, Yang, Makris, Nikos, Rathi, Yogesh, Cai, Weidong, Zhang, Fan, and Lauren J. Deep Fiber Clustering: Anatomically Informed Unsupervised Deep Learning for Fast and Effective White Matter Parcellation. Lecture Notes in Computer Science, vol.12907. pp 497–507, 2021. https://doi.org/10.1007/978-3-030-87234-2_47. – reference: Jose Pedro Manzano Patron, Steen Moeller, Jesper L.R. Andersson, Kamil Ugurbil, Essa Yacoub, Stamatios N. Sotiropoulos; Denoising diffusion MRI: Considerations and implications for analysis. Imaging Neuroscience 2024; 2 1–29. https://doi.org/10.1162/imag_a_00060. – year: 2021 ident: b0095 article-title: Volumetric white matter tract segmentation with nested self-supervised learning using sequential pretext tasks publication-title: Medical Image Analysis 72 – volume: 10 start-page: 1137 year: 2016 end-page: 1147 ident: b0160 article-title: A majority rule approach for region-of-interest-guided streamline fiber tractography publication-title: Brain Imaging Behav. – volume: 126 start-page: 250 year: 2020 end-page: 261 ident: b0060 article-title: Multi-way backpropagation for training compact deep neural networks publication-title: Neural Netw. – reference: Liu, Cirong, Ye, Frank Q., Newman, John D., Szczupak, Diego, Tian, Xiaoguang, Yen, Cecil C., Majka, Piotr et al. “A resource for the detailed 3D mapping of white matter pathways in the marmoset brain.” Nature Neuroscience 23, no. 2 (2020): 271-280. https://doi.org/10.1038/s41593-019-0575-0. – reference: Babaeeghazvini, Parinaz, M., Laura, Gooijers, Jolien, Swinnen, Stephan P., and Andreas Daffertshofer. “Brain Structural and Functional Connectivity: A Review of Combined Works of Diffusion Magnetic Resonance Imaging and Electro-Encephalography.” Frontiers in Human Neuroscience 15, 2021. https://doi.org/10.3389/fnhum.2021.721206. – volume: 230 start-page: 1 year: 2025 end-page: 6 ident: b0030 article-title: Cross-species neuroanatomy in primates using tractography publication-title: Brain Struct. Funct. – reference: Xue, Tengfei, Zhang, Fan, Zhang, Chaoyi, Chen, Yuqian, Song, Yang, Makris, Nikos, Rathi, Yogesh, Cai, Weidong, and Lauren J, “Supwma: Consistent and Efficient Tractography Parcellation of Superficial White Matter with Deep Learning,” 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), Kolkata, India, 2022, pp. 1-5. 10.1109/ISBI52829.2022.9761541. – volume: vol 11766 year: 2019 ident: b0200 article-title: DeepTract: a Probabilistic Deep Learning Framework for White Matter Fiber Tractography publication-title: Lecture Notes in Computer Science – volume: 38 start-page: 1910 year: 2019 end-page: 1922 ident: b0050 article-title: Objective detection of eloquent axonal pathways to minimize postoperative deficits in pediatric epilepsy surgery using diffusion tractography and convolutional neural networks publication-title: IEEE Trans. Med. Imaging – volume: 4 start-page: 161 year: 2024 end-page: 169 ident: b0010 article-title: Rajesh Kumar Jha, P Akhendra Kumar, and B Deevena Raju “improved neurological diagnoses and treatment strategies via automated human brain tissue segmentation from clinical magnetic resonance imaging” publication-title: Intelligent Medicine – reference: Rheault, Francois, Bayrak, Roza G., Wang, Xuan, Schilling, Kurt G., Greer, Jasmine M., Hansen, Colin B., Kerley, Cailey et al. “TractEM: Evaluation of protocols for deterministic tractography white matter atlas.” Magnetic Resonance Imaging 85, (2022): 44-56. https://doi.org/10.1016/j.mri.2021.10.017. – volume: 116383 year: 2025 ident: 10.1016/j.neuroscience.2025.06.043_b0020 article-title: Brain white matter structural connectivity of trauma and trauma-related dissociation disorders and symptoms publication-title: Psychiatry Res. – volume: 244 year: 2021 ident: 10.1016/j.neuroscience.2025.06.043_b0140 article-title: The Human Connectome Project: a retrospective publication-title: Neuroimage – year: 2015 ident: 10.1016/j.neuroscience.2025.06.043_b0190 article-title: Structural connectivity in the human brain: Analysis of network measures. Institute of Medical Engineering Technical University of Graz Kronesgasse publication-title: Master Thesis – ident: 10.1016/j.neuroscience.2025.06.043_b0065 doi: 10.1016/j.mri.2021.10.017 – volume: 38 start-page: 1910 issue: 8 year: 2019 ident: 10.1016/j.neuroscience.2025.06.043_b0050 article-title: Objective detection of eloquent axonal pathways to minimize postoperative deficits in pediatric epilepsy surgery using diffusion tractography and convolutional neural networks publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2902073 – ident: 10.1016/j.neuroscience.2025.06.043_b0005 doi: 10.1109/ISBI53787.2023.10230547 – year: 2023 ident: 10.1016/j.neuroscience.2025.06.043_b0045 article-title: Brain tissue segmentation in neurosurgery: a systematic analysis for quantitative tractography approaches publication-title: Acta Neurol. Belg. doi: 10.1007/s13760-023-02301-2 – volume: 30 start-page: 1617 issue: 9 year: 2011 ident: 10.1016/j.neuroscience.2025.06.043_b0170 article-title: Robust brain extraction across datasets and comparison with publicly available methods publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2011.2138152 – ident: 10.1016/j.neuroscience.2025.06.043_b0125 doi: 10.1016/j.neuroimage.2022.119550 – ident: 10.1016/j.neuroscience.2025.06.043_b0150 doi: 10.1007/978-3-030-87234-2_47 – ident: 10.1016/j.neuroscience.2025.06.043_b0175 doi: 10.1002/mrm.28937 – volume: 12 year: 2021 ident: 10.1016/j.neuroscience.2025.06.043_b0110 article-title: Sparse and dense matrix multiplication hardware for heterogeneous multi-precision neural networks publication-title: Array doi: 10.1016/j.array.2021.100101 – volume: 12 start-page: 554 issue: 4 year: 2010 ident: 10.1016/j.neuroscience.2025.06.043_b0145 article-title: Neurocircuitry of emotion and cognition in alcoholism: contributions from white matter fiber tractography publication-title: Dialogues Clin. Neurosci. doi: 10.31887/DCNS.2010.12.4/tschulte – volume: 25 start-page: 250 issue: 3 year: 2015 ident: 10.1016/j.neuroscience.2025.06.043_b0130 article-title: Diffusion MRI and its Role in Neuropsychology publication-title: Neuropsychol. Rev. doi: 10.1007/s11065-015-9291-z – ident: 10.1016/j.neuroscience.2025.06.043_b0195 doi: 10.1016/j.neuroimage.2020.116993 – volume: 126 start-page: 250 year: 2020 ident: 10.1016/j.neuroscience.2025.06.043_b0060 article-title: Multi-way backpropagation for training compact deep neural networks publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.03.001 – ident: 10.1016/j.neuroscience.2025.06.043_b0180 doi: 10.1162/imag_a_00060 – volume: 4 start-page: 161 issue: 3 year: 2024 ident: 10.1016/j.neuroscience.2025.06.043_b0010 article-title: Rajesh Kumar Jha, P Akhendra Kumar, and B Deevena Raju “improved neurological diagnoses and treatment strategies via automated human brain tissue segmentation from clinical magnetic resonance imaging” publication-title: Intelligent Medicine doi: 10.1016/j.imed.2023.10.001 – volume: 10 start-page: 1137 year: 2016 ident: 10.1016/j.neuroscience.2025.06.043_b0160 article-title: A majority rule approach for region-of-interest-guided streamline fiber tractography publication-title: Brain Imaging Behav. doi: 10.1007/s11682-015-9474-5 – volume: vol 11766 year: 2019 ident: 10.1016/j.neuroscience.2025.06.043_b0200 article-title: DeepTract: a Probabilistic Deep Learning Framework for White Matter Fiber Tractography publication-title: Lecture Notes in Computer Science doi: 10.1007/978-3-030-32248-9_70 – ident: 10.1016/j.neuroscience.2025.06.043_b0165 doi: 10.3389/fnhum.2021.721206 – ident: 10.1016/j.neuroscience.2025.06.043_b0070 doi: 10.1109/ISBI52829.2022.9761541 – ident: 10.1016/j.neuroscience.2025.06.043_b0085 doi: 10.1016/j.neuroimage.2018.07.070 – volume: 12 start-page: 1 issue: 1 year: 2025 ident: 10.1016/j.neuroscience.2025.06.043_b0040 article-title: 7 Tesla multimodal MRI dataset of ex-vivo human brain publication-title: Sci. Data doi: 10.1038/s41597-025-04932-x – volume: 246 year: 2022 ident: 10.1016/j.neuroscience.2025.06.043_b0135 article-title: White matter association tracts underlying language and theory of mind: an investigation of 809 brains from the Human Connectome Project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118739 – ident: 10.1016/j.neuroscience.2025.06.043_b0155 doi: 10.1038/s41593-019-0575-0 – ident: 10.1016/j.neuroscience.2025.06.043_b0080 doi: 10.1016/j.neuroimage.2021.118870 – volume: 32 start-page: 1041 issue: 4 year: 2024 ident: 10.1016/j.neuroscience.2025.06.043_b0105 article-title: Connectome-based schizophrenia prediction using structural connectivity-Deep Graph Neural Network (sc-DGNN) publication-title: J. Xray Sci. Technol. – year: 2015 ident: 10.1016/j.neuroscience.2025.06.043_b0185 article-title: Diffusion tensor imaging of the brain: towards quantitative clinical tools. University of Nice - Sophia Antipolis publication-title: Doctoral Dissertation – year: 2021 ident: 10.1016/j.neuroscience.2025.06.043_b0095 article-title: Volumetric white matter tract segmentation with nested self-supervised learning using sequential pretext tasks publication-title: Medical Image Analysis 72 doi: 10.1016/j.media.2021.102094 – volume: 111 start-page: 217 year: 2024 ident: 10.1016/j.neuroscience.2025.06.043_b0035 article-title: Assessment of U-Net in the segmentation of short tracts: Transferring to clinical MRI routine publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2024.05.009 – volume: 1–27 year: 2025 ident: 10.1016/j.neuroscience.2025.06.043_b0015 article-title: A review on learning-based algorithms for tractography and human brain white matter tracts recognition publication-title: Neuroradiology – ident: 10.1016/j.neuroscience.2025.06.043_b0025 doi: 10.1007/s12046-024-02536-6 – volume: no. 7 start-page: 821 year: 2010 ident: 10.1016/j.neuroscience.2025.06.043_b0115 publication-title: Mapping Brain Anatomical Connectivity Using White Matter Tractography. NMR in Biomedicine 23 – volume: 230 start-page: 1 issue: 5 year: 2025 ident: 10.1016/j.neuroscience.2025.06.043_b0030 article-title: Cross-species neuroanatomy in primates using tractography publication-title: Brain Struct. Funct. doi: 10.1007/s00429-025-02914-8 – volume: 5 start-page: 458 issue: 4 year: 2018 ident: 10.1016/j.neuroscience.2025.06.043_b0100 article-title: Chaotic grey wolf optimization algorithm for constrained optimization problems publication-title: J. Comput. Des. Eng. – ident: 10.1016/j.neuroscience.2025.06.043_b0090 doi: 10.1016/j.media.2020.101761 – ident: 10.1016/j.neuroscience.2025.06.043_b0120 doi: 10.1016/j.neuroimage.2020.117070 |
| SSID | ssj0000543 |
| Score | 2.5078158 |
| Snippet | [Display omitted]
•This work introduces DISAU-Net for WM fiber tract segmentation in brain dMRI data.•Combines Inception-ResNet-V2 and Dense-Inception with... Tractography uses diffusion Magnetic Resonance Imaging (dMRI) to noninvasively reconstruct brain white matter (WM) tracts, with Convolutional Neural Network... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 218 |
| SubjectTerms | Algorithms Brain - diagnostic imaging Convolutional Neural Networks DenseNet Diffusion magnetic resonance imaging Diffusion Tensor Imaging - methods Grey wolf optimization Humans Image Processing, Computer-Assisted - methods Neural Networks, Computer Neural Pathways - diagnostic imaging Spatial Attention U-Net White Matter - diagnostic imaging White matter tract segmentation |
| Title | BrainTract: segmentation of white matter fiber tractography and analysis of structural connectivity using hybrid convolutional neural network |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0306452225007316 https://dx.doi.org/10.1016/j.neuroscience.2025.06.043 https://www.ncbi.nlm.nih.gov/pubmed/40543891 https://www.proquest.com/docview/3222963971 |
| Volume | 580 |
| WOSCitedRecordID | wos001523479700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7544 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000543 issn: 0306-4522 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DqG9IGBcxmUyEuKlCkripLFBPBQ0BBOqJiiob5Hj2HTVkla0G9t_gP_M8S3JJCqVB17SKo4dpd_X4xOf4-8g9JwnqWQxIDAUlASJ4lHASBkHsgDnNIyLaGjWIb99ysZjOp2yk17vl98Lc3GW1TW9vGTL_wo1nAOw9dbZf4C7GRROwHcAHY4AOxy3Av6tLvow0Zuf9Nv-Sn6v3PYi4xj-1GGDQWVUNQdKp4voKhFi7ZSrnXZrK1Ri9WWNNofQOTHCVZs4N2sMsyu94cukrrtnguu0RKb5MAnmXe933IpnNnxqcrxPoFfNKx2tALSbVeovs9Oz5fX60Mc2SPWZz-VqNjADdBcv4tSkzjnpa2twaUYCLcLXtcipLe7U2FT6V1tvlx3mLzvCn1r3NE6NIKsVf-rgvawM4OCg6oLvUTv_NVmJvmkH7cZZymgf7Y4-Hk2P25kd2r1wrckR3HTrPXTTD7bJ39n0PmP8msltdMu9kOCRJdId1JP1XbQ_qvl6UV3hF9ikCJvYyz763XLrFe4yCy8UNszCllnYMAt3mYWBWdgzS1_fMgt3mYUNs7BlFr7GLGyZhR2z7qGv748m7z4Erp5HIAhN1kHEFUytYBiiBGxAkXJZgnfMVCmEDvQJSZTiIuSMKTbMipBnaSoLkcRRIcNSKXIf9etFLR8izCJJZVlkCRVxUpCwGEaMhmWqhnEZEhUdIOJ_9XxpZVtyn884z7uw5Rq2XCd3JuQAvfYA5X5jMkylOTBuq95vmt6u2bqlW_d_5jmRg43XgTtey8X5KtfRUKYj8PBcDyxZmqfyPHu0seUx2mv_ek9QH9CVT9ENcbE-Xf04RDvZlB46pv8BBN3ZEg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BrainTract%3A+segmentation+of+white+matter+fiber+tractography+and+analysis+of+structural+connectivity+using+hybrid+convolutional+neural+network&rft.jtitle=Neuroscience&rft.au=Kumar%2C+Puranam+Revanth&rft.au=Shilpa%2C+B&rft.au=Jha%2C+Rajesh+Kumar&rft.date=2025-08-06&rft.eissn=1873-7544&rft.volume=580&rft.spage=218&rft_id=info:doi/10.1016%2Fj.neuroscience.2025.06.043&rft_id=info%3Apmid%2F40543891&rft.externalDocID=40543891 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4522&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4522&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4522&client=summon |