Spatial clustering of the failure to geocode and its implications for the detection of disease clustering

Geocoding a study population as completely as possible is an important data assimilation component of many spatial epidemiologic studies. Unfortunately, complete geocoding is rare in practice. The failure of a substantial proportion of study subjects' addresses to geocode has consequences for s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Statistics in medicine Ročník 27; číslo 21; s. 4254 - 4266
Hlavní autori: Zimmerman, Dale L., Fang, Xiangming, Mazumdar, Soumya
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Chichester, UK John Wiley & Sons, Ltd 20.09.2008
Wiley Subscription Services, Inc
Predmet:
ISSN:0277-6715, 1097-0258
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Geocoding a study population as completely as possible is an important data assimilation component of many spatial epidemiologic studies. Unfortunately, complete geocoding is rare in practice. The failure of a substantial proportion of study subjects' addresses to geocode has consequences for spatial analyses, some of which are not yet fully understood. This article explicitly demonstrates that the failure to geocode can be spatially clustered, and it investigates the implications of this for the detection of disease clustering. A data set of more than 9000 ground‐truthed addresses from Carroll County, Iowa, which was geocoded via a standard address matching and street interpolation algorithm, is used for this purpose. Through simulation of disease processes at these addresses, the authors show that spatial clustering of geocoding failure has no effect on the marginal power to detect spatial disease clustering if the likelihood of disease is independent of the failure to geocode, but that power is substantially reduced if disease likelihood and geocoding failure are positively associated. Copyright © 2008 John Wiley & Sons, Ltd.
AbstractList Geocoding a study population as completely as possible is an important data assimilation component of many spatial epidemiologic studies. Unfortunately, complete geocoding is rare in practice. The failure of a substantial proportion of study subjects' addresses to geocode has consequences for spatial analyses, some of which are not yet fully understood. This article explicitly demonstrates that the failure to geocode can be spatially clustered, and it investigates the implications of this for the detection of disease clustering. A data set of more than 9000 ground-truthed addresses from Carroll County, Iowa, which was geocoded via a standard address matching and street interpolation algorithm, is used for this purpose. Through simulation of disease processes at these addresses, the authors show that spatial clustering of geocoding failure has no effect on the marginal power to detect spatial disease clustering if the likelihood of disease is independent of the failure to geocode, but that power is substantially reduced if disease likelihood and geocoding failure are positively associated.
Geocoding a study population as completely as possible is an important data assimilation component of many spatial epidemiologic studies. Unfortunately, complete geocoding is rare in practice. The failure of a substantial proportion of study subjects' addresses to geocode has consequences for spatial analyses, some of which are not yet fully understood. This article explicitly demonstrates that the failure to geocode can be spatially clustered, and it investigates the implications of this for the detection of disease clustering. A data set of more than 9000 ground-truthed addresses from Carroll County, Iowa, which was geocoded via a standard address matching and street interpolation algorithm, is used for this purpose. Through simulation of disease processes at these addresses, the authors show that spatial clustering of geocoding failure has no effect on the marginal power to detect spatial disease clustering if the likelihood of disease is independent of the failure to geocode, but that power is substantially reduced if disease likelihood and geocoding failure are positively associated.Geocoding a study population as completely as possible is an important data assimilation component of many spatial epidemiologic studies. Unfortunately, complete geocoding is rare in practice. The failure of a substantial proportion of study subjects' addresses to geocode has consequences for spatial analyses, some of which are not yet fully understood. This article explicitly demonstrates that the failure to geocode can be spatially clustered, and it investigates the implications of this for the detection of disease clustering. A data set of more than 9000 ground-truthed addresses from Carroll County, Iowa, which was geocoded via a standard address matching and street interpolation algorithm, is used for this purpose. Through simulation of disease processes at these addresses, the authors show that spatial clustering of geocoding failure has no effect on the marginal power to detect spatial disease clustering if the likelihood of disease is independent of the failure to geocode, but that power is substantially reduced if disease likelihood and geocoding failure are positively associated.
Geocoding a study population as completely as possible is an important data assimilation component of many spatial epidemiologic studies. Unfortunately, complete geocoding is rare in practice. The failure of a substantial proportion of study subjects' addresses to geocode has consequences for spatial analyses, some of which are not yet fully understood. This article explicitly demonstrates that the failure to geocode can be spatially clustered, and it investigates the implications of this for the detection of disease clustering. A data set of more than 9000 ground‐truthed addresses from Carroll County, Iowa, which was geocoded via a standard address matching and street interpolation algorithm, is used for this purpose. Through simulation of disease processes at these addresses, the authors show that spatial clustering of geocoding failure has no effect on the marginal power to detect spatial disease clustering if the likelihood of disease is independent of the failure to geocode, but that power is substantially reduced if disease likelihood and geocoding failure are positively associated. Copyright © 2008 John Wiley & Sons, Ltd.
Geocoding a study population as completely as possible is an important data assimilation component of many spatial epidemiologic studies. Unfortunately, complete geocoding is rare in practice. The failure of a substantial proportion of study subjects' addresses to geocode has consequences for spatial analyses, some of which are not yet fully understood. This article explicitly demonstrates that the failure to geocode can be spatially clustered, and it investigates the implications of this for the detection of disease clustering. A data set of more than 9000 ground-truthed addresses from Carroll County, Iowa, which was geocoded via a standard address matching and street interpolation algorithm, is used for this purpose. Through simulation of disease processes at these addresses, the authors show that spatial clustering of geocoding failure has no effect on the marginal power to detect spatial disease clustering if the likelihood of disease is independent of the failure to geocode, but that power is substantially reduced if disease likelihood and geocoding failure are positively associated. [PUBLICATION ABSTRACT]
Author Zimmerman, Dale L.
Mazumdar, Soumya
Fang, Xiangming
Author_xml – sequence: 1
  givenname: Dale L.
  surname: Zimmerman
  fullname: Zimmerman, Dale L.
  email: dale-zimmerman@uiowa.edu
  organization: Statistics and Actuarial Science, University of Iowa, 241 Schaeffer Hall, Iowa City, IA 52242, U.S.A
– sequence: 2
  givenname: Xiangming
  surname: Fang
  fullname: Fang, Xiangming
  organization: Statistics and Actuarial Science, University of Iowa, 241 Schaeffer Hall, Iowa City, IA 52242, U.S.A
– sequence: 3
  givenname: Soumya
  surname: Mazumdar
  fullname: Mazumdar, Soumya
  organization: Statistics and Actuarial Science, University of Iowa, 241 Schaeffer Hall, Iowa City, IA 52242, U.S.A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18407570$$D View this record in MEDLINE/PubMed
BookMark eNp10ctu1DAUBmALFdFpQeIJkMUCscngu50lqqBUKsOiw2VnOc5xcUniwU4EfXuSTrlVsLJ09J1f1n-O0MGQBkDoMSVrSgh7UWK_5syYe2hFSa0rwqQ5QCvCtK6UpvIQHZVyRQilkukH6JAaQbTUZIXixc6N0XXYd1MZIcfhEqeAx8-Ag4vdlAGPCV9C8qkF7IYWx7Hg2O-66OfFNBQcUr7xLYzgl9ES0MYCrsAfsQ_R_eC6Ao9u32P0_vWr7cmb6vzd6dnJy_PKcyNM5QQ0wRvTuFoZGYRSojXSM0mUCL5tSaCeBS8c517VQBuqQyOlUVQoY6Dmx-jZPneX09cJymj7WDx0nRsgTcWqWjAi1QKf3oFXacrD_DfLGKfcaCFn9OQWTU0Prd3l2Lt8bX82OIPne-BzKiVD-E2IXY5j5-PY5TgzXd-hPo43JY557vpfC9V-4Vvs4Pq_wfbi7O3fPs6df__lXf5ileZa2o-bU1vz7Sf6YbOxW_4DvLivJg
CODEN SMEDDA
CitedBy_id crossref_primary_10_1186_1476_072X_10_46
crossref_primary_10_1016_j_annepidem_2021_10_002
crossref_primary_10_1186_s12942_018_0151_y
crossref_primary_10_1016_j_sste_2019_100322
crossref_primary_10_1080_13658816_2025_2524757
crossref_primary_10_1016_j_stamet_2011_01_008
crossref_primary_10_1080_10106041003770548
crossref_primary_10_1093_aje_kwq350
crossref_primary_10_1016_j_sste_2010_10_001
crossref_primary_10_1016_j_sste_2012_02_008
crossref_primary_10_3390_ijerph17165845
crossref_primary_10_1016_j_sste_2012_02_002
crossref_primary_10_1080_13658816_2020_1725015
crossref_primary_10_1111_j_1467_9671_2012_01350_x
crossref_primary_10_1016_j_healthplace_2009_06_001
crossref_primary_10_1371_journal_pone_0052034
Cites_doi 10.1002/sim.2418
10.1186/1476-072X-6-1
10.1080/01621459.1998.10473771
10.1016/j.healthplace.2005.08.006
10.1002/(SICI)1097-0258(19960415)15:7/9<765::AID-SIM248>3.0.CO;2-N
10.1002/sim.2490
10.1016/j.ypmed.2004.04.031
10.1186/1476-072X-2-10
10.1002/sim.2411
10.1016/S0167-9473(02)00302-X
10.1097/01.EDE.0000073121.63254.c5
10.1093/oxfordjournals.aje.a117159
10.1016/S1353-8292(99)00004-0
10.1198/106186006X112396
10.1186/1476-072X-4-11
10.1097/01.ede.0000165364.54925.f3
10.1097/01.EDE.0000073160.79633.c1
10.1111/j.2517-6161.1990.tb01773.x
10.1023/B:EEST.0000027208.48919.7e
10.1186/1476-072X-4-29
10.1016/j.envres.2006.01.004
10.1111/j.1541-0420.2007.00870.x
10.1068/a35318
10.1038/sj.jea.7500173
10.1080/03610929708831995
10.1002/0471662682
10.1111/j.1541-0064.2002.tb00737.x
ContentType Journal Article
Copyright Copyright © 2008 John Wiley & Sons, Ltd.
Copyright John Wiley and Sons, Limited Sep 20, 2008
Copyright_xml – notice: Copyright © 2008 John Wiley & Sons, Ltd.
– notice: Copyright John Wiley and Sons, Limited Sep 20, 2008
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/sim.3288
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 4266
ExternalDocumentID 1530335351
18407570
10_1002_sim_3288
SIM3288
ark_67375_WNG_93TX1VNN_T
Genre article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
Feature
GeographicLocations Carroll County Iowa
GeographicLocations_xml – name: Carroll County Iowa
GrantInformation_xml – fundername: Iowa Department of Public Health (IDPH)
– fundername: Centers for Disease Control and Prevention (CDC)
  funderid: 3 R01 EH000056‐01S1
– fundername: University of Iowa
  funderid: 5886CAR02
– fundername: NCEH CDC HHS
  grantid: 3 R01 EH000056-01S1
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
EX3
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WOW
WQJ
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
RWI
WRC
WUP
WWH
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c3848-a4ebfc88ba9685f4664d85c25064fcdd0f1c2fc4a33c69e1b17fb558614688e93
IEDL.DBID DRFUL
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000258968100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0277-6715
IngestDate Wed Oct 01 13:26:56 EDT 2025
Tue Oct 07 05:35:55 EDT 2025
Mon Jul 21 05:55:12 EDT 2025
Sat Nov 29 06:43:13 EST 2025
Tue Nov 18 20:41:50 EST 2025
Wed Jan 22 16:15:20 EST 2025
Tue Nov 11 03:33:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3848-a4ebfc88ba9685f4664d85c25064fcdd0f1c2fc4a33c69e1b17fb558614688e93
Notes Centers for Disease Control and Prevention (CDC) - No. 3 R01 EH000056-01S1
ark:/67375/WNG-93TX1VNN-T
ArticleID:SIM3288
istex:20E9B9F636303F3006348AD583A6872CFB1618CE
Iowa Department of Public Health (IDPH)
University of Iowa - No. 5886CAR02
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 18407570
PQID 223138745
PQPubID 48361
PageCount 13
ParticipantIDs proquest_miscellaneous_69420569
proquest_journals_223138745
pubmed_primary_18407570
crossref_primary_10_1002_sim_3288
crossref_citationtrail_10_1002_sim_3288
wiley_primary_10_1002_sim_3288_SIM3288
istex_primary_ark_67375_WNG_93TX1VNN_T
PublicationCentury 2000
PublicationDate 2008-09-20
20 September 2008
2008-Sep-20
20080920
PublicationDateYYYYMMDD 2008-09-20
PublicationDate_xml – month: 09
  year: 2008
  text: 2008-09-20
  day: 20
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2008
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References Duczmal L, Kulldorff M, Huang L. Evaluation of spatial scan statistics for irregularly shaped clusters. Journal of Computational and Graphical Statistics 2006; 15:428-442.
Kravets N, Hadden WC. The accuracy of address coding and the effects of coding errors. Health and Place 2007; 13:293-298.
Cuzick J, Edwards R. Spatial clustering for inhomogeneous populations. Journal of the Royal Statistical Society, Series B 1990; 52:73-104 (with Discussion).
Zimmerman DL. Estimating the intensity of a spatial point process from locations coarsened by incomplete geocoding. Biometrics 2008; 64:262-270.
Zimmerman DL, Fang X, Mazumdar S, Rushton G. Modelling the probability distribution of positional errors incurred by residential address geocoding. International Journal of Health Geographics 2007; 6:1.
Waller LA, Gotway CA. Applied Spatial Statistics for Public Health Data. Wiley: Hoboken, NJ, 2004.
Waller LA, Hill EG, Rudd RA. The geography of power: statistical performance of tests of clusters and clustering in heterogeneous populations. Statistics in Medicine 2006; 25:853-865.
Jacquez GM. Cuzick and Edwards' test when exact locations are unknown. American Journal of Epidemiology 1994; 140:58-64.
Klassen AC, Curreiro FC, Hong JH, Williams C, Kulldorff M, Meissner HI, Alberg A, Ensminger M. The role of area-level influences on prostate cancer grade and stage at diagnosis. Preventive Medicine 2004; 39:441-448.
Assuncao R, Costa M, Tavares A, Ferreira S. Fast detection of arbitrarily shaped disease clusters. Statistics in Medicine 2006; 25:723-742.
Burra T, Jerrett M, Burnett RT, Anderson M. Conceptual and practical issues in the detection of local disease clusters: a study of mortality in Hamilton, Ontario. Canadian Geographer 2002; 46:160-171.
Waller LA. Statistical power and design of focused clustering studies. Statistics in Medicine 1996; 15:765-782.
Ward MH, Nuckols JR, Giglierano J, Bonner MR, Wolter C, Airola M, Mix W, Colt JS, Hartge P. Positional accuracy of two methods of geocoding. Epidemiology 2005; 16:542-547.
Gregorio KK, Cromley E, Mrozinski R, Walsh SJ. Subject loss in spatial analysis of breast cancer. Health and Place 1999; 5:173-177.
Tango T, Takahashi K. A flexibly shaped spatial scan statistic for detecting clusters. International Journal of Health Geographics 2005; 4:11.
Cayo MR, Talbot TO. Positional error in automated geocoding of residential addresses. International Journal of Health Geographics 2003; 2:10.
Duczmal L, Assuncao R. A simulated annealing strategy for the detection of arbitrarily shaped spatial clusters. Computational Statistics and Data Analysis 2004; 4:269-286.
Sweeney SH, Konty KJ. Robust point-pattern inference from spatially censored data. Environment and Planning A 2005; 37:141-159.
Kulldorff M. A spatial scan statistic. Communications in Statistics-Theory and Methods 1997; 26:1487-1496.
Kulldorff M, Huang L, Pickle L, Duczmal L. An elliptic spatial scan statistic. Statistics in Medicine 2006; 25:3929-3943.
Oliver MN, Matthews KA, Siadaty M, Hauck FR, Pickle LW. Geographic bias related to geocoding in epidemiologic studies. International Journal of Health Geographics 2005; 4:29.
Heagerty PJ, Lele SR. A composite likelihood approach to binary spatial data. Journal of the American Statistical Association 1998; 93:1099-1111.
Gilboa SM, Mendola P, Olshan AF, Harness C, Loomis D, Langlois PH, Savitz DA, Herring AH. Comparison of residential geocoding methods in population-based study of air quality and birth defects. Environmental Research 2006; 101:256-262.
Dearwent SM, Jacobs RR, Halbert JB. Locational uncertainty in georeferencing public health datasets. Journal of Exposure Analysis and Environmental Epidemiology 2001; 11:329-334.
ArcGIS9. Geocoding Rule Base Developer's Guide. Earth Sciences Research Institute: Redlands, CA, 2003.
McElroy JA, Remington PL, Trentham-Dietz A, Robert SA, Newcomb PA. Geocoding addresses from a large population-based study: lessons learned. Epidemiology 2003; 14:399-407.
Bonner MR, Han D, Nie J, Rogerson P, Vena JE, Freudenheim JL. Positional accuracy of geocoded addresses in epidemiologic research. Epidemiology 2003; 14:408-412.
Patil GP, Taillie C. Upper level set scan statistic for detecting arbitrarily shaped hotspots. Environmental and Ecological Statistics 2004; 11:183-197.
Boscoe FP, Kielb CL, Schymura MJ, Bolani TM. Assessing and improving census tract completeness. Journal of Registry Management 2002; 29:117-120.
1990; 52
1997; 26
2006; 15
2004; 4
2008
2003; 14
2007
2004
2003
2002
1999; 5
1996; 15
2007; 13
2004; 11
2002; 29
2000
2004; 39
2002; 46
2006; 25
1994; 140
2003; 2
2005; 4
2007; 6
1998; 93
2008; 64
2001; 11
2005; 37
2005; 16
2006; 101
Jacquez GM (e_1_2_1_15_2) 1994; 140
Cuzick J (e_1_2_1_21_2) 1990; 52
Kulldorff M (e_1_2_1_23_2) 2002
e_1_2_1_22_2
e_1_2_1_20_2
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_24_2
e_1_2_1_25_2
e_1_2_1_28_2
e_1_2_1_29_2
Jacquez GM (e_1_2_1_8_2) 2000
e_1_2_1_30_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_2_2
Boscoe FP (e_1_2_1_5_2) 2002; 29
e_1_2_1_11_2
e_1_2_1_34_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_33_2
e_1_2_1_32_2
e_1_2_1_10_2
ArcGIS9 (e_1_2_1_18_2) 2003
e_1_2_1_31_2
Zimmerman DL (e_1_2_1_6_2) 2008
e_1_2_1_16_2
e_1_2_1_13_2
e_1_2_1_14_2
e_1_2_1_19_2
e_1_2_1_17_2
e_1_2_1_9_2
References_xml – reference: Jacquez GM. Cuzick and Edwards' test when exact locations are unknown. American Journal of Epidemiology 1994; 140:58-64.
– reference: Oliver MN, Matthews KA, Siadaty M, Hauck FR, Pickle LW. Geographic bias related to geocoding in epidemiologic studies. International Journal of Health Geographics 2005; 4:29.
– reference: Kravets N, Hadden WC. The accuracy of address coding and the effects of coding errors. Health and Place 2007; 13:293-298.
– reference: Gregorio KK, Cromley E, Mrozinski R, Walsh SJ. Subject loss in spatial analysis of breast cancer. Health and Place 1999; 5:173-177.
– reference: Duczmal L, Kulldorff M, Huang L. Evaluation of spatial scan statistics for irregularly shaped clusters. Journal of Computational and Graphical Statistics 2006; 15:428-442.
– reference: Zimmerman DL, Fang X, Mazumdar S, Rushton G. Modelling the probability distribution of positional errors incurred by residential address geocoding. International Journal of Health Geographics 2007; 6:1.
– reference: Zimmerman DL. Estimating the intensity of a spatial point process from locations coarsened by incomplete geocoding. Biometrics 2008; 64:262-270.
– reference: Waller LA, Hill EG, Rudd RA. The geography of power: statistical performance of tests of clusters and clustering in heterogeneous populations. Statistics in Medicine 2006; 25:853-865.
– reference: Assuncao R, Costa M, Tavares A, Ferreira S. Fast detection of arbitrarily shaped disease clusters. Statistics in Medicine 2006; 25:723-742.
– reference: Patil GP, Taillie C. Upper level set scan statistic for detecting arbitrarily shaped hotspots. Environmental and Ecological Statistics 2004; 11:183-197.
– reference: Tango T, Takahashi K. A flexibly shaped spatial scan statistic for detecting clusters. International Journal of Health Geographics 2005; 4:11.
– reference: Ward MH, Nuckols JR, Giglierano J, Bonner MR, Wolter C, Airola M, Mix W, Colt JS, Hartge P. Positional accuracy of two methods of geocoding. Epidemiology 2005; 16:542-547.
– reference: Burra T, Jerrett M, Burnett RT, Anderson M. Conceptual and practical issues in the detection of local disease clusters: a study of mortality in Hamilton, Ontario. Canadian Geographer 2002; 46:160-171.
– reference: Waller LA. Statistical power and design of focused clustering studies. Statistics in Medicine 1996; 15:765-782.
– reference: Gilboa SM, Mendola P, Olshan AF, Harness C, Loomis D, Langlois PH, Savitz DA, Herring AH. Comparison of residential geocoding methods in population-based study of air quality and birth defects. Environmental Research 2006; 101:256-262.
– reference: Waller LA, Gotway CA. Applied Spatial Statistics for Public Health Data. Wiley: Hoboken, NJ, 2004.
– reference: Bonner MR, Han D, Nie J, Rogerson P, Vena JE, Freudenheim JL. Positional accuracy of geocoded addresses in epidemiologic research. Epidemiology 2003; 14:408-412.
– reference: McElroy JA, Remington PL, Trentham-Dietz A, Robert SA, Newcomb PA. Geocoding addresses from a large population-based study: lessons learned. Epidemiology 2003; 14:399-407.
– reference: Cuzick J, Edwards R. Spatial clustering for inhomogeneous populations. Journal of the Royal Statistical Society, Series B 1990; 52:73-104 (with Discussion).
– reference: Klassen AC, Curreiro FC, Hong JH, Williams C, Kulldorff M, Meissner HI, Alberg A, Ensminger M. The role of area-level influences on prostate cancer grade and stage at diagnosis. Preventive Medicine 2004; 39:441-448.
– reference: Sweeney SH, Konty KJ. Robust point-pattern inference from spatially censored data. Environment and Planning A 2005; 37:141-159.
– reference: Boscoe FP, Kielb CL, Schymura MJ, Bolani TM. Assessing and improving census tract completeness. Journal of Registry Management 2002; 29:117-120.
– reference: Kulldorff M, Huang L, Pickle L, Duczmal L. An elliptic spatial scan statistic. Statistics in Medicine 2006; 25:3929-3943.
– reference: Kulldorff M. A spatial scan statistic. Communications in Statistics-Theory and Methods 1997; 26:1487-1496.
– reference: Dearwent SM, Jacobs RR, Halbert JB. Locational uncertainty in georeferencing public health datasets. Journal of Exposure Analysis and Environmental Epidemiology 2001; 11:329-334.
– reference: Heagerty PJ, Lele SR. A composite likelihood approach to binary spatial data. Journal of the American Statistical Association 1998; 93:1099-1111.
– reference: Duczmal L, Assuncao R. A simulated annealing strategy for the detection of arbitrarily shaped spatial clusters. Computational Statistics and Data Analysis 2004; 4:269-286.
– reference: Cayo MR, Talbot TO. Positional error in automated geocoding of residential addresses. International Journal of Health Geographics 2003; 2:10.
– reference: ArcGIS9. Geocoding Rule Base Developer's Guide. Earth Sciences Research Institute: Redlands, CA, 2003.
– volume: 4
  start-page: 29
  year: 2005
  article-title: Geographic bias related to geocoding in epidemiologic studies
  publication-title: International Journal of Health Geographics
– volume: 2
  start-page: 10
  year: 2003
  article-title: Positional error in automated geocoding of residential addresses
  publication-title: International Journal of Health Geographics
– volume: 14
  start-page: 399
  year: 2003
  end-page: 407
  article-title: Geocoding addresses from a large population‐based study: lessons learned
  publication-title: Epidemiology
– volume: 14
  start-page: 408
  year: 2003
  end-page: 412
  article-title: Positional accuracy of geocoded addresses in epidemiologic research
  publication-title: Epidemiology
– year: 2007
– volume: 25
  start-page: 3929
  year: 2006
  end-page: 3943
  article-title: An elliptic spatial scan statistic
  publication-title: Statistics in Medicine
– volume: 101
  start-page: 256
  year: 2006
  end-page: 262
  article-title: Comparison of residential geocoding methods in population‐based study of air quality and birth defects
  publication-title: Environmental Research
– volume: 11
  start-page: 329
  year: 2001
  end-page: 334
  article-title: Locational uncertainty in georeferencing public health datasets
  publication-title: Journal of Exposure Analysis and Environmental Epidemiology
– year: 2003
– year: 2000
– volume: 4
  start-page: 11
  year: 2005
  article-title: A flexibly shaped spatial scan statistic for detecting clusters
  publication-title: International Journal of Health Geographics
– volume: 64
  start-page: 262
  year: 2008
  end-page: 270
  article-title: Estimating the intensity of a spatial point process from locations coarsened by incomplete geocoding
  publication-title: Biometrics
– volume: 16
  start-page: 542
  year: 2005
  end-page: 547
  article-title: Positional accuracy of two methods of geocoding
  publication-title: Epidemiology
– volume: 6
  start-page: 1
  year: 2007
  article-title: Modelling the probability distribution of positional errors incurred by residential address geocoding
  publication-title: International Journal of Health Geographics
– volume: 46
  start-page: 160
  year: 2002
  end-page: 171
  article-title: Conceptual and practical issues in the detection of local disease clusters: a study of mortality in Hamilton, Ontario
  publication-title: Canadian Geographer
– volume: 26
  start-page: 1487
  year: 1997
  end-page: 1496
  article-title: A spatial scan statistic
  publication-title: Communications in Statistics—Theory and Methods
– volume: 13
  start-page: 293
  year: 2007
  end-page: 298
  article-title: The accuracy of address coding and the effects of coding errors
  publication-title: Health and Place
– volume: 25
  start-page: 723
  year: 2006
  end-page: 742
  article-title: Fast detection of arbitrarily shaped disease clusters
  publication-title: Statistics in Medicine
– volume: 39
  start-page: 441
  year: 2004
  end-page: 448
  article-title: The role of area‐level influences on prostate cancer grade and stage at diagnosis
  publication-title: Preventive Medicine
– volume: 5
  start-page: 173
  year: 1999
  end-page: 177
  article-title: Subject loss in spatial analysis of breast cancer
  publication-title: Health and Place
– volume: 15
  start-page: 428
  year: 2006
  end-page: 442
  article-title: Evaluation of spatial scan statistics for irregularly shaped clusters
  publication-title: Journal of Computational and Graphical Statistics
– year: 2002
– year: 2008
– volume: 15
  start-page: 765
  year: 1996
  end-page: 782
  article-title: Statistical power and design of focused clustering studies
  publication-title: Statistics in Medicine
– volume: 11
  start-page: 183
  year: 2004
  end-page: 197
  article-title: Upper level set scan statistic for detecting arbitrarily shaped hotspots
  publication-title: Environmental and Ecological Statistics
– year: 2004
– volume: 25
  start-page: 853
  year: 2006
  end-page: 865
  article-title: The geography of power: statistical performance of tests of clusters and clustering in heterogeneous populations
  publication-title: Statistics in Medicine
– volume: 29
  start-page: 117
  year: 2002
  end-page: 120
  article-title: Assessing and improving census tract completeness
  publication-title: Journal of Registry Management
– volume: 4
  start-page: 269
  year: 2004
  end-page: 286
  article-title: A simulated annealing strategy for the detection of arbitrarily shaped spatial clusters
  publication-title: Computational Statistics and Data Analysis
– volume: 140
  start-page: 58
  year: 1994
  end-page: 64
  article-title: Cuzick and Edwards' test when exact locations are unknown
  publication-title: American Journal of Epidemiology
– volume: 93
  start-page: 1099
  year: 1998
  end-page: 1111
  article-title: A composite likelihood approach to binary spatial data
  publication-title: Journal of the American Statistical Association
– volume: 37
  start-page: 141
  year: 2005
  end-page: 159
  article-title: Robust point‐pattern inference from spatially censored data
  publication-title: Environment and Planning A
– volume: 52
  start-page: 73
  year: 1990
  end-page: 104
  article-title: Spatial clustering for inhomogeneous populations
  publication-title: Journal of the Royal Statistical Society, Series B
– ident: e_1_2_1_31_2
  doi: 10.1002/sim.2418
– ident: e_1_2_1_14_2
  doi: 10.1186/1476-072X-6-1
– ident: e_1_2_1_17_2
– ident: e_1_2_1_30_2
  doi: 10.1080/01621459.1998.10473771
– ident: e_1_2_1_4_2
  doi: 10.1016/j.healthplace.2005.08.006
– volume: 29
  start-page: 117
  year: 2002
  ident: e_1_2_1_5_2
  article-title: Assessing and improving census tract completeness
  publication-title: Journal of Registry Management
– ident: e_1_2_1_7_2
  doi: 10.1002/(SICI)1097-0258(19960415)15:7/9<765::AID-SIM248>3.0.CO;2-N
– ident: e_1_2_1_24_2
  doi: 10.1002/sim.2490
– ident: e_1_2_1_33_2
  doi: 10.1016/j.ypmed.2004.04.031
– ident: e_1_2_1_11_2
  doi: 10.1186/1476-072X-2-10
– ident: e_1_2_1_28_2
  doi: 10.1002/sim.2411
– ident: e_1_2_1_26_2
  doi: 10.1016/S0167-9473(02)00302-X
– ident: e_1_2_1_12_2
  doi: 10.1097/01.EDE.0000073121.63254.c5
– volume: 140
  start-page: 58
  year: 1994
  ident: e_1_2_1_15_2
  article-title: Cuzick and Edwards' test when exact locations are unknown
  publication-title: American Journal of Epidemiology
  doi: 10.1093/oxfordjournals.aje.a117159
– ident: e_1_2_1_2_2
  doi: 10.1016/S1353-8292(99)00004-0
– volume-title: Quantifying Spatial Uncertainty in Natural Resources: Theory and Applications for GIS and Remote Sensing
  year: 2000
  ident: e_1_2_1_8_2
– volume-title: Geocoding Rule Base Developer's Guide
  year: 2003
  ident: e_1_2_1_18_2
– ident: e_1_2_1_29_2
  doi: 10.1198/106186006X112396
– ident: e_1_2_1_27_2
  doi: 10.1186/1476-072X-4-11
– ident: e_1_2_1_13_2
  doi: 10.1097/01.ede.0000165364.54925.f3
– ident: e_1_2_1_19_2
  doi: 10.1097/01.EDE.0000073160.79633.c1
– volume: 52
  start-page: 73
  year: 1990
  ident: e_1_2_1_21_2
  article-title: Spatial clustering for inhomogeneous populations
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1990.tb01773.x
– volume-title: Geocoding Health Data: The Use of Geographic Codes in Cancer Prevention and Control, Research and Practice
  year: 2008
  ident: e_1_2_1_6_2
– ident: e_1_2_1_25_2
  doi: 10.1023/B:EEST.0000027208.48919.7e
– ident: e_1_2_1_3_2
  doi: 10.1186/1476-072X-4-29
– ident: e_1_2_1_9_2
  doi: 10.1016/j.envres.2006.01.004
– ident: e_1_2_1_32_2
  doi: 10.1111/j.1541-0420.2007.00870.x
– ident: e_1_2_1_34_2
  doi: 10.1068/a35318
– volume-title: SaTScan v. 3.0: Software for the Spatial and Space‐Time Scan Statistics
  year: 2002
  ident: e_1_2_1_23_2
– ident: e_1_2_1_10_2
  doi: 10.1038/sj.jea.7500173
– ident: e_1_2_1_22_2
  doi: 10.1080/03610929708831995
– ident: e_1_2_1_20_2
  doi: 10.1002/0471662682
– ident: e_1_2_1_16_2
  doi: 10.1111/j.1541-0064.2002.tb00737.x
SSID ssj0011527
Score 2.0115244
Snippet Geocoding a study population as completely as possible is an important data assimilation component of many spatial epidemiologic studies. Unfortunately,...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4254
SubjectTerms Algorithms
Cluster Analysis
Computer Simulation
Disease
disease clustering
Epidemiologic Methods
Epidemiology
geocoding
Geographic Information Systems
Interpolation
Simulation
spatial cluster detection
Title Spatial clustering of the failure to geocode and its implications for the detection of disease clustering
URI https://api.istex.fr/ark:/67375/WNG-93TX1VNN-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.3288
https://www.ncbi.nlm.nih.gov/pubmed/18407570
https://www.proquest.com/docview/223138745
https://www.proquest.com/docview/69420569
Volume 27
WOSCitedRecordID wos000258968100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011527
  issn: 0277-6715
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB-8XZED8WPVs56eEUSferfNR5M-iroqeEV0T_ctJGkixbtWtrvin2_Sr7uDEwSf-tBpGJKZ5JfOzG8AnhuKjWLcxMTpIqbauFgramLLSGG5hyQpKdpmEzzPxWqVfeqzKkMtTMcPMf5wC57R7tfBwZVujs5JQ5vy7JBgIXZgir3Z0glM33xenHwcYwhDw9YQpEx5wgbq2Tk-Gr69dBhNw7z-vgppXgau7cmzuP0_Ot-BWz3eRK86A7kL12w1gxvHfUR9Bje7_3aoK0eawW5Anx158z0oQ8Nib6DInG4DoYI_5lDtkMeMyKkyJLSjTY2-2zoUxiNVFajcNKi8kKSOPCZu5Qu7aZO-qjBAHxW6MOx9OFm8Xb5-H_e9GWJDBBWxolY7I4RWWSqYCyT1hWAGB_47Z4pi7hKDnaGKEJNmNtEJd5oxkYZSL2Ez8gAmVV3Zh4C4NY5hTf3uIajz1zGmrOBFphPKucE2gpfDIknTE5eH_hmnsqNcxtJPqwzTGsGzUfJnR9ZxhcyLdp1HAbX-EZLbOJPf8ncyI8tV8jXP5TKC_cEQZO_XjfRgKiGhQ0AET8e33iFDlEVVtt42Ms0o9qgyi2Cvs55zVfxlmjM-9yq0RvJXHeWXD8fh-ehfBfdhd8hjwfPHMNmst_YJXDe_vMGsD2CHr8RB7x5_ADTQE0A
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VXQSVEI_lFQrUSAhOoRvHjh1xQsDSit0IwbbszXIcG0WUBO0D8fPx5LFtpSIhccohE2tkz9hfPDPfADw3jBrNhQljlxchy40Lc81MaHlcWOEhSRIXTbMJkWVysUg_7cDrvham5YfYXrihZzT7NTo4XkgfnLGGrsofr2Iq5RUYMm9FfADDd58nx9NtEKHv2IpRykREvOeeHdOD_tsLp9EQJ_b3ZVDzInJtjp7Jrf9S-jbc7BAnedOayB3YsdUIrs26mPoIbrQ3d6QtSBrBLuLPlr75LpTYstibKDGnG6RU8AcdqR3xqJE4XWJKO1nX5JutsTSe6Kog5XpFynNp6sSj4ka-sOsm7avCAbq40Llh78Hx5P387WHYdWcITSyZDDWzuTNS5jpNJHdIU19Ibigy4DlTFGMXGeoM03FsktRGeSRczrlMsNhL2jS-D4OqruxDIMIax2nO_P4hmfM_ZFxbKYo0j5gQhtoAXvarpExHXY4dNE5VS7pMlZ9WhdMawLOt5M-WruMSmRfNQm8F9PI7prcJrr5mH1QazxfRSZapeQB7vSWozrNXysOpKMYeAQHsb996l8Q4i65svVmpJGXU48o0gAet-Zyp4n-nBRdjr0JjJX_VUX05muHz0b8K7sP1w_lsqqZH2cc92O2zWuj4MQzWy419AlfNL288y6edl_wBJeoWSA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB6VLqoqIY7lCgVqJARPoRsfsSOeEGWhoo0q2NJ9sxwfKKIk1R6In4-dq61UJCSe8pCJNbJn7M-ZmW8AXmqKtWJcx8QVJqaFdnGhqI4tI8ZyD0lSYppmEzzPxXyeHW_A274WpuWHGH64Bc9o9uvg4PbcuL0L1tBl-fMNwULcgBFlWeq9crT_ZXpyOAQR-o6tIUqZ8oT13LMTvNd_e-U0GoWJ_X0d1LyKXJujZ3rnv5S-C7c7xInetSZyDzZsNYatoy6mPoZb7Z871BYkjWE74M-Wvvk-lKFlsTdRpM_WgVLBH3SodsijRuRUGVLa0apG320dSuORqgwqV0tUXkpTRx4VN_LGrpq0ryoM0MWFLg37AE6mH2bvP8Vdd4ZYE0FFrKgtnBaiUFkqmAs09UYwjQMDntPGTFyisdNUEaLTzCZFwl3BmEhDsZewGXkIm1Vd2ceAuNWO4YL6_UNQ5y9kTFnBTVYklHONbQSv-1WSuqMuDx00zmRLuoyln1YZpjWCF4PkeUvXcY3Mq2ahBwG1-BHS2ziTp_lHmZHZPPmW53IWwU5vCbLz7KX0cCohoUdABLvDW--SIc6iKluvlzLNKPa4MovgUWs-F6r46zRnfOJVaKzkrzrKrwdH4fnkXwV3Yet4fyoPD_LPO7DdJ7XgyVPYXC3W9hnc1L-87Syed07yB5GyFcM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+clustering+of+the+failure+to+geocode+and+its+implications+for+the+detection+of+disease+clustering&rft.jtitle=Statistics+in+medicine&rft.au=Zimmerman%2C+Dale+L.&rft.au=Fang%2C+Xiangming&rft.au=Mazumdar%2C+Soumya&rft.date=2008-09-20&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=27&rft.issue=21&rft.spage=4254&rft.epage=4266&rft_id=info:doi/10.1002%2Fsim.3288&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sim_3288
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon