BrainTract: segmentation of white matter fiber tractography and analysis of structural connectivity using hybrid convolutional neural network

[Display omitted] •This work introduces DISAU-Net for WM fiber tract segmentation in brain dMRI data.•Combines Inception-ResNet-V2 and Dense-Inception with SAU-Net.•Gray Wolf Optimization used to tune CNN classifier parameters.•Achieves 97.10% accuracy and 96.27% dice score on HCP dataset. Tractogra...

Full description

Saved in:
Bibliographic Details
Published in:Neuroscience Vol. 580; pp. 218 - 230
Main Authors: Kumar, Puranam Revanth, Shilpa, B, Jha, Rajesh Kumar
Format: Journal Article
Language:English
Published: United States Elsevier Inc 06.08.2025
Subjects:
ISSN:0306-4522, 1873-7544, 1873-7544
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] •This work introduces DISAU-Net for WM fiber tract segmentation in brain dMRI data.•Combines Inception-ResNet-V2 and Dense-Inception with SAU-Net.•Gray Wolf Optimization used to tune CNN classifier parameters.•Achieves 97.10% accuracy and 96.27% dice score on HCP dataset. Tractography uses diffusion Magnetic Resonance Imaging (dMRI) to noninvasively reconstruct brain white matter (WM) tracts, with Convolutional Neural Network (CNNs) like U-Net significantly advancing accuracy in medical image segmentation. This work proposes a metaheuristic optimization algorithm-based CNN architecture. This architecture combines the Inception-ResNet-V2 module and the densely connecting convolutional module (DI) into the Spatial Attention U-Net (SAU-Net) architecture for segmenting WM fiber tracts and analyzing the brain’s structural connectivity. The proposed network model (DISAU-Net) consists of the following parts are; First, the Inception-ResNet-V2 block is used to replace the standard convolutional layers and expand the network’s width; Second, the Dense-Inception block is used to extract features and deepen the network without the need for any additional parameters; Third, the down-sampling block is used to speed up training by decreasing the size of feature maps, and the up-sampling block is used to increase the maps’ resolution. In addition, the parameter existing in the classifiers is randomly selected with the Gray Wolf Optimization (GWO) technique to boost the performance of the CNN architecture. We validated our method by segmenting WM tracts on dMRI scans of 280 subjects from the human connectome project (HCP) database. The proposed method is far more efficient than current methods. It offers unprecedented quantitative evaluation with high tract segmentation consistency, achieving accuracy of 97.10%, dice score of 96.88%, recall 95.74%, f1-score 94.79% for fiber tracts. The results showed that the proposed method is a potential approach for segmenting WM fiber tracts and analyzing the brain’s structural connectivity.
AbstractList [Display omitted] •This work introduces DISAU-Net for WM fiber tract segmentation in brain dMRI data.•Combines Inception-ResNet-V2 and Dense-Inception with SAU-Net.•Gray Wolf Optimization used to tune CNN classifier parameters.•Achieves 97.10% accuracy and 96.27% dice score on HCP dataset. Tractography uses diffusion Magnetic Resonance Imaging (dMRI) to noninvasively reconstruct brain white matter (WM) tracts, with Convolutional Neural Network (CNNs) like U-Net significantly advancing accuracy in medical image segmentation. This work proposes a metaheuristic optimization algorithm-based CNN architecture. This architecture combines the Inception-ResNet-V2 module and the densely connecting convolutional module (DI) into the Spatial Attention U-Net (SAU-Net) architecture for segmenting WM fiber tracts and analyzing the brain’s structural connectivity. The proposed network model (DISAU-Net) consists of the following parts are; First, the Inception-ResNet-V2 block is used to replace the standard convolutional layers and expand the network’s width; Second, the Dense-Inception block is used to extract features and deepen the network without the need for any additional parameters; Third, the down-sampling block is used to speed up training by decreasing the size of feature maps, and the up-sampling block is used to increase the maps’ resolution. In addition, the parameter existing in the classifiers is randomly selected with the Gray Wolf Optimization (GWO) technique to boost the performance of the CNN architecture. We validated our method by segmenting WM tracts on dMRI scans of 280 subjects from the human connectome project (HCP) database. The proposed method is far more efficient than current methods. It offers unprecedented quantitative evaluation with high tract segmentation consistency, achieving accuracy of 97.10%, dice score of 96.88%, recall 95.74%, f1-score 94.79% for fiber tracts. The results showed that the proposed method is a potential approach for segmenting WM fiber tracts and analyzing the brain’s structural connectivity.
Tractography uses diffusion Magnetic Resonance Imaging (dMRI) to noninvasively reconstruct brain white matter (WM) tracts, with Convolutional Neural Network (CNNs) like U-Net significantly advancing accuracy in medical image segmentation. This work proposes a metaheuristic optimization algorithm-based CNN architecture. This architecture combines the Inception-ResNet-V2 module and the densely connecting convolutional module (DI) into the Spatial Attention U-Net (SAU-Net) architecture for segmenting WM fiber tracts and analyzing the brain's structural connectivity. The proposed network model (DISAU-Net) consists of the following parts are; First, the Inception-ResNet-V2 block is used to replace the standard convolutional layers and expand the network's width; Second, the Dense-Inception block is used to extract features and deepen the network without the need for any additional parameters; Third, the down-sampling block is used to speed up training by decreasing the size of feature maps, and the up-sampling block is used to increase the maps' resolution. In addition, the parameter existing in the classifiers is randomly selected with the Gray Wolf Optimization (GWO) technique to boost the performance of the CNN architecture. We validated our method by segmenting WM tracts on dMRI scans of 280 subjects from the human connectome project (HCP) database. The proposed method is far more efficient than current methods. It offers unprecedented quantitative evaluation with high tract segmentation consistency, achieving accuracy of 97.10%, dice score of 96.88%, recall 95.74%, f1-score 94.79% for fiber tracts. The results showed that the proposed method is a potential approach for segmenting WM fiber tracts and analyzing the brain's structural connectivity.Tractography uses diffusion Magnetic Resonance Imaging (dMRI) to noninvasively reconstruct brain white matter (WM) tracts, with Convolutional Neural Network (CNNs) like U-Net significantly advancing accuracy in medical image segmentation. This work proposes a metaheuristic optimization algorithm-based CNN architecture. This architecture combines the Inception-ResNet-V2 module and the densely connecting convolutional module (DI) into the Spatial Attention U-Net (SAU-Net) architecture for segmenting WM fiber tracts and analyzing the brain's structural connectivity. The proposed network model (DISAU-Net) consists of the following parts are; First, the Inception-ResNet-V2 block is used to replace the standard convolutional layers and expand the network's width; Second, the Dense-Inception block is used to extract features and deepen the network without the need for any additional parameters; Third, the down-sampling block is used to speed up training by decreasing the size of feature maps, and the up-sampling block is used to increase the maps' resolution. In addition, the parameter existing in the classifiers is randomly selected with the Gray Wolf Optimization (GWO) technique to boost the performance of the CNN architecture. We validated our method by segmenting WM tracts on dMRI scans of 280 subjects from the human connectome project (HCP) database. The proposed method is far more efficient than current methods. It offers unprecedented quantitative evaluation with high tract segmentation consistency, achieving accuracy of 97.10%, dice score of 96.88%, recall 95.74%, f1-score 94.79% for fiber tracts. The results showed that the proposed method is a potential approach for segmenting WM fiber tracts and analyzing the brain's structural connectivity.
Tractography uses diffusion Magnetic Resonance Imaging (dMRI) to noninvasively reconstruct brain white matter (WM) tracts, with Convolutional Neural Network (CNNs) like U-Net significantly advancing accuracy in medical image segmentation. This work proposes a metaheuristic optimization algorithm-based CNN architecture. This architecture combines the Inception-ResNet-V2 module and the densely connecting convolutional module (DI) into the Spatial Attention U-Net (SAU-Net) architecture for segmenting WM fiber tracts and analyzing the brain's structural connectivity. The proposed network model (DISAU-Net) consists of the following parts are; First, the Inception-ResNet-V2 block is used to replace the standard convolutional layers and expand the network's width; Second, the Dense-Inception block is used to extract features and deepen the network without the need for any additional parameters; Third, the down-sampling block is used to speed up training by decreasing the size of feature maps, and the up-sampling block is used to increase the maps' resolution. In addition, the parameter existing in the classifiers is randomly selected with the Gray Wolf Optimization (GWO) technique to boost the performance of the CNN architecture. We validated our method by segmenting WM tracts on dMRI scans of 280 subjects from the human connectome project (HCP) database. The proposed method is far more efficient than current methods. It offers unprecedented quantitative evaluation with high tract segmentation consistency, achieving accuracy of 97.10%, dice score of 96.88%, recall 95.74%, f1-score 94.79% for fiber tracts. The results showed that the proposed method is a potential approach for segmenting WM fiber tracts and analyzing the brain's structural connectivity.
Author Kumar, Puranam Revanth
Jha, Rajesh Kumar
Shilpa, B
Author_xml – sequence: 1
  givenname: Puranam Revanth
  orcidid: 0000-0002-9141-9901
  surname: Kumar
  fullname: Kumar, Puranam Revanth
  email: revanth123451.rk@gmail.com
  organization: Department of Electronics and Communication Engineering, Faculty of Science and Technology (IcfaiTech), ICFAI Foundation for Higher Education, Hyderabad, India
– sequence: 2
  givenname: B
  surname: Shilpa
  fullname: Shilpa, B
  organization: Department of Electronics and Communication Engineering, Faculty of Science and Technology (IcfaiTech), ICFAI Foundation for Higher Education, Hyderabad, India
– sequence: 3
  givenname: Rajesh Kumar
  orcidid: 0000-0002-5903-8105
  surname: Jha
  fullname: Jha, Rajesh Kumar
  organization: Department of Electronics and Communication Engineering, Faculty of Science and Technology (IcfaiTech), ICFAI Foundation for Higher Education, Hyderabad, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40543891$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhS3Uik5bXgFFrNgk-Cd_7o4WWpAqddOuLce5nvE0sQfbmSoPwTvjMANCrGrJPgt_91zde87RiXUWEPpAcEEwqT9tCwuTd0EZsAoKimlV4LrAJXuDVqRtWN5UZXmCVpjhOi8rSs_QeQhbnE5VsrforFy05WSFfl57aeyjlypeZQHWI9goo3E2czp72ZgI2ShjBJ9p06U3LqRbe7nbzJm0fbpymIMJCx-in1ScvBwy5awFFc3exDmbgrHrbDN33vTLz94N09IjccskvyW-OP98iU61HAK8O-oFerr9-njzLb9_uPt-8_k-V6wtY06k5oTQtiVlR-quktBzzrjulUojcwVMa6mw5FzzuumwbKoKOlVS0gHutWYX6OPBd-fdjwlCFKMJCoZBWnBTEIxSymvGG5LQ90d06kboxc6bUfpZ_FlhAq4OgEqRBA_6L0KwWPISW_FvXmLJS-BapLxS8ZdDMaRp9wa8OFK98Wl9onfmdTbX_9mowVij5PAM82tNfgHlAsEw
Cites_doi 10.1016/j.mri.2021.10.017
10.1109/TMI.2019.2902073
10.1109/ISBI53787.2023.10230547
10.1007/s13760-023-02301-2
10.1109/TMI.2011.2138152
10.1016/j.neuroimage.2022.119550
10.1007/978-3-030-87234-2_47
10.1002/mrm.28937
10.1016/j.array.2021.100101
10.31887/DCNS.2010.12.4/tschulte
10.1007/s11065-015-9291-z
10.1016/j.neuroimage.2020.116993
10.1016/j.neunet.2020.03.001
10.1162/imag_a_00060
10.1016/j.imed.2023.10.001
10.1007/s11682-015-9474-5
10.1007/978-3-030-32248-9_70
10.3389/fnhum.2021.721206
10.1109/ISBI52829.2022.9761541
10.1016/j.neuroimage.2018.07.070
10.1038/s41597-025-04932-x
10.1016/j.neuroimage.2021.118739
10.1038/s41593-019-0575-0
10.1016/j.neuroimage.2021.118870
10.1016/j.media.2021.102094
10.1016/j.mri.2024.05.009
10.1007/s12046-024-02536-6
10.1007/s00429-025-02914-8
10.1016/j.media.2020.101761
10.1016/j.neuroimage.2020.117070
ContentType Journal Article
Copyright 2025 International Brain Research Organization (IBRO)
Copyright © 2025 International Brain Research Organization (IBRO). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2025 International Brain Research Organization (IBRO)
– notice: Copyright © 2025 International Brain Research Organization (IBRO). Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neuroscience.2025.06.043
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1873-7544
EndPage 230
ExternalDocumentID 40543891
10_1016_j_neuroscience_2025_06_043
S0306452225007316
Genre Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.1-
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5RE
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABCQJ
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABTEW
ACDAQ
ACGFO
ACGFS
ACIUM
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMQ
IHE
J1W
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OP~
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSN
SSZ
T5K
UNMZH
Z5R
~G-
~HD
AGCQF
.55
.GJ
29N
53G
5VS
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
AGHFR
AGQPQ
AHHHB
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SNS
WUQ
X7M
YYP
ZGI
ZXP
AFCTW
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
ID FETCH-LOGICAL-c384t-1af91128814b16b5aed9939fdcc0309ce3ffac0a99f967b0a755ebc421be0dff3
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001523479700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-4522
1873-7544
IngestDate Thu Oct 02 22:32:40 EDT 2025
Tue Jul 22 01:41:52 EDT 2025
Sat Nov 29 07:43:48 EST 2025
Sat Aug 16 17:00:55 EDT 2025
Tue Oct 14 19:26:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords DenseNet
White matter tract segmentation
Spatial Attention U-Net
Grey wolf optimization
Diffusion magnetic resonance imaging
Language English
License Copyright © 2025 International Brain Research Organization (IBRO). Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-1af91128814b16b5aed9939fdcc0309ce3ffac0a99f967b0a755ebc421be0dff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5903-8105
0000-0002-9141-9901
PMID 40543891
PQID 3222963971
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_3222963971
pubmed_primary_40543891
crossref_primary_10_1016_j_neuroscience_2025_06_043
elsevier_sciencedirect_doi_10_1016_j_neuroscience_2025_06_043
elsevier_clinicalkey_doi_10_1016_j_neuroscience_2025_06_043
PublicationCentury 2000
PublicationDate 2025-08-06
PublicationDateYYYYMMDD 2025-08-06
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-06
  day: 06
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neuroscience
PublicationTitleAlternate Neuroscience
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Spann (b0190) 2015
Schulte, Müller-Oehring, Pfefferbaum, Sullivan (b0145) 2010; 12
Udayakumar, Subhashini (b0105) 2024; 32
Colon-Perez, Triplett, Bohsali (b0160) 2016; 10
Zekelman, Fan, Nikos (b0135) 2022; 246
Iglesias, Liu, Thompson, Tu (b0170) 2011; 30
Sotiropoulos, Thiebaut de Schotten, Haber, Forkel (b0030) 2025; 230
Gupta (b0185) 2015
Zhang, Fan, Daducci, Alessandro, He, Yong, Schiavi, Simona, Seguin, Caio, Smith, Robert E., Yeh, Chun, Zhao, Tengda, and Lauren J. O’Donnell. “Quantitative mapping of the brain’s structural connectivity using diffusion MRI tractography: A review.” NeuroImage 249, (2022): 118870. https://doi.org/10.1016/j.neuroimage.2021.118870.
Benou, Riklin Raviv (b0200) 2019; vol 11766
Farnia, Makkiabadi, Leemans (b0015) 2025; 1–27
Li, Bo, de Groot, Marius, Steketee, Rebecca M., Meijboom, Rozanna, Smits, Marion, Vernooij, Meike W., Ikram, M. A., Liu, Jiren, Niessen, Wiro J., and Esther E. Bron. “Neuro4Neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging.” NeuroImage 218, (2020): 116993. https://doi.org/10.1016/j.neuroimage.2020.116993.
Chen, Yuqian, Zhang, Fan, Zekelman, Leo R., Xue, Tengfei, Zhang, Chaoyi, Song, Yang, Makris, Nikos, Rathi, Yogesh, Cai, Weidong, and Lauren J. “TractGraphCNN: anatomically informed graph CNN for classification using diffusion MRI tractography.” ArXiv, (2023). https://doi.org/10.48550/arXiv.2301.01911.
Lu, Li, Ye (b0095) 2021
Mueller, Lim, Hemmy, Camchong (b0130) 2015; 25
Babaeeghazvini, Parinaz, M., Laura, Gooijers, Jolien, Swinnen, Stephan P., and Andreas Daffertshofer. “Brain Structural and Functional Connectivity: A Review of Combined Works of Diffusion Magnetic Resonance Imaging and Electro-Encephalography.” Frontiers in Human Neuroscience 15, 2021. https://doi.org/10.3389/fnhum.2021.721206.
Konell, Junior, Dos Santos, Salmon (b0035) 2024; 111
Xu, Dong, Lee, OrHara, Asano, Jeong (b0050) 2019; 38
Zhang, Fan, Cetin Karayumak, Suheyla, Hoffmann, Nico, Rathi, Yogesh, Golby, Alexandra J., and Lauren J. O’Donnell. “Deep white matter analysis (DeepWMA): Fast and consistent tractography segmentation.” Medical Image Analysis 65, (2020): 101761. https://doi.org/10.1016/j.media.2020.101761.
Dimitrova, Chalavi, Vissia, Barker, Perez, Veltman, Reinders (b0020) 2025; 116383
Román, Claudio, Hernández, Cecilia, Figueroa, Miguel, Houenou, Josselin, Poupon, Cyril, Mangin, Jean, and Pamela Guevara. “Superficial white matter bundle atlas based on hierarchical fiber clustering over probabilistic tractography data.” NeuroImage 262, (2022): 119550. https://doi.org/10.1016/j.neuroimage.2022.119550.
Jose Pedro Manzano Patron, Steen Moeller, Jesper L.R. Andersson, Kamil Ugurbil, Essa Yacoub, Stamatios N. Sotiropoulos; Denoising diffusion MRI: Considerations and implications for analysis. Imaging Neuroscience 2024; 2 1–29. https://doi.org/10.1162/imag_a_00060.
Kumar, Jha, Katti (b0045) 2023
Kohli, Arora (b0100) 2018; 5
Puranam Revanth Kumar (b0010) 2024; 4
H. Li, Z. Liang, C. Zhang, R.-Y. Liu, J. Li, W. Zhang, D. Liang, B. Shen, X. Zhang, Y. Ge, J. Zhang, and L. Ying, “Superdti: Ultrafast dti and fiber tractography with deep learning.” Magnetic resonance in medicine, pp. 1-14, 2021. https://doi.org/10.1002/mrm.28937.
Puranam Revanth Kumar, B Shilpa, Rajesh Kumar Jha, B Deevena Raju, and Thayyaba Khatoon Mohammed, “Inpainting Non-Anatomical Objects in Brain Imaging using Enhanced Deep Convolutional Autoencoder Network”, Sadhana, vol. 49, article number 181, pp. 1-13, 2024. https://doi.org/10.1007/s12046-024-02536-6.
Zhu, Li, Cao, Shen, Xu, Xu, Wu (b0040) 2025; 12
Vázquez, Andrea, López-López, Narciso, Sánchez, Alexis, Houenou, Josselin, Poupon, Cyril, Mangin, Jean, Hernández, Cecilia, and Pamela Guevara. “FFClust: Fast fiber clustering for large tractography datasets for a detailed study of brain connectivity.” NeuroImage 220, (2020): 117070. https://doi.org/10.1016/j.neuroimage.2020.117070.
Elam Jennifer, Glasser Matthew, Harms Michael (b0140) 2021; 244
Xue, Tengfei, Zhang, Fan, Zhang, Chaoyi, Chen, Yuqian, Song, Yang, Makris, Nikos, Rathi, Yogesh, Cai, Weidong, and Lauren J, “Supwma: Consistent and Efficient Tractography Parcellation of Superficial White Matter with Deep Learning,” 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), Kolkata, India, 2022, pp. 1-5. 10.1109/ISBI52829.2022.9761541.
Rheault, Francois, Bayrak, Roza G., Wang, Xuan, Schilling, Kurt G., Greer, Jasmine M., Hansen, Colin B., Kerley, Cailey et al. “TractEM: Evaluation of protocols for deterministic tractography white matter atlas.” Magnetic Resonance Imaging 85, (2022): 44-56. https://doi.org/10.1016/j.mri.2021.10.017.
Lazar (b0115) 2010; no. 7
Liu, Cirong, Ye, Frank Q., Newman, John D., Szczupak, Diego, Tian, Xiaoguang, Yen, Cecil C., Majka, Piotr et al. “A resource for the detailed 3D mapping of white matter pathways in the marmoset brain.” Nature Neuroscience 23, no. 2 (2020): 271-280. https://doi.org/10.1038/s41593-019-0575-0.
Chen, Yuqian, Zhang, Chaoyi, Song, Yang, Makris, Nikos, Rathi, Yogesh, Cai, Weidong, Zhang, Fan, and Lauren J. Deep Fiber Clustering: Anatomically Informed Unsupervised Deep Learning for Fast and Effective White Matter Parcellation. Lecture Notes in Computer Science, vol.12907. pp 497–507, 2021. https://doi.org/10.1007/978-3-030-87234-2_47.
Guo, Chen, Du, Van Den Hengel, Shi, Tan (b0060) 2020; 126
Wasserthal, Jakob, Neher, Peter, and Klaus H. Maier-Hein. “TractSeg - Fast and accurate white matter tract segmentation.” NeuroImage 183, (2018): 239-253. https://doi.org/10.1016/j.neuroimage.2018.07.070.
Nunez-Yanez, Hosseinabady (b0110) 2021; 12
Mueller (10.1016/j.neuroscience.2025.06.043_b0130) 2015; 25
10.1016/j.neuroscience.2025.06.043_b0195
10.1016/j.neuroscience.2025.06.043_b0150
10.1016/j.neuroscience.2025.06.043_b0090
10.1016/j.neuroscience.2025.06.043_b0070
Kohli (10.1016/j.neuroscience.2025.06.043_b0100) 2018; 5
Farnia (10.1016/j.neuroscience.2025.06.043_b0015) 2025; 1–27
Benou (10.1016/j.neuroscience.2025.06.043_b0200) 2019; vol 11766
Xu (10.1016/j.neuroscience.2025.06.043_b0050) 2019; 38
Sotiropoulos (10.1016/j.neuroscience.2025.06.043_b0030) 2025; 230
Iglesias (10.1016/j.neuroscience.2025.06.043_b0170) 2011; 30
Nunez-Yanez (10.1016/j.neuroscience.2025.06.043_b0110) 2021; 12
Zekelman (10.1016/j.neuroscience.2025.06.043_b0135) 2022; 246
Udayakumar (10.1016/j.neuroscience.2025.06.043_b0105) 2024; 32
Elam Jennifer (10.1016/j.neuroscience.2025.06.043_b0140) 2021; 244
10.1016/j.neuroscience.2025.06.043_b0175
10.1016/j.neuroscience.2025.06.043_b0155
10.1016/j.neuroscience.2025.06.043_b0085
Zhu (10.1016/j.neuroscience.2025.06.043_b0040) 2025; 12
10.1016/j.neuroscience.2025.06.043_b0180
Kumar (10.1016/j.neuroscience.2025.06.043_b0045) 2023
10.1016/j.neuroscience.2025.06.043_b0080
Lazar (10.1016/j.neuroscience.2025.06.043_b0115) 2010; no. 7
Colon-Perez (10.1016/j.neuroscience.2025.06.043_b0160) 2016; 10
Guo (10.1016/j.neuroscience.2025.06.043_b0060) 2020; 126
Konell (10.1016/j.neuroscience.2025.06.043_b0035) 2024; 111
Schulte (10.1016/j.neuroscience.2025.06.043_b0145) 2010; 12
Dimitrova (10.1016/j.neuroscience.2025.06.043_b0020) 2025; 116383
Gupta (10.1016/j.neuroscience.2025.06.043_b0185) 2015
Spann (10.1016/j.neuroscience.2025.06.043_b0190) 2015
10.1016/j.neuroscience.2025.06.043_b0025
10.1016/j.neuroscience.2025.06.043_b0005
10.1016/j.neuroscience.2025.06.043_b0125
10.1016/j.neuroscience.2025.06.043_b0065
10.1016/j.neuroscience.2025.06.043_b0120
Puranam Revanth Kumar (10.1016/j.neuroscience.2025.06.043_b0010) 2024; 4
Lu (10.1016/j.neuroscience.2025.06.043_b0095) 2021
10.1016/j.neuroscience.2025.06.043_b0165
References_xml – reference: Zhang, Fan, Cetin Karayumak, Suheyla, Hoffmann, Nico, Rathi, Yogesh, Golby, Alexandra J., and Lauren J. O’Donnell. “Deep white matter analysis (DeepWMA): Fast and consistent tractography segmentation.” Medical Image Analysis 65, (2020): 101761. https://doi.org/10.1016/j.media.2020.101761.
– reference: Román, Claudio, Hernández, Cecilia, Figueroa, Miguel, Houenou, Josselin, Poupon, Cyril, Mangin, Jean, and Pamela Guevara. “Superficial white matter bundle atlas based on hierarchical fiber clustering over probabilistic tractography data.” NeuroImage 262, (2022): 119550. https://doi.org/10.1016/j.neuroimage.2022.119550.
– reference: Vázquez, Andrea, López-López, Narciso, Sánchez, Alexis, Houenou, Josselin, Poupon, Cyril, Mangin, Jean, Hernández, Cecilia, and Pamela Guevara. “FFClust: Fast fiber clustering for large tractography datasets for a detailed study of brain connectivity.” NeuroImage 220, (2020): 117070. https://doi.org/10.1016/j.neuroimage.2020.117070.
– volume: 244
  year: 2021
  ident: b0140
  article-title: The Human Connectome Project: a retrospective
  publication-title: Neuroimage
– volume: 111
  start-page: 217
  year: 2024
  end-page: 228
  ident: b0035
  article-title: Assessment of U-Net in the segmentation of short tracts: Transferring to clinical MRI routine
  publication-title: Magn. Reson. Imaging
– volume: 32
  start-page: 1041
  year: 2024
  end-page: 1059
  ident: b0105
  article-title: Connectome-based schizophrenia prediction using structural connectivity-Deep Graph Neural Network (sc-DGNN)
  publication-title: J. Xray Sci. Technol.
– volume: 12
  start-page: 1
  year: 2025
  end-page: 12
  ident: b0040
  article-title: 7 Tesla multimodal MRI dataset of ex-vivo human brain
  publication-title: Sci. Data
– reference: Chen, Yuqian, Zhang, Fan, Zekelman, Leo R., Xue, Tengfei, Zhang, Chaoyi, Song, Yang, Makris, Nikos, Rathi, Yogesh, Cai, Weidong, and Lauren J. “TractGraphCNN: anatomically informed graph CNN for classification using diffusion MRI tractography.” ArXiv, (2023). https://doi.org/10.48550/arXiv.2301.01911.
– year: 2015
  ident: b0185
  article-title: Diffusion tensor imaging of the brain: towards quantitative clinical tools. University of Nice - Sophia Antipolis
  publication-title: Doctoral Dissertation
– volume: 246
  year: 2022
  ident: b0135
  article-title: White matter association tracts underlying language and theory of mind: an investigation of 809 brains from the Human Connectome Project
  publication-title: Neuroimage
– volume: 116383
  year: 2025
  ident: b0020
  article-title: Brain white matter structural connectivity of trauma and trauma-related dissociation disorders and symptoms
  publication-title: Psychiatry Res.
– reference: Puranam Revanth Kumar, B Shilpa, Rajesh Kumar Jha, B Deevena Raju, and Thayyaba Khatoon Mohammed, “Inpainting Non-Anatomical Objects in Brain Imaging using Enhanced Deep Convolutional Autoencoder Network”, Sadhana, vol. 49, article number 181, pp. 1-13, 2024. https://doi.org/10.1007/s12046-024-02536-6.
– year: 2023
  ident: b0045
  article-title: Brain tissue segmentation in neurosurgery: a systematic analysis for quantitative tractography approaches
  publication-title: Acta Neurol. Belg.
– reference: H. Li, Z. Liang, C. Zhang, R.-Y. Liu, J. Li, W. Zhang, D. Liang, B. Shen, X. Zhang, Y. Ge, J. Zhang, and L. Ying, “Superdti: Ultrafast dti and fiber tractography with deep learning.” Magnetic resonance in medicine, pp. 1-14, 2021. https://doi.org/10.1002/mrm.28937.
– reference: Li, Bo, de Groot, Marius, Steketee, Rebecca M., Meijboom, Rozanna, Smits, Marion, Vernooij, Meike W., Ikram, M. A., Liu, Jiren, Niessen, Wiro J., and Esther E. Bron. “Neuro4Neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging.” NeuroImage 218, (2020): 116993. https://doi.org/10.1016/j.neuroimage.2020.116993.
– volume: 5
  start-page: 458
  year: 2018
  end-page: 472
  ident: b0100
  article-title: Chaotic grey wolf optimization algorithm for constrained optimization problems
  publication-title: J. Comput. Des. Eng.
– volume: no. 7
  start-page: 821
  year: 2010
  ident: b0115
  publication-title: Mapping Brain Anatomical Connectivity Using White Matter Tractography. NMR in Biomedicine 23
– volume: 1–27
  year: 2025
  ident: b0015
  article-title: A review on learning-based algorithms for tractography and human brain white matter tracts recognition
  publication-title: Neuroradiology
– year: 2015
  ident: b0190
  article-title: Structural connectivity in the human brain: Analysis of network measures. Institute of Medical Engineering Technical University of Graz Kronesgasse
  publication-title: Master Thesis
– reference: Wasserthal, Jakob, Neher, Peter, and Klaus H. Maier-Hein. “TractSeg - Fast and accurate white matter tract segmentation.” NeuroImage 183, (2018): 239-253. https://doi.org/10.1016/j.neuroimage.2018.07.070.
– volume: 12
  year: 2021
  ident: b0110
  article-title: Sparse and dense matrix multiplication hardware for heterogeneous multi-precision neural networks
  publication-title: Array
– volume: 30
  start-page: 1617
  year: 2011
  end-page: 1634
  ident: b0170
  article-title: Robust brain extraction across datasets and comparison with publicly available methods
  publication-title: IEEE Trans. Med. Imaging
– reference: Zhang, Fan, Daducci, Alessandro, He, Yong, Schiavi, Simona, Seguin, Caio, Smith, Robert E., Yeh, Chun, Zhao, Tengda, and Lauren J. O’Donnell. “Quantitative mapping of the brain’s structural connectivity using diffusion MRI tractography: A review.” NeuroImage 249, (2022): 118870. https://doi.org/10.1016/j.neuroimage.2021.118870.
– volume: 25
  start-page: 250
  year: 2015
  ident: b0130
  article-title: Diffusion MRI and its Role in Neuropsychology
  publication-title: Neuropsychol. Rev.
– volume: 12
  start-page: 554
  year: 2010
  end-page: 560
  ident: b0145
  article-title: Neurocircuitry of emotion and cognition in alcoholism: contributions from white matter fiber tractography
  publication-title: Dialogues Clin. Neurosci.
– reference: Chen, Yuqian, Zhang, Chaoyi, Song, Yang, Makris, Nikos, Rathi, Yogesh, Cai, Weidong, Zhang, Fan, and Lauren J. Deep Fiber Clustering: Anatomically Informed Unsupervised Deep Learning for Fast and Effective White Matter Parcellation. Lecture Notes in Computer Science, vol.12907. pp 497–507, 2021. https://doi.org/10.1007/978-3-030-87234-2_47.
– reference: Jose Pedro Manzano Patron, Steen Moeller, Jesper L.R. Andersson, Kamil Ugurbil, Essa Yacoub, Stamatios N. Sotiropoulos; Denoising diffusion MRI: Considerations and implications for analysis. Imaging Neuroscience 2024; 2 1–29. https://doi.org/10.1162/imag_a_00060.
– year: 2021
  ident: b0095
  article-title: Volumetric white matter tract segmentation with nested self-supervised learning using sequential pretext tasks
  publication-title: Medical Image Analysis 72
– volume: 10
  start-page: 1137
  year: 2016
  end-page: 1147
  ident: b0160
  article-title: A majority rule approach for region-of-interest-guided streamline fiber tractography
  publication-title: Brain Imaging Behav.
– volume: 126
  start-page: 250
  year: 2020
  end-page: 261
  ident: b0060
  article-title: Multi-way backpropagation for training compact deep neural networks
  publication-title: Neural Netw.
– reference: Liu, Cirong, Ye, Frank Q., Newman, John D., Szczupak, Diego, Tian, Xiaoguang, Yen, Cecil C., Majka, Piotr et al. “A resource for the detailed 3D mapping of white matter pathways in the marmoset brain.” Nature Neuroscience 23, no. 2 (2020): 271-280. https://doi.org/10.1038/s41593-019-0575-0.
– reference: Babaeeghazvini, Parinaz, M., Laura, Gooijers, Jolien, Swinnen, Stephan P., and Andreas Daffertshofer. “Brain Structural and Functional Connectivity: A Review of Combined Works of Diffusion Magnetic Resonance Imaging and Electro-Encephalography.” Frontiers in Human Neuroscience 15, 2021. https://doi.org/10.3389/fnhum.2021.721206.
– volume: 230
  start-page: 1
  year: 2025
  end-page: 6
  ident: b0030
  article-title: Cross-species neuroanatomy in primates using tractography
  publication-title: Brain Struct. Funct.
– reference: Xue, Tengfei, Zhang, Fan, Zhang, Chaoyi, Chen, Yuqian, Song, Yang, Makris, Nikos, Rathi, Yogesh, Cai, Weidong, and Lauren J, “Supwma: Consistent and Efficient Tractography Parcellation of Superficial White Matter with Deep Learning,” 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), Kolkata, India, 2022, pp. 1-5. 10.1109/ISBI52829.2022.9761541.
– volume: vol 11766
  year: 2019
  ident: b0200
  article-title: DeepTract: a Probabilistic Deep Learning Framework for White Matter Fiber Tractography
  publication-title: Lecture Notes in Computer Science
– volume: 38
  start-page: 1910
  year: 2019
  end-page: 1922
  ident: b0050
  article-title: Objective detection of eloquent axonal pathways to minimize postoperative deficits in pediatric epilepsy surgery using diffusion tractography and convolutional neural networks
  publication-title: IEEE Trans. Med. Imaging
– volume: 4
  start-page: 161
  year: 2024
  end-page: 169
  ident: b0010
  article-title: Rajesh Kumar Jha, P Akhendra Kumar, and B Deevena Raju “improved neurological diagnoses and treatment strategies via automated human brain tissue segmentation from clinical magnetic resonance imaging”
  publication-title: Intelligent Medicine
– reference: Rheault, Francois, Bayrak, Roza G., Wang, Xuan, Schilling, Kurt G., Greer, Jasmine M., Hansen, Colin B., Kerley, Cailey et al. “TractEM: Evaluation of protocols for deterministic tractography white matter atlas.” Magnetic Resonance Imaging 85, (2022): 44-56. https://doi.org/10.1016/j.mri.2021.10.017.
– volume: 116383
  year: 2025
  ident: 10.1016/j.neuroscience.2025.06.043_b0020
  article-title: Brain white matter structural connectivity of trauma and trauma-related dissociation disorders and symptoms
  publication-title: Psychiatry Res.
– volume: 244
  year: 2021
  ident: 10.1016/j.neuroscience.2025.06.043_b0140
  article-title: The Human Connectome Project: a retrospective
  publication-title: Neuroimage
– year: 2015
  ident: 10.1016/j.neuroscience.2025.06.043_b0190
  article-title: Structural connectivity in the human brain: Analysis of network measures. Institute of Medical Engineering Technical University of Graz Kronesgasse
  publication-title: Master Thesis
– ident: 10.1016/j.neuroscience.2025.06.043_b0065
  doi: 10.1016/j.mri.2021.10.017
– volume: 38
  start-page: 1910
  issue: 8
  year: 2019
  ident: 10.1016/j.neuroscience.2025.06.043_b0050
  article-title: Objective detection of eloquent axonal pathways to minimize postoperative deficits in pediatric epilepsy surgery using diffusion tractography and convolutional neural networks
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2902073
– ident: 10.1016/j.neuroscience.2025.06.043_b0005
  doi: 10.1109/ISBI53787.2023.10230547
– year: 2023
  ident: 10.1016/j.neuroscience.2025.06.043_b0045
  article-title: Brain tissue segmentation in neurosurgery: a systematic analysis for quantitative tractography approaches
  publication-title: Acta Neurol. Belg.
  doi: 10.1007/s13760-023-02301-2
– volume: 30
  start-page: 1617
  issue: 9
  year: 2011
  ident: 10.1016/j.neuroscience.2025.06.043_b0170
  article-title: Robust brain extraction across datasets and comparison with publicly available methods
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2011.2138152
– ident: 10.1016/j.neuroscience.2025.06.043_b0125
  doi: 10.1016/j.neuroimage.2022.119550
– ident: 10.1016/j.neuroscience.2025.06.043_b0150
  doi: 10.1007/978-3-030-87234-2_47
– ident: 10.1016/j.neuroscience.2025.06.043_b0175
  doi: 10.1002/mrm.28937
– volume: 12
  year: 2021
  ident: 10.1016/j.neuroscience.2025.06.043_b0110
  article-title: Sparse and dense matrix multiplication hardware for heterogeneous multi-precision neural networks
  publication-title: Array
  doi: 10.1016/j.array.2021.100101
– volume: 12
  start-page: 554
  issue: 4
  year: 2010
  ident: 10.1016/j.neuroscience.2025.06.043_b0145
  article-title: Neurocircuitry of emotion and cognition in alcoholism: contributions from white matter fiber tractography
  publication-title: Dialogues Clin. Neurosci.
  doi: 10.31887/DCNS.2010.12.4/tschulte
– volume: 25
  start-page: 250
  issue: 3
  year: 2015
  ident: 10.1016/j.neuroscience.2025.06.043_b0130
  article-title: Diffusion MRI and its Role in Neuropsychology
  publication-title: Neuropsychol. Rev.
  doi: 10.1007/s11065-015-9291-z
– ident: 10.1016/j.neuroscience.2025.06.043_b0195
  doi: 10.1016/j.neuroimage.2020.116993
– volume: 126
  start-page: 250
  year: 2020
  ident: 10.1016/j.neuroscience.2025.06.043_b0060
  article-title: Multi-way backpropagation for training compact deep neural networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.03.001
– ident: 10.1016/j.neuroscience.2025.06.043_b0180
  doi: 10.1162/imag_a_00060
– volume: 4
  start-page: 161
  issue: 3
  year: 2024
  ident: 10.1016/j.neuroscience.2025.06.043_b0010
  article-title: Rajesh Kumar Jha, P Akhendra Kumar, and B Deevena Raju “improved neurological diagnoses and treatment strategies via automated human brain tissue segmentation from clinical magnetic resonance imaging”
  publication-title: Intelligent Medicine
  doi: 10.1016/j.imed.2023.10.001
– volume: 10
  start-page: 1137
  year: 2016
  ident: 10.1016/j.neuroscience.2025.06.043_b0160
  article-title: A majority rule approach for region-of-interest-guided streamline fiber tractography
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-015-9474-5
– volume: vol 11766
  year: 2019
  ident: 10.1016/j.neuroscience.2025.06.043_b0200
  article-title: DeepTract: a Probabilistic Deep Learning Framework for White Matter Fiber Tractography
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/978-3-030-32248-9_70
– ident: 10.1016/j.neuroscience.2025.06.043_b0165
  doi: 10.3389/fnhum.2021.721206
– ident: 10.1016/j.neuroscience.2025.06.043_b0070
  doi: 10.1109/ISBI52829.2022.9761541
– ident: 10.1016/j.neuroscience.2025.06.043_b0085
  doi: 10.1016/j.neuroimage.2018.07.070
– volume: 12
  start-page: 1
  issue: 1
  year: 2025
  ident: 10.1016/j.neuroscience.2025.06.043_b0040
  article-title: 7 Tesla multimodal MRI dataset of ex-vivo human brain
  publication-title: Sci. Data
  doi: 10.1038/s41597-025-04932-x
– volume: 246
  year: 2022
  ident: 10.1016/j.neuroscience.2025.06.043_b0135
  article-title: White matter association tracts underlying language and theory of mind: an investigation of 809 brains from the Human Connectome Project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118739
– ident: 10.1016/j.neuroscience.2025.06.043_b0155
  doi: 10.1038/s41593-019-0575-0
– ident: 10.1016/j.neuroscience.2025.06.043_b0080
  doi: 10.1016/j.neuroimage.2021.118870
– volume: 32
  start-page: 1041
  issue: 4
  year: 2024
  ident: 10.1016/j.neuroscience.2025.06.043_b0105
  article-title: Connectome-based schizophrenia prediction using structural connectivity-Deep Graph Neural Network (sc-DGNN)
  publication-title: J. Xray Sci. Technol.
– year: 2015
  ident: 10.1016/j.neuroscience.2025.06.043_b0185
  article-title: Diffusion tensor imaging of the brain: towards quantitative clinical tools. University of Nice - Sophia Antipolis
  publication-title: Doctoral Dissertation
– year: 2021
  ident: 10.1016/j.neuroscience.2025.06.043_b0095
  article-title: Volumetric white matter tract segmentation with nested self-supervised learning using sequential pretext tasks
  publication-title: Medical Image Analysis 72
  doi: 10.1016/j.media.2021.102094
– volume: 111
  start-page: 217
  year: 2024
  ident: 10.1016/j.neuroscience.2025.06.043_b0035
  article-title: Assessment of U-Net in the segmentation of short tracts: Transferring to clinical MRI routine
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2024.05.009
– volume: 1–27
  year: 2025
  ident: 10.1016/j.neuroscience.2025.06.043_b0015
  article-title: A review on learning-based algorithms for tractography and human brain white matter tracts recognition
  publication-title: Neuroradiology
– ident: 10.1016/j.neuroscience.2025.06.043_b0025
  doi: 10.1007/s12046-024-02536-6
– volume: no. 7
  start-page: 821
  year: 2010
  ident: 10.1016/j.neuroscience.2025.06.043_b0115
  publication-title: Mapping Brain Anatomical Connectivity Using White Matter Tractography. NMR in Biomedicine 23
– volume: 230
  start-page: 1
  issue: 5
  year: 2025
  ident: 10.1016/j.neuroscience.2025.06.043_b0030
  article-title: Cross-species neuroanatomy in primates using tractography
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-025-02914-8
– volume: 5
  start-page: 458
  issue: 4
  year: 2018
  ident: 10.1016/j.neuroscience.2025.06.043_b0100
  article-title: Chaotic grey wolf optimization algorithm for constrained optimization problems
  publication-title: J. Comput. Des. Eng.
– ident: 10.1016/j.neuroscience.2025.06.043_b0090
  doi: 10.1016/j.media.2020.101761
– ident: 10.1016/j.neuroscience.2025.06.043_b0120
  doi: 10.1016/j.neuroimage.2020.117070
SSID ssj0000543
Score 2.5078158
Snippet [Display omitted] •This work introduces DISAU-Net for WM fiber tract segmentation in brain dMRI data.•Combines Inception-ResNet-V2 and Dense-Inception with...
Tractography uses diffusion Magnetic Resonance Imaging (dMRI) to noninvasively reconstruct brain white matter (WM) tracts, with Convolutional Neural Network...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 218
SubjectTerms Algorithms
Brain - diagnostic imaging
Convolutional Neural Networks
DenseNet
Diffusion magnetic resonance imaging
Diffusion Tensor Imaging - methods
Grey wolf optimization
Humans
Image Processing, Computer-Assisted - methods
Neural Networks, Computer
Neural Pathways - diagnostic imaging
Spatial Attention U-Net
White Matter - diagnostic imaging
White matter tract segmentation
Title BrainTract: segmentation of white matter fiber tractography and analysis of structural connectivity using hybrid convolutional neural network
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0306452225007316
https://dx.doi.org/10.1016/j.neuroscience.2025.06.043
https://www.ncbi.nlm.nih.gov/pubmed/40543891
https://www.proquest.com/docview/3222963971
Volume 580
WOSCitedRecordID wos001523479700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7544
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000543
  issn: 0306-4522
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DqG9IGBcxmUyEuKlCkripLFBPBQ0BBOqJiiob5Hj2HTVkla0G9t_gP_M8S3JJCqVB17SKo4dpd_X4xOf4-8g9JwnqWQxIDAUlASJ4lHASBkHsgDnNIyLaGjWIb99ysZjOp2yk17vl98Lc3GW1TW9vGTL_wo1nAOw9dbZf4C7GRROwHcAHY4AOxy3Av6tLvow0Zuf9Nv-Sn6v3PYi4xj-1GGDQWVUNQdKp4voKhFi7ZSrnXZrK1Ri9WWNNofQOTHCVZs4N2sMsyu94cukrrtnguu0RKb5MAnmXe933IpnNnxqcrxPoFfNKx2tALSbVeovs9Oz5fX60Mc2SPWZz-VqNjADdBcv4tSkzjnpa2twaUYCLcLXtcipLe7U2FT6V1tvlx3mLzvCn1r3NE6NIKsVf-rgvawM4OCg6oLvUTv_NVmJvmkH7cZZymgf7Y4-Hk2P25kd2r1wrckR3HTrPXTTD7bJ39n0PmP8msltdMu9kOCRJdId1JP1XbQ_qvl6UV3hF9ikCJvYyz763XLrFe4yCy8UNszCllnYMAt3mYWBWdgzS1_fMgt3mYUNs7BlFr7GLGyZhR2z7qGv748m7z4Erp5HIAhN1kHEFUytYBiiBGxAkXJZgnfMVCmEDvQJSZTiIuSMKTbMipBnaSoLkcRRIcNSKXIf9etFLR8izCJJZVlkCRVxUpCwGEaMhmWqhnEZEhUdIOJ_9XxpZVtyn884z7uw5Rq2XCd3JuQAvfYA5X5jMkylOTBuq95vmt6u2bqlW_d_5jmRg43XgTtey8X5KtfRUKYj8PBcDyxZmqfyPHu0seUx2mv_ek9QH9CVT9ENcbE-Xf04RDvZlB46pv8BBN3ZEg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BrainTract%3A+segmentation+of+white+matter+fiber+tractography+and+analysis+of+structural+connectivity+using+hybrid+convolutional+neural+network&rft.jtitle=Neuroscience&rft.au=Kumar%2C+Puranam+Revanth&rft.au=Shilpa%2C+B&rft.au=Jha%2C+Rajesh+Kumar&rft.date=2025-08-06&rft.eissn=1873-7544&rft.volume=580&rft.spage=218&rft_id=info:doi/10.1016%2Fj.neuroscience.2025.06.043&rft_id=info%3Apmid%2F40543891&rft.externalDocID=40543891
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4522&client=summon