Self‐Intercalation Tunable Interlayer Exchange Coupling in a Synthetic van der Waals Antiferromagnet

One of the most promising avenues in 2D materials research is the synthesis of antiferromagnets employing 2D van der Waals (vdW) magnets. However, it has proven challenging, due in part to the complicated fabrication process and undesired adsorbates as well as the significantly deteriorated ferromag...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced functional materials Ročník 32; číslo 32
Hlavní autoři: Zhang, Xiaoqian, Liu, Wenqing, Niu, Wei, Lu, Qiangsheng, Wang, Wei, Sarikhani, Ali, Wu, Xiaohua, Zhu, Chunhui, Sun, Jiabao, Vaninger, Mitchel, Miceli, Paul. F., Li, Jianqi, Singh, David J., Hor, Yew San, Zhao, Yue, Liu, Chang, He, Liang, Zhang, Rong, Bian, Guang, Yu, Dapeng, Xu, Yongbing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc 01.08.2022
Wiley Blackwell (John Wiley & Sons)
Témata:
ISSN:1616-301X, 1616-3028
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract One of the most promising avenues in 2D materials research is the synthesis of antiferromagnets employing 2D van der Waals (vdW) magnets. However, it has proven challenging, due in part to the complicated fabrication process and undesired adsorbates as well as the significantly deteriorated ferromagnetism at atomic layers. Here, the engineering of the antiferromagnetic (AFM) interlayer exchange coupling between atomically thin yet ferromagnetic CrTe2 layers in an ultra‐high vacuum‐free 2D magnetic crystal, Cr5Te8 is reported. By self‐introducing interstitial Cr atoms in the vdW gaps, the emergent AFM ordering and the resultant giant magnetoresistance effect are induced. A large negative magnetoresistance (10%) with a plateau‐like feature is revealed, which is consistent with the AFM interlayer coupling between the adjacent CrTe2 main layers in a temperature window of 30 K below the Néel temperature. Notably, the AFM state has a relatively weak interlayer exchange coupling, allowing a switching between the interlayer AFM and ferromagnetic states at moderate magnetic fields. This work represents a new route to engineering low‐power devices that underpin the emerging spintronic technologies, and an ideal laboratory to study 2D magnetism. A giant magnetoresistance is induced by self‐introducing interstitial Cr atoms in the van der Waals gaps of CrTe2 layers. A large negative magnetoresistance (10%) with a plateau‐like feature is revealed, resulting from the antiferromagnetic interlayer coupling between the adjacent CrTe2 layers below the Néel temperature. These findings offer a new horizon in engineering functional structures for 2D magnet‐based spintronics.
AbstractList Abstract One of the most promising avenues in 2D materials research is the synthesis of antiferromagnets employing 2D van der Waals (vdW) magnets. However, it has proven challenging, due in part to the complicated fabrication process and undesired adsorbates as well as the significantly deteriorated ferromagnetism at atomic layers. Here, the engineering of the antiferromagnetic (AFM) interlayer exchange coupling between atomically thin yet ferromagnetic CrTe 2 layers in an ultra‐high vacuum‐free 2D magnetic crystal, Cr 5 Te 8 is reported. By self‐introducing interstitial Cr atoms in the vdW gaps, the emergent AFM ordering and the resultant giant magnetoresistance effect are induced. A large negative magnetoresistance (10%) with a plateau‐like feature is revealed, which is consistent with the AFM interlayer coupling between the adjacent CrTe 2 main layers in a temperature window of 30 K below the Néel temperature. Notably, the AFM state has a relatively weak interlayer exchange coupling, allowing a switching between the interlayer AFM and ferromagnetic states at moderate magnetic fields. This work represents a new route to engineering low‐power devices that underpin the emerging spintronic technologies, and an ideal laboratory to study 2D magnetism.
One of the most promising avenues in 2D materials research is the synthesis of antiferromagnets employing 2D van der Waals (vdW) magnets. However, it has proven challenging, due in part to the complicated fabrication process and undesired adsorbates as well as the significantly deteriorated ferromagnetism at atomic layers. Here, the engineering of the antiferromagnetic (AFM) interlayer exchange coupling between atomically thin yet ferromagnetic CrTe2 layers in an ultra‐high vacuum‐free 2D magnetic crystal, Cr5Te8 is reported. By self‐introducing interstitial Cr atoms in the vdW gaps, the emergent AFM ordering and the resultant giant magnetoresistance effect are induced. A large negative magnetoresistance (10%) with a plateau‐like feature is revealed, which is consistent with the AFM interlayer coupling between the adjacent CrTe2 main layers in a temperature window of 30 K below the Néel temperature. Notably, the AFM state has a relatively weak interlayer exchange coupling, allowing a switching between the interlayer AFM and ferromagnetic states at moderate magnetic fields. This work represents a new route to engineering low‐power devices that underpin the emerging spintronic technologies, and an ideal laboratory to study 2D magnetism.
One of the most promising avenues in 2D materials research is the synthesis of antiferromagnets employing 2D van der Waals (vdW) magnets. However, it has proven challenging, due in part to the complicated fabrication process and undesired adsorbates as well as the significantly deteriorated ferromagnetism at atomic layers. Here, the engineering of the antiferromagnetic (AFM) interlayer exchange coupling between atomically thin yet ferromagnetic CrTe 2 layers in an ultra‐high vacuum‐free 2D magnetic crystal, Cr 5 Te 8 is reported. By self‐introducing interstitial Cr atoms in the vdW gaps, the emergent AFM ordering and the resultant giant magnetoresistance effect are induced. A large negative magnetoresistance (10%) with a plateau‐like feature is revealed, which is consistent with the AFM interlayer coupling between the adjacent CrTe 2 main layers in a temperature window of 30 K below the Néel temperature. Notably, the AFM state has a relatively weak interlayer exchange coupling, allowing a switching between the interlayer AFM and ferromagnetic states at moderate magnetic fields. This work represents a new route to engineering low‐power devices that underpin the emerging spintronic technologies, and an ideal laboratory to study 2D magnetism.
One of the most promising avenues in 2D materials research is the synthesis of antiferromagnets employing 2D van der Waals (vdW) magnets. However, it has proven challenging, due in part to the complicated fabrication process and undesired adsorbates as well as the significantly deteriorated ferromagnetism at atomic layers. Here, the engineering of the antiferromagnetic (AFM) interlayer exchange coupling between atomically thin yet ferromagnetic CrTe2 layers in an ultra‐high vacuum‐free 2D magnetic crystal, Cr5Te8 is reported. By self‐introducing interstitial Cr atoms in the vdW gaps, the emergent AFM ordering and the resultant giant magnetoresistance effect are induced. A large negative magnetoresistance (10%) with a plateau‐like feature is revealed, which is consistent with the AFM interlayer coupling between the adjacent CrTe2 main layers in a temperature window of 30 K below the Néel temperature. Notably, the AFM state has a relatively weak interlayer exchange coupling, allowing a switching between the interlayer AFM and ferromagnetic states at moderate magnetic fields. This work represents a new route to engineering low‐power devices that underpin the emerging spintronic technologies, and an ideal laboratory to study 2D magnetism. A giant magnetoresistance is induced by self‐introducing interstitial Cr atoms in the van der Waals gaps of CrTe2 layers. A large negative magnetoresistance (10%) with a plateau‐like feature is revealed, resulting from the antiferromagnetic interlayer coupling between the adjacent CrTe2 layers below the Néel temperature. These findings offer a new horizon in engineering functional structures for 2D magnet‐based spintronics.
Author Niu, Wei
Li, Jianqi
Wang, Wei
Yu, Dapeng
Singh, David J.
Lu, Qiangsheng
Wu, Xiaohua
Sarikhani, Ali
Xu, Yongbing
He, Liang
Zhu, Chunhui
Zhang, Xiaoqian
Hor, Yew San
Zhao, Yue
Vaninger, Mitchel
Bian, Guang
Liu, Wenqing
Sun, Jiabao
Miceli, Paul. F.
Zhang, Rong
Liu, Chang
Author_xml – sequence: 1
  givenname: Xiaoqian
  surname: Zhang
  fullname: Zhang, Xiaoqian
  organization: Southern University of Science and Technology
– sequence: 2
  givenname: Wenqing
  surname: Liu
  fullname: Liu, Wenqing
  organization: Royal Holloway University of London
– sequence: 3
  givenname: Wei
  surname: Niu
  fullname: Niu, Wei
  organization: Nanjing University of Posts and Telecommunications
– sequence: 4
  givenname: Qiangsheng
  surname: Lu
  fullname: Lu, Qiangsheng
  organization: University of Missouri
– sequence: 5
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  organization: Nanjing Tech University
– sequence: 6
  givenname: Ali
  surname: Sarikhani
  fullname: Sarikhani, Ali
  organization: Missouri University of Science and Technology
– sequence: 7
  givenname: Xiaohua
  surname: Wu
  fullname: Wu, Xiaohua
  organization: Southern University of Science and Technology
– sequence: 8
  givenname: Chunhui
  surname: Zhu
  fullname: Zhu, Chunhui
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Jiabao
  surname: Sun
  fullname: Sun, Jiabao
  organization: Royal Holloway University of London
– sequence: 10
  givenname: Mitchel
  surname: Vaninger
  fullname: Vaninger, Mitchel
  organization: University of Missouri
– sequence: 11
  givenname: Paul. F.
  surname: Miceli
  fullname: Miceli, Paul. F.
  organization: University of Missouri
– sequence: 12
  givenname: Jianqi
  surname: Li
  fullname: Li, Jianqi
  organization: Chinese Academy of Sciences
– sequence: 13
  givenname: David J.
  surname: Singh
  fullname: Singh, David J.
  organization: University of Missouri
– sequence: 14
  givenname: Yew San
  surname: Hor
  fullname: Hor, Yew San
  organization: Missouri University of Science and Technology
– sequence: 15
  givenname: Yue
  surname: Zhao
  fullname: Zhao, Yue
  organization: Southern University of Science and Technology
– sequence: 16
  givenname: Chang
  surname: Liu
  fullname: Liu, Chang
  organization: Southern University of Science and Technology
– sequence: 17
  givenname: Liang
  surname: He
  fullname: He, Liang
  email: heliang@nju.edu.cn
  organization: Nanjing University
– sequence: 18
  givenname: Rong
  surname: Zhang
  fullname: Zhang, Rong
  email: rzhang@nju.edu.cn
  organization: Nanjing University
– sequence: 19
  givenname: Guang
  surname: Bian
  fullname: Bian, Guang
  email: biang@missouri.edu
  organization: University of Missouri
– sequence: 20
  givenname: Dapeng
  surname: Yu
  fullname: Yu, Dapeng
  organization: Southern University of Science and Technology
– sequence: 21
  givenname: Yongbing
  orcidid: 0000-0002-7823-0725
  surname: Xu
  fullname: Xu, Yongbing
  email: ybxu@nju.edu.cn
  organization: The University of York
BackLink https://www.osti.gov/biblio/1869724$$D View this record in Osti.gov
BookMark eNqFkE1LAzEQhoMo-Hn1HPTcmmSzu9ljqZ-geFDRW8hmJ21km9RsqvbmT_A3-ktMW1EQRBjIMDzPTHi30brzDhDap6RPCWFHqjGTPiMsVVWWa2iLFrToZYSJ9e-ePmyi7a57JISWZca3kLmB1ny8vV-4CEGrVkXrHb6dOVW3gJfTVs0h4JNXPVZuBHjoZ9PWuhG2Dit8M3dxDNFq_KwcbhJ4r1Tb4YGL1kAIfqJGDuIu2jBpDHtf7w66Oz25HZ73Lq_PLoaDy57OBC97mmdEsJpwmvOspoxXOdBaNcI0zBADggkjSmVMoZqGMZ1XotGU67zmHFJlO-hgtdd30cpO2wh6rL1zoKOkoqhKxhN0uIKmwT_NoIvy0c-CS_-SrKgqkeUFLxPVX1E6-K4LYOQ02IkKc0mJXAQuF4HL78CTwH8J6fwyzxiUbf_WqpX2YluY_3NEDo5Pr37cT9O9mUM
CitedBy_id crossref_primary_10_1002_apxr_202300116
crossref_primary_10_1103_c4dm_12ng
crossref_primary_10_1088_1361_6528_ad6ce1
crossref_primary_10_3390_app12199932
crossref_primary_10_1063_5_0194813
crossref_primary_10_1016_j_apsusc_2023_159057
crossref_primary_10_1038_s41598_024_75501_2
crossref_primary_10_1063_5_0135557
crossref_primary_10_1088_1674_1056_ad4cd8
crossref_primary_10_1021_acs_jpclett_4c03337
crossref_primary_10_1063_5_0218916
crossref_primary_10_1002_adfm_202414699
crossref_primary_10_1038_s41570_024_00605_2
crossref_primary_10_1063_5_0277493
crossref_primary_10_1002_adma_202205967
crossref_primary_10_1007_s11467_023_1342_y
crossref_primary_10_1088_1361_6633_adef66
crossref_primary_10_1016_j_mattod_2024_10_002
crossref_primary_10_1002_smtd_202402196
crossref_primary_10_1063_5_0222239
crossref_primary_10_1063_5_0202667
crossref_primary_10_1088_0256_307X_41_6_067501
crossref_primary_10_1002_pssr_202300209
crossref_primary_10_1103_PhysRevApplied_22_034006
Cites_doi 10.1038/ncomms9217
10.1126/science.aav4450
10.1021/acs.nanolett.8b03321
10.1103/PhysRevLett.64.2304
10.3390/s151128665
10.1007/s12274-020-3021-4
10.1063/1.5143387
10.1088/0953-8984/27/17/176002
10.1103/PhysRevLett.72.768
10.1038/nature02277
10.1038/nmat4783
10.1126/science.aav1937
10.1038/s41467-021-21072-z
10.1103/PhysRevLett.89.127203
10.1126/sciadv.abb9379
10.1103/PhysRevLett.61.2472
10.1021/acsnano.5b03980
10.1103/PhysRevLett.75.152
10.1126/science.aar4851
10.1021/acs.nanolett.1c00493
10.1103/PhysRevLett.74.3273
10.1103/PhysRevB.77.184404
10.1126/sciadv.aax9989
10.1146/annurev.ms.25.080195.002041
10.1103/PhysRevLett.67.3598
10.1103/PhysRevLett.71.1641
10.1103/PhysRevB.69.224413
10.1063/1.104765
10.1103/PhysRevB.96.134428
10.1103/PhysRevLett.67.493
10.1038/s41565-018-0135-x
10.1103/RevModPhys.58.801
10.1088/0022-3727/41/9/093001
10.1002/adma.202107512
10.1038/s41467-021-23122-y
10.1103/PhysRevB.92.214419
10.1016/j.scib.2020.03.035
10.1103/PhysRevB.94.075135
10.1126/sciadv.aaw0409
10.1103/PhysRevB.39.4828
10.1073/pnas.1902100116
10.1103/PhysRevB.91.235425
10.1103/PhysRevB.100.024434
10.1103/PhysRevLett.107.216403
10.1038/nature22060
10.1038/s41467-021-22777-x
10.1103/PhysRevLett.106.057207
10.1038/nature22391
10.1039/C4TC01193G
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
OTOTI
DOI 10.1002/adfm.202202977
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 1869724
10_1002_adfm_202202977
ADFM202202977
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of China
  funderid: 11904174
– fundername: National Basic Research Program of China (973 Program)
  funderid: 2014CB921101
– fundername: Jiangsu Shuangchuang Program
– fundername: Royal Society
– fundername: Leverhulme Trust
  funderid: LTSRF1819\15\12
– fundername: NSF‐DMR
  funderid: 1809160
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20190729
– fundername: U.S. Department of Energy
– fundername: IEC\NSFC
  funderid: 181680
– fundername: China Postdoctoral Science Foundation
  funderid: 2021M701590
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAMMB
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
O8X
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
ID FETCH-LOGICAL-c3847-c43082b041543b12495e1bad8fd2f0fe828f87aff6add22c598dc14c5b44e44e3
IEDL.DBID DRFUL
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000798811200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1616-301X
IngestDate Mon Aug 28 20:01:53 EDT 2023
Sun Nov 30 04:27:06 EST 2025
Sat Nov 29 07:21:37 EST 2025
Tue Nov 18 21:06:17 EST 2025
Wed Jan 22 16:25:21 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3847-c43082b041543b12495e1bad8fd2f0fe828f87aff6add22c598dc14c5b44e44e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
ORCID 0000-0002-7823-0725
0000000278230725
OpenAccessLink https://www.osti.gov/biblio/1869724
PQID 2699835647
PQPubID 2045204
PageCount 8
ParticipantIDs osti_scitechconnect_1869724
proquest_journals_2699835647
crossref_primary_10_1002_adfm_202202977
crossref_citationtrail_10_1002_adfm_202202977
wiley_primary_10_1002_adfm_202202977_ADFM202202977
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Germany
PublicationTitle Advanced functional materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 1995; 75
1995; 74
2015; 15
2015; 6
2021; 21
2018; 360
1991; 58
2019; 5
2015; 92
2004; 69
1986; 58
2019; 366
2020; 2009
2020; 13
2016; 94
2008; 77
2015; 9
2004; 427
2019; 100
2019; 363
2020; 8
1990; 64
2020; 6
2018; 18
2017; 96
2015; 27
2021; 12
2011; 107
2011; 106
2014; 2
1991; 67
1993; 71
1995; 25
2017; 16
2002; 89
2022; 34
2019; 116
1988; 61
2008; 41
2015; 91
2020; 65
1994; 72
1989; 39
2017; 546
2018; 13
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
Chen B. (e_1_2_8_44_1) 2020; 2009
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – volume: 91
  year: 2015
  publication-title: Phys. Rev. B
– volume: 71
  start-page: 1641
  year: 1993
  publication-title: Phys. Rev. Lett.
– volume: 21
  start-page: 4280
  year: 2021
  publication-title: Nano Lett.
– volume: 9
  year: 2015
  publication-title: ACS Nano
– volume: 15
  year: 2015
  publication-title: Sensors‐Basel
– volume: 116
  year: 2019
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 366
  start-page: 983
  year: 2019
  publication-title: Science
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 74
  start-page: 3273
  year: 1995
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 549
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 94
  year: 2016
  publication-title: Phys. Rev. B
– volume: 67
  start-page: 3598
  year: 1991
  publication-title: Phys. Rev. Lett.
– volume: 72
  start-page: 768
  year: 1994
  publication-title: Phy. Rev. Lett.
– volume: 6
  start-page: 8217
  year: 2015
  publication-title: Nat. Commun.
– volume: 2009
  year: 2020
  publication-title: arXiv
– volume: 363
  start-page: 706
  year: 2019
  publication-title: Science
– volume: 106
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 12
  start-page: 2844
  year: 2021
  publication-title: Nat. Commun.
– volume: 2
  start-page: 7071
  year: 2014
  publication-title: J. Mater. Chem. C
– volume: 100
  year: 2019
  publication-title: Phys. Rev. B
– volume: 546
  start-page: 265
  year: 2017
  publication-title: Nature
– volume: 77
  year: 2008
  publication-title: Phys. Rev. B
– volume: 427
  start-page: 817
  year: 2004
  publication-title: Nature
– volume: 67
  start-page: 493
  year: 1991
  publication-title: Phys. Rev. Lett.
– volume: 12
  start-page: 809
  year: 2021
  publication-title: Nat. Commun.
– volume: 58
  start-page: 2710
  year: 1991
  publication-title: Appl. Phys. Lett.
– volume: 18
  start-page: 7658
  year: 2018
  publication-title: Nano Lett.
– volume: 96
  year: 2017
  publication-title: Phys. Rev. B
– volume: 89
  year: 2002
  publication-title: Phys. Rev. Lett.
– volume: 61
  start-page: 2472
  year: 1988
  publication-title: Phys. Rev. Lett.
– volume: 546
  start-page: 270
  year: 2017
  publication-title: Nature
– volume: 41
  year: 2008
  publication-title: J. Phys. D: Appl. Phys.
– volume: 39
  start-page: 4828
  year: 1989
  publication-title: Phys. Rev. B
– volume: 16
  start-page: 94
  year: 2017
  publication-title: Nat. Mater.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 360
  start-page: 1214
  year: 2018
  publication-title: Science
– volume: 65
  start-page: 1072
  year: 2020
  publication-title: Sci. Bull.
– volume: 25
  start-page: 357
  year: 1995
  publication-title: Annu. Rev. Mater. Sci.
– volume: 27
  year: 2015
  publication-title: J. Phys.: Condens. Matter
– volume: 58
  start-page: 801
  year: 1986
  publication-title: Rev. Mod. Phys.
– volume: 13
  start-page: 3358
  year: 2020
  publication-title: Nano Res.
– volume: 8
  year: 2020
  publication-title: APL Mater.
– volume: 12
  start-page: 2492
  year: 2021
  publication-title: Nat. Commun.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 69
  year: 2004
  publication-title: Phys. Rev. B
– volume: 75
  start-page: 152
  year: 1995
  publication-title: Phys. Rev. Lett.
– volume: 107
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 92
  year: 2015
  publication-title: Phys. Rev. B
– volume: 64
  start-page: 2304
  year: 1990
  publication-title: Phys. Rev. Lett.
– ident: e_1_2_8_33_1
  doi: 10.1038/ncomms9217
– ident: e_1_2_8_12_1
  doi: 10.1126/science.aav4450
– ident: e_1_2_8_37_1
  doi: 10.1021/acs.nanolett.8b03321
– ident: e_1_2_8_7_1
  doi: 10.1103/PhysRevLett.64.2304
– ident: e_1_2_8_29_1
  doi: 10.3390/s151128665
– ident: e_1_2_8_23_1
  doi: 10.1007/s12274-020-3021-4
– ident: e_1_2_8_22_1
  doi: 10.1063/1.5143387
– ident: e_1_2_8_38_1
  doi: 10.1088/0953-8984/27/17/176002
– ident: e_1_2_8_5_1
  doi: 10.1103/PhysRevLett.72.768
– ident: e_1_2_8_45_1
  doi: 10.1038/nature02277
– ident: e_1_2_8_49_1
  doi: 10.1038/nmat4783
– ident: e_1_2_8_13_1
  doi: 10.1126/science.aav1937
– ident: e_1_2_8_18_1
  doi: 10.1038/s41467-021-21072-z
– ident: e_1_2_8_8_1
  doi: 10.1103/PhysRevLett.89.127203
– volume: 2009
  start-page: 00039
  year: 2020
  ident: e_1_2_8_44_1
  publication-title: arXiv
– ident: e_1_2_8_17_1
  doi: 10.1126/sciadv.abb9379
– ident: e_1_2_8_1_1
  doi: 10.1103/PhysRevLett.61.2472
– ident: e_1_2_8_26_1
  doi: 10.1021/acsnano.5b03980
– ident: e_1_2_8_25_1
  doi: 10.1103/PhysRevLett.75.152
– ident: e_1_2_8_4_1
  doi: 10.1126/science.aar4851
– ident: e_1_2_8_50_1
  doi: 10.1021/acs.nanolett.1c00493
– ident: e_1_2_8_3_1
  doi: 10.1103/PhysRevLett.74.3273
– ident: e_1_2_8_46_1
  doi: 10.1103/PhysRevB.77.184404
– ident: e_1_2_8_31_1
  doi: 10.1126/sciadv.aax9989
– ident: e_1_2_8_41_1
  doi: 10.1146/annurev.ms.25.080195.002041
– ident: e_1_2_8_48_1
  doi: 10.1103/PhysRevLett.67.3598
– ident: e_1_2_8_28_1
  doi: 10.1103/PhysRevLett.71.1641
– ident: e_1_2_8_47_1
  doi: 10.1103/PhysRevB.69.224413
– ident: e_1_2_8_30_1
  doi: 10.1063/1.104765
– ident: e_1_2_8_32_1
  doi: 10.1103/PhysRevB.96.134428
– ident: e_1_2_8_6_1
  doi: 10.1103/PhysRevLett.67.493
– ident: e_1_2_8_16_1
  doi: 10.1038/s41565-018-0135-x
– ident: e_1_2_8_35_1
  doi: 10.1103/RevModPhys.58.801
– ident: e_1_2_8_27_1
  doi: 10.1088/0022-3727/41/9/093001
– ident: e_1_2_8_21_1
  doi: 10.1002/adma.202107512
– ident: e_1_2_8_42_1
  doi: 10.1038/s41467-021-23122-y
– ident: e_1_2_8_24_1
  doi: 10.1103/PhysRevB.92.214419
– ident: e_1_2_8_15_1
  doi: 10.1016/j.scib.2020.03.035
– ident: e_1_2_8_34_1
  doi: 10.1103/PhysRevB.94.075135
– ident: e_1_2_8_14_1
  doi: 10.1126/sciadv.aaw0409
– ident: e_1_2_8_2_1
  doi: 10.1103/PhysRevB.39.4828
– ident: e_1_2_8_9_1
  doi: 10.1073/pnas.1902100116
– ident: e_1_2_8_39_1
  doi: 10.1103/PhysRevB.91.235425
– ident: e_1_2_8_20_1
  doi: 10.1103/PhysRevB.100.024434
– ident: e_1_2_8_43_1
  doi: 10.1103/PhysRevLett.107.216403
– ident: e_1_2_8_11_1
  doi: 10.1038/nature22060
– ident: e_1_2_8_19_1
  doi: 10.1038/s41467-021-22777-x
– ident: e_1_2_8_36_1
  doi: 10.1103/PhysRevLett.106.057207
– ident: e_1_2_8_10_1
  doi: 10.1038/nature22391
– ident: e_1_2_8_40_1
  doi: 10.1039/C4TC01193G
SSID ssj0017734
Score 2.5244367
Snippet One of the most promising avenues in 2D materials research is the synthesis of antiferromagnets employing 2D van der Waals (vdW) magnets. However, it has...
Abstract One of the most promising avenues in 2D materials research is the synthesis of antiferromagnets employing 2D van der Waals (vdW) magnets. However, it...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Adsorbates
Antiferromagnetism
Coupling
Electronic devices
Exchanging
Ferromagnetism
Giant magnetoresistance
GMR effect
High vacuum
interlayer exchange coupling
Interlayers
Magnetoresistivity
Magnets
Materials science
Neel temperature
self‐intercalation
synthetic antiferromagnets
Thin films
Two dimensional materials
van der Waals magnets
Title Self‐Intercalation Tunable Interlayer Exchange Coupling in a Synthetic van der Waals Antiferromagnet
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202202977
https://www.proquest.com/docview/2699835647
https://www.osti.gov/biblio/1869724
Volume 32
WOSCitedRecordID wos000798811200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT9swFH8aLQd2gDGYVmCTD0g7RU0cJ06PFVBx2NBEW9Gb5fhPhVTSqX8Qu-0j8Bn5JDw7aWgPCIlJOSSR7UR-79k_2-_9HsCpoaGWscFFThbqgKV5HnSSMA4Si9iZSosolvlkE_zqKhuNOr_XovhLfoh6w81Zhh-vnYHLfN5-IQ2V2rpIckpd-iW-BU2Kyssa0Dy_7g1_1icJnJcny2nkfLyi0Yq4MaTtzRY2JqbGFA1sA3SuQ1c_9_T2_v-vP8FuhTtJt1SUffhgis_wcY2N8ABs30zs079Hv0mIovMyI4Olj64i_u1EIkInFw9luDA5my5dQO-Y3BZEkv7fAtEktk8QnRONBW8kKjfpOn8kM5tN7-S4MItDGPYuBmeXQZWGIVAxzl2BYo7SJnex_CzOfbJqE-VSZ1ZTG1qDazabcWltimMlpSrpZFpFTCU5Ywav-As0imlhvgIJuaSKZ7FNTYch9sp4brFpoyJNlZa6BcFKBkJVHOUuVcZElOzKVLj-E3X_teBHXf5Pyc7xasljJ1KBuMKR4yrnRaQWwiXk4pS14GQlaVHZ8FzQFJeicZIyrEy9TN_4huie937VT0fvqXQMO-6-9DA8gcZitjTfYFvdL27ns--Vbj8D_XX68Q
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7STaHtoemTbPOoDoWeTGxZtrzHJcmSkM1Smg3dm5D1CIGtN2x2S3vrT-hv7C_pjOx1socSKAVfLCTZaGakT9LMNwAfHI-tTh1ucorYRiIvy6iXxWmUecTOXHtEsSIkm5CjUTGZ9D413oQUC1PzQ7QHbmQZYb4mA6cD6YM71lBtPYWSc075l-Qj2BSoS1kHNo8-Dy6H7VWClPXVcp6Qk1cyWTE3xvxgvYe1lakzQwtbQ533sWtYfAZb_-G3X8DzBnmyfq0qL2HDVa_g2T0-wtfgL9zU__75KxwTovCC1Nh4GeKrWCidasTo7Ph7HTDMDmdLCum9YtcV0-ziR4V4EvtniM-ZxYpfNKo365NHkpvPZ1_1VeUWb-BycDw-PImaRAyRSXH1iowgUpuSovlFWoZ01S4ptS285T72DndtvpDa-xxnS85N1iusSYTJSiEcPulb6FSzym0Di6XmRhapz11PIPoqZOmxa2cSy43VtgvRSgjKNCzllCxjqmp-Za5o_FQ7fl342Na_qfk5_lpzh2SqEFkQPa4hPyKzUJSSS3LRhd2VqFVjxbeK57gZTbNcYGMehPrAN1T_aHDevr37l0bv4cnJ-Hyohqejsx14SuW1v-EudBbzpduDx-bb4vp2vt8o-h8IJv7h
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB7BFiE4lH-xtIAPSJyiJo4TJ8dVtxGIsqpoK_ZmOf6pKi3ZaruL4MYj9Bn7JMw42bR7QEgIKZdYthN5PPY39sw3AO8cj61OHRo5RWwjkdd1VGZxGmUesTPXHlGsCMkm5GRSTKflUedNSLEwLT9Ef-BGmhHWa1Jwd2H93g1rqLaeQsk5p_xL8i5siazMUTe3xl-q08P-KkHK9mo5T8jJK5mumRtjvrfZw8bONJijhm2gztvYNWw-1aP_8NuPYbtDnmzUTpUncMc1T-HhLT7CZ-CP3cxf_7oKx4QovCA1drIK8VUslM40YnR28KMNGGb78xWF9J6x84ZpdvyzQTyJ_TPE58xixa8apzcbkUeSWyzm3_RZ45bP4bQ6ONn_EHWJGCKT4u4VGUGkNjVF84u0DumqXVJrW3jLfewdWm2-kNr7HFdLzk1WFtYkwmS1EA6f9AUMmnnjXgKLpeZGFqnPXSkQfRWy9ti1M4nlxmo7hGgtBGU6lnJKljFTLb8yVzR-qh-_Ibzv61-0_Bx_rLlDMlWILIge15AfkVkqSskluRjC7lrUqtPiS8VzNEbTLBfYmAeh_uUbajSuPvdvr_6l0Vu4fzSu1OHHyacdeEDFrbvhLgyWi5V7DffM9-X55eJNN89_A5Q9_lw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self%E2%80%90Intercalation+Tunable+Interlayer+Exchange+Coupling+in+a+Synthetic+van+der+Waals+Antiferromagnet&rft.jtitle=Advanced+functional+materials&rft.au=Zhang%2C+Xiaoqian&rft.au=Liu%2C+Wenqing&rft.au=Niu%2C+Wei&rft.au=Lu%2C+Qiangsheng&rft.date=2022-08-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=32&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202202977&rft.externalDBID=10.1002%252Fadfm.202202977&rft.externalDocID=ADFM202202977
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon