Self‐Intercalation Tunable Interlayer Exchange Coupling in a Synthetic van der Waals Antiferromagnet
One of the most promising avenues in 2D materials research is the synthesis of antiferromagnets employing 2D van der Waals (vdW) magnets. However, it has proven challenging, due in part to the complicated fabrication process and undesired adsorbates as well as the significantly deteriorated ferromag...
Uloženo v:
| Vydáno v: | Advanced functional materials Ročník 32; číslo 32 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken
Wiley Subscription Services, Inc
01.08.2022
Wiley Blackwell (John Wiley & Sons) |
| Témata: | |
| ISSN: | 1616-301X, 1616-3028 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | One of the most promising avenues in 2D materials research is the synthesis of antiferromagnets employing 2D van der Waals (vdW) magnets. However, it has proven challenging, due in part to the complicated fabrication process and undesired adsorbates as well as the significantly deteriorated ferromagnetism at atomic layers. Here, the engineering of the antiferromagnetic (AFM) interlayer exchange coupling between atomically thin yet ferromagnetic CrTe2 layers in an ultra‐high vacuum‐free 2D magnetic crystal, Cr5Te8 is reported. By self‐introducing interstitial Cr atoms in the vdW gaps, the emergent AFM ordering and the resultant giant magnetoresistance effect are induced. A large negative magnetoresistance (10%) with a plateau‐like feature is revealed, which is consistent with the AFM interlayer coupling between the adjacent CrTe2 main layers in a temperature window of 30 K below the Néel temperature. Notably, the AFM state has a relatively weak interlayer exchange coupling, allowing a switching between the interlayer AFM and ferromagnetic states at moderate magnetic fields. This work represents a new route to engineering low‐power devices that underpin the emerging spintronic technologies, and an ideal laboratory to study 2D magnetism.
A giant magnetoresistance is induced by self‐introducing interstitial Cr atoms in the van der Waals gaps of CrTe2 layers. A large negative magnetoresistance (10%) with a plateau‐like feature is revealed, resulting from the antiferromagnetic interlayer coupling between the adjacent CrTe2 layers below the Néel temperature. These findings offer a new horizon in engineering functional structures for 2D magnet‐based spintronics. |
|---|---|
| AbstractList | Abstract
One of the most promising avenues in 2D materials research is the synthesis of antiferromagnets employing 2D van der Waals (vdW) magnets. However, it has proven challenging, due in part to the complicated fabrication process and undesired adsorbates as well as the significantly deteriorated ferromagnetism at atomic layers. Here, the engineering of the antiferromagnetic (AFM) interlayer exchange coupling between atomically thin yet ferromagnetic CrTe
2
layers in an ultra‐high vacuum‐free 2D magnetic crystal, Cr
5
Te
8
is reported. By self‐introducing interstitial Cr atoms in the vdW gaps, the emergent AFM ordering and the resultant giant magnetoresistance effect are induced. A large negative magnetoresistance (10%) with a plateau‐like feature is revealed, which is consistent with the AFM interlayer coupling between the adjacent CrTe
2
main layers in a temperature window of 30 K below the Néel temperature. Notably, the AFM state has a relatively weak interlayer exchange coupling, allowing a switching between the interlayer AFM and ferromagnetic states at moderate magnetic fields. This work represents a new route to engineering low‐power devices that underpin the emerging spintronic technologies, and an ideal laboratory to study 2D magnetism. One of the most promising avenues in 2D materials research is the synthesis of antiferromagnets employing 2D van der Waals (vdW) magnets. However, it has proven challenging, due in part to the complicated fabrication process and undesired adsorbates as well as the significantly deteriorated ferromagnetism at atomic layers. Here, the engineering of the antiferromagnetic (AFM) interlayer exchange coupling between atomically thin yet ferromagnetic CrTe2 layers in an ultra‐high vacuum‐free 2D magnetic crystal, Cr5Te8 is reported. By self‐introducing interstitial Cr atoms in the vdW gaps, the emergent AFM ordering and the resultant giant magnetoresistance effect are induced. A large negative magnetoresistance (10%) with a plateau‐like feature is revealed, which is consistent with the AFM interlayer coupling between the adjacent CrTe2 main layers in a temperature window of 30 K below the Néel temperature. Notably, the AFM state has a relatively weak interlayer exchange coupling, allowing a switching between the interlayer AFM and ferromagnetic states at moderate magnetic fields. This work represents a new route to engineering low‐power devices that underpin the emerging spintronic technologies, and an ideal laboratory to study 2D magnetism. One of the most promising avenues in 2D materials research is the synthesis of antiferromagnets employing 2D van der Waals (vdW) magnets. However, it has proven challenging, due in part to the complicated fabrication process and undesired adsorbates as well as the significantly deteriorated ferromagnetism at atomic layers. Here, the engineering of the antiferromagnetic (AFM) interlayer exchange coupling between atomically thin yet ferromagnetic CrTe 2 layers in an ultra‐high vacuum‐free 2D magnetic crystal, Cr 5 Te 8 is reported. By self‐introducing interstitial Cr atoms in the vdW gaps, the emergent AFM ordering and the resultant giant magnetoresistance effect are induced. A large negative magnetoresistance (10%) with a plateau‐like feature is revealed, which is consistent with the AFM interlayer coupling between the adjacent CrTe 2 main layers in a temperature window of 30 K below the Néel temperature. Notably, the AFM state has a relatively weak interlayer exchange coupling, allowing a switching between the interlayer AFM and ferromagnetic states at moderate magnetic fields. This work represents a new route to engineering low‐power devices that underpin the emerging spintronic technologies, and an ideal laboratory to study 2D magnetism. One of the most promising avenues in 2D materials research is the synthesis of antiferromagnets employing 2D van der Waals (vdW) magnets. However, it has proven challenging, due in part to the complicated fabrication process and undesired adsorbates as well as the significantly deteriorated ferromagnetism at atomic layers. Here, the engineering of the antiferromagnetic (AFM) interlayer exchange coupling between atomically thin yet ferromagnetic CrTe2 layers in an ultra‐high vacuum‐free 2D magnetic crystal, Cr5Te8 is reported. By self‐introducing interstitial Cr atoms in the vdW gaps, the emergent AFM ordering and the resultant giant magnetoresistance effect are induced. A large negative magnetoresistance (10%) with a plateau‐like feature is revealed, which is consistent with the AFM interlayer coupling between the adjacent CrTe2 main layers in a temperature window of 30 K below the Néel temperature. Notably, the AFM state has a relatively weak interlayer exchange coupling, allowing a switching between the interlayer AFM and ferromagnetic states at moderate magnetic fields. This work represents a new route to engineering low‐power devices that underpin the emerging spintronic technologies, and an ideal laboratory to study 2D magnetism. A giant magnetoresistance is induced by self‐introducing interstitial Cr atoms in the van der Waals gaps of CrTe2 layers. A large negative magnetoresistance (10%) with a plateau‐like feature is revealed, resulting from the antiferromagnetic interlayer coupling between the adjacent CrTe2 layers below the Néel temperature. These findings offer a new horizon in engineering functional structures for 2D magnet‐based spintronics. |
| Author | Niu, Wei Li, Jianqi Wang, Wei Yu, Dapeng Singh, David J. Lu, Qiangsheng Wu, Xiaohua Sarikhani, Ali Xu, Yongbing He, Liang Zhu, Chunhui Zhang, Xiaoqian Hor, Yew San Zhao, Yue Vaninger, Mitchel Bian, Guang Liu, Wenqing Sun, Jiabao Miceli, Paul. F. Zhang, Rong Liu, Chang |
| Author_xml | – sequence: 1 givenname: Xiaoqian surname: Zhang fullname: Zhang, Xiaoqian organization: Southern University of Science and Technology – sequence: 2 givenname: Wenqing surname: Liu fullname: Liu, Wenqing organization: Royal Holloway University of London – sequence: 3 givenname: Wei surname: Niu fullname: Niu, Wei organization: Nanjing University of Posts and Telecommunications – sequence: 4 givenname: Qiangsheng surname: Lu fullname: Lu, Qiangsheng organization: University of Missouri – sequence: 5 givenname: Wei surname: Wang fullname: Wang, Wei organization: Nanjing Tech University – sequence: 6 givenname: Ali surname: Sarikhani fullname: Sarikhani, Ali organization: Missouri University of Science and Technology – sequence: 7 givenname: Xiaohua surname: Wu fullname: Wu, Xiaohua organization: Southern University of Science and Technology – sequence: 8 givenname: Chunhui surname: Zhu fullname: Zhu, Chunhui organization: Chinese Academy of Sciences – sequence: 9 givenname: Jiabao surname: Sun fullname: Sun, Jiabao organization: Royal Holloway University of London – sequence: 10 givenname: Mitchel surname: Vaninger fullname: Vaninger, Mitchel organization: University of Missouri – sequence: 11 givenname: Paul. F. surname: Miceli fullname: Miceli, Paul. F. organization: University of Missouri – sequence: 12 givenname: Jianqi surname: Li fullname: Li, Jianqi organization: Chinese Academy of Sciences – sequence: 13 givenname: David J. surname: Singh fullname: Singh, David J. organization: University of Missouri – sequence: 14 givenname: Yew San surname: Hor fullname: Hor, Yew San organization: Missouri University of Science and Technology – sequence: 15 givenname: Yue surname: Zhao fullname: Zhao, Yue organization: Southern University of Science and Technology – sequence: 16 givenname: Chang surname: Liu fullname: Liu, Chang organization: Southern University of Science and Technology – sequence: 17 givenname: Liang surname: He fullname: He, Liang email: heliang@nju.edu.cn organization: Nanjing University – sequence: 18 givenname: Rong surname: Zhang fullname: Zhang, Rong email: rzhang@nju.edu.cn organization: Nanjing University – sequence: 19 givenname: Guang surname: Bian fullname: Bian, Guang email: biang@missouri.edu organization: University of Missouri – sequence: 20 givenname: Dapeng surname: Yu fullname: Yu, Dapeng organization: Southern University of Science and Technology – sequence: 21 givenname: Yongbing orcidid: 0000-0002-7823-0725 surname: Xu fullname: Xu, Yongbing email: ybxu@nju.edu.cn organization: The University of York |
| BackLink | https://www.osti.gov/biblio/1869724$$D View this record in Osti.gov |
| BookMark | eNqFkE1LAzEQhoMo-Hn1HPTcmmSzu9ljqZ-geFDRW8hmJ21km9RsqvbmT_A3-ktMW1EQRBjIMDzPTHi30brzDhDap6RPCWFHqjGTPiMsVVWWa2iLFrToZYSJ9e-ePmyi7a57JISWZca3kLmB1ny8vV-4CEGrVkXrHb6dOVW3gJfTVs0h4JNXPVZuBHjoZ9PWuhG2Dit8M3dxDNFq_KwcbhJ4r1Tb4YGL1kAIfqJGDuIu2jBpDHtf7w66Oz25HZ73Lq_PLoaDy57OBC97mmdEsJpwmvOspoxXOdBaNcI0zBADggkjSmVMoZqGMZ1XotGU67zmHFJlO-hgtdd30cpO2wh6rL1zoKOkoqhKxhN0uIKmwT_NoIvy0c-CS_-SrKgqkeUFLxPVX1E6-K4LYOQ02IkKc0mJXAQuF4HL78CTwH8J6fwyzxiUbf_WqpX2YluY_3NEDo5Pr37cT9O9mUM |
| CitedBy_id | crossref_primary_10_1002_apxr_202300116 crossref_primary_10_1103_c4dm_12ng crossref_primary_10_1088_1361_6528_ad6ce1 crossref_primary_10_3390_app12199932 crossref_primary_10_1063_5_0194813 crossref_primary_10_1016_j_apsusc_2023_159057 crossref_primary_10_1038_s41598_024_75501_2 crossref_primary_10_1063_5_0135557 crossref_primary_10_1088_1674_1056_ad4cd8 crossref_primary_10_1021_acs_jpclett_4c03337 crossref_primary_10_1063_5_0218916 crossref_primary_10_1002_adfm_202414699 crossref_primary_10_1038_s41570_024_00605_2 crossref_primary_10_1063_5_0277493 crossref_primary_10_1002_adma_202205967 crossref_primary_10_1007_s11467_023_1342_y crossref_primary_10_1088_1361_6633_adef66 crossref_primary_10_1016_j_mattod_2024_10_002 crossref_primary_10_1002_smtd_202402196 crossref_primary_10_1063_5_0222239 crossref_primary_10_1063_5_0202667 crossref_primary_10_1088_0256_307X_41_6_067501 crossref_primary_10_1002_pssr_202300209 crossref_primary_10_1103_PhysRevApplied_22_034006 |
| Cites_doi | 10.1038/ncomms9217 10.1126/science.aav4450 10.1021/acs.nanolett.8b03321 10.1103/PhysRevLett.64.2304 10.3390/s151128665 10.1007/s12274-020-3021-4 10.1063/1.5143387 10.1088/0953-8984/27/17/176002 10.1103/PhysRevLett.72.768 10.1038/nature02277 10.1038/nmat4783 10.1126/science.aav1937 10.1038/s41467-021-21072-z 10.1103/PhysRevLett.89.127203 10.1126/sciadv.abb9379 10.1103/PhysRevLett.61.2472 10.1021/acsnano.5b03980 10.1103/PhysRevLett.75.152 10.1126/science.aar4851 10.1021/acs.nanolett.1c00493 10.1103/PhysRevLett.74.3273 10.1103/PhysRevB.77.184404 10.1126/sciadv.aax9989 10.1146/annurev.ms.25.080195.002041 10.1103/PhysRevLett.67.3598 10.1103/PhysRevLett.71.1641 10.1103/PhysRevB.69.224413 10.1063/1.104765 10.1103/PhysRevB.96.134428 10.1103/PhysRevLett.67.493 10.1038/s41565-018-0135-x 10.1103/RevModPhys.58.801 10.1088/0022-3727/41/9/093001 10.1002/adma.202107512 10.1038/s41467-021-23122-y 10.1103/PhysRevB.92.214419 10.1016/j.scib.2020.03.035 10.1103/PhysRevB.94.075135 10.1126/sciadv.aaw0409 10.1103/PhysRevB.39.4828 10.1073/pnas.1902100116 10.1103/PhysRevB.91.235425 10.1103/PhysRevB.100.024434 10.1103/PhysRevLett.107.216403 10.1038/nature22060 10.1038/s41467-021-22777-x 10.1103/PhysRevLett.106.057207 10.1038/nature22391 10.1039/C4TC01193G |
| ContentType | Journal Article |
| Copyright | 2022 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M OTOTI |
| DOI | 10.1002/adfm.202202977 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace OSTI.GOV |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1616-3028 |
| EndPage | n/a |
| ExternalDocumentID | 1869724 10_1002_adfm_202202977 ADFM202202977 |
| Genre | article |
| GrantInformation_xml | – fundername: Natural Science Foundation of China funderid: 11904174 – fundername: National Basic Research Program of China (973 Program) funderid: 2014CB921101 – fundername: Jiangsu Shuangchuang Program – fundername: Royal Society – fundername: Leverhulme Trust funderid: LTSRF1819\15\12 – fundername: NSF‐DMR funderid: 1809160 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20190729 – fundername: U.S. Department of Energy – fundername: IEC\NSFC funderid: 181680 – fundername: China Postdoctoral Science Foundation funderid: 2021M701590 |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAMMB AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 O8X 7SP 7SR 7U5 8BQ 8FD JG9 L7M AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OTOTI |
| ID | FETCH-LOGICAL-c3847-c43082b041543b12495e1bad8fd2f0fe828f87aff6add22c598dc14c5b44e44e3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000798811200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1616-301X |
| IngestDate | Mon Aug 28 20:01:53 EDT 2023 Sun Nov 30 04:27:06 EST 2025 Sat Nov 29 07:21:37 EST 2025 Tue Nov 18 21:06:17 EST 2025 Wed Jan 22 16:25:21 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 32 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3847-c43082b041543b12495e1bad8fd2f0fe828f87aff6add22c598dc14c5b44e44e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE |
| ORCID | 0000-0002-7823-0725 0000000278230725 |
| OpenAccessLink | https://www.osti.gov/biblio/1869724 |
| PQID | 2699835647 |
| PQPubID | 2045204 |
| PageCount | 8 |
| ParticipantIDs | osti_scitechconnect_1869724 proquest_journals_2699835647 crossref_primary_10_1002_adfm_202202977 crossref_citationtrail_10_1002_adfm_202202977 wiley_primary_10_1002_adfm_202202977_ADFM202202977 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: Germany |
| PublicationTitle | Advanced functional materials |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
| References | 1995; 75 1995; 74 2015; 15 2015; 6 2021; 21 2018; 360 1991; 58 2019; 5 2015; 92 2004; 69 1986; 58 2019; 366 2020; 2009 2020; 13 2016; 94 2008; 77 2015; 9 2004; 427 2019; 100 2019; 363 2020; 8 1990; 64 2020; 6 2018; 18 2017; 96 2015; 27 2021; 12 2011; 107 2011; 106 2014; 2 1991; 67 1993; 71 1995; 25 2017; 16 2002; 89 2022; 34 2019; 116 1988; 61 2008; 41 2015; 91 2020; 65 1994; 72 1989; 39 2017; 546 2018; 13 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 Chen B. (e_1_2_8_44_1) 2020; 2009 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_50_1 |
| References_xml | – volume: 91 year: 2015 publication-title: Phys. Rev. B – volume: 71 start-page: 1641 year: 1993 publication-title: Phys. Rev. Lett. – volume: 21 start-page: 4280 year: 2021 publication-title: Nano Lett. – volume: 9 year: 2015 publication-title: ACS Nano – volume: 15 year: 2015 publication-title: Sensors‐Basel – volume: 116 year: 2019 publication-title: Proc. Natl. Acad. Sci. USA – volume: 366 start-page: 983 year: 2019 publication-title: Science – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 74 start-page: 3273 year: 1995 publication-title: Phys. Rev. Lett. – volume: 13 start-page: 549 year: 2018 publication-title: Nat. Nanotechnol. – volume: 94 year: 2016 publication-title: Phys. Rev. B – volume: 67 start-page: 3598 year: 1991 publication-title: Phys. Rev. Lett. – volume: 72 start-page: 768 year: 1994 publication-title: Phy. Rev. Lett. – volume: 6 start-page: 8217 year: 2015 publication-title: Nat. Commun. – volume: 2009 year: 2020 publication-title: arXiv – volume: 363 start-page: 706 year: 2019 publication-title: Science – volume: 106 year: 2011 publication-title: Phys. Rev. Lett. – volume: 12 start-page: 2844 year: 2021 publication-title: Nat. Commun. – volume: 2 start-page: 7071 year: 2014 publication-title: J. Mater. Chem. C – volume: 100 year: 2019 publication-title: Phys. Rev. B – volume: 546 start-page: 265 year: 2017 publication-title: Nature – volume: 77 year: 2008 publication-title: Phys. Rev. B – volume: 427 start-page: 817 year: 2004 publication-title: Nature – volume: 67 start-page: 493 year: 1991 publication-title: Phys. Rev. Lett. – volume: 12 start-page: 809 year: 2021 publication-title: Nat. Commun. – volume: 58 start-page: 2710 year: 1991 publication-title: Appl. Phys. Lett. – volume: 18 start-page: 7658 year: 2018 publication-title: Nano Lett. – volume: 96 year: 2017 publication-title: Phys. Rev. B – volume: 89 year: 2002 publication-title: Phys. Rev. Lett. – volume: 61 start-page: 2472 year: 1988 publication-title: Phys. Rev. Lett. – volume: 546 start-page: 270 year: 2017 publication-title: Nature – volume: 41 year: 2008 publication-title: J. Phys. D: Appl. Phys. – volume: 39 start-page: 4828 year: 1989 publication-title: Phys. Rev. B – volume: 16 start-page: 94 year: 2017 publication-title: Nat. Mater. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 360 start-page: 1214 year: 2018 publication-title: Science – volume: 65 start-page: 1072 year: 2020 publication-title: Sci. Bull. – volume: 25 start-page: 357 year: 1995 publication-title: Annu. Rev. Mater. Sci. – volume: 27 year: 2015 publication-title: J. Phys.: Condens. Matter – volume: 58 start-page: 801 year: 1986 publication-title: Rev. Mod. Phys. – volume: 13 start-page: 3358 year: 2020 publication-title: Nano Res. – volume: 8 year: 2020 publication-title: APL Mater. – volume: 12 start-page: 2492 year: 2021 publication-title: Nat. Commun. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 69 year: 2004 publication-title: Phys. Rev. B – volume: 75 start-page: 152 year: 1995 publication-title: Phys. Rev. Lett. – volume: 107 year: 2011 publication-title: Phys. Rev. Lett. – volume: 92 year: 2015 publication-title: Phys. Rev. B – volume: 64 start-page: 2304 year: 1990 publication-title: Phys. Rev. Lett. – ident: e_1_2_8_33_1 doi: 10.1038/ncomms9217 – ident: e_1_2_8_12_1 doi: 10.1126/science.aav4450 – ident: e_1_2_8_37_1 doi: 10.1021/acs.nanolett.8b03321 – ident: e_1_2_8_7_1 doi: 10.1103/PhysRevLett.64.2304 – ident: e_1_2_8_29_1 doi: 10.3390/s151128665 – ident: e_1_2_8_23_1 doi: 10.1007/s12274-020-3021-4 – ident: e_1_2_8_22_1 doi: 10.1063/1.5143387 – ident: e_1_2_8_38_1 doi: 10.1088/0953-8984/27/17/176002 – ident: e_1_2_8_5_1 doi: 10.1103/PhysRevLett.72.768 – ident: e_1_2_8_45_1 doi: 10.1038/nature02277 – ident: e_1_2_8_49_1 doi: 10.1038/nmat4783 – ident: e_1_2_8_13_1 doi: 10.1126/science.aav1937 – ident: e_1_2_8_18_1 doi: 10.1038/s41467-021-21072-z – ident: e_1_2_8_8_1 doi: 10.1103/PhysRevLett.89.127203 – volume: 2009 start-page: 00039 year: 2020 ident: e_1_2_8_44_1 publication-title: arXiv – ident: e_1_2_8_17_1 doi: 10.1126/sciadv.abb9379 – ident: e_1_2_8_1_1 doi: 10.1103/PhysRevLett.61.2472 – ident: e_1_2_8_26_1 doi: 10.1021/acsnano.5b03980 – ident: e_1_2_8_25_1 doi: 10.1103/PhysRevLett.75.152 – ident: e_1_2_8_4_1 doi: 10.1126/science.aar4851 – ident: e_1_2_8_50_1 doi: 10.1021/acs.nanolett.1c00493 – ident: e_1_2_8_3_1 doi: 10.1103/PhysRevLett.74.3273 – ident: e_1_2_8_46_1 doi: 10.1103/PhysRevB.77.184404 – ident: e_1_2_8_31_1 doi: 10.1126/sciadv.aax9989 – ident: e_1_2_8_41_1 doi: 10.1146/annurev.ms.25.080195.002041 – ident: e_1_2_8_48_1 doi: 10.1103/PhysRevLett.67.3598 – ident: e_1_2_8_28_1 doi: 10.1103/PhysRevLett.71.1641 – ident: e_1_2_8_47_1 doi: 10.1103/PhysRevB.69.224413 – ident: e_1_2_8_30_1 doi: 10.1063/1.104765 – ident: e_1_2_8_32_1 doi: 10.1103/PhysRevB.96.134428 – ident: e_1_2_8_6_1 doi: 10.1103/PhysRevLett.67.493 – ident: e_1_2_8_16_1 doi: 10.1038/s41565-018-0135-x – ident: e_1_2_8_35_1 doi: 10.1103/RevModPhys.58.801 – ident: e_1_2_8_27_1 doi: 10.1088/0022-3727/41/9/093001 – ident: e_1_2_8_21_1 doi: 10.1002/adma.202107512 – ident: e_1_2_8_42_1 doi: 10.1038/s41467-021-23122-y – ident: e_1_2_8_24_1 doi: 10.1103/PhysRevB.92.214419 – ident: e_1_2_8_15_1 doi: 10.1016/j.scib.2020.03.035 – ident: e_1_2_8_34_1 doi: 10.1103/PhysRevB.94.075135 – ident: e_1_2_8_14_1 doi: 10.1126/sciadv.aaw0409 – ident: e_1_2_8_2_1 doi: 10.1103/PhysRevB.39.4828 – ident: e_1_2_8_9_1 doi: 10.1073/pnas.1902100116 – ident: e_1_2_8_39_1 doi: 10.1103/PhysRevB.91.235425 – ident: e_1_2_8_20_1 doi: 10.1103/PhysRevB.100.024434 – ident: e_1_2_8_43_1 doi: 10.1103/PhysRevLett.107.216403 – ident: e_1_2_8_11_1 doi: 10.1038/nature22060 – ident: e_1_2_8_19_1 doi: 10.1038/s41467-021-22777-x – ident: e_1_2_8_36_1 doi: 10.1103/PhysRevLett.106.057207 – ident: e_1_2_8_10_1 doi: 10.1038/nature22391 – ident: e_1_2_8_40_1 doi: 10.1039/C4TC01193G |
| SSID | ssj0017734 |
| Score | 2.5244367 |
| Snippet | One of the most promising avenues in 2D materials research is the synthesis of antiferromagnets employing 2D van der Waals (vdW) magnets. However, it has... Abstract One of the most promising avenues in 2D materials research is the synthesis of antiferromagnets employing 2D van der Waals (vdW) magnets. However, it... |
| SourceID | osti proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Adsorbates Antiferromagnetism Coupling Electronic devices Exchanging Ferromagnetism Giant magnetoresistance GMR effect High vacuum interlayer exchange coupling Interlayers Magnetoresistivity Magnets Materials science Neel temperature self‐intercalation synthetic antiferromagnets Thin films Two dimensional materials van der Waals magnets |
| Title | Self‐Intercalation Tunable Interlayer Exchange Coupling in a Synthetic van der Waals Antiferromagnet |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202202977 https://www.proquest.com/docview/2699835647 https://www.osti.gov/biblio/1869724 |
| Volume | 32 |
| WOSCitedRecordID | wos000798811200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 issn: 1616-301X databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT9swFH8aLQd2gDGYVmCTD0g7RU0cJ06PFVBx2NBEW9Gb5fhPhVTSqX8Qu-0j8Bn5JDw7aWgPCIlJOSSR7UR-79k_2-_9HsCpoaGWscFFThbqgKV5HnSSMA4Si9iZSosolvlkE_zqKhuNOr_XovhLfoh6w81Zhh-vnYHLfN5-IQ2V2rpIckpd-iW-BU2Kyssa0Dy_7g1_1icJnJcny2nkfLyi0Yq4MaTtzRY2JqbGFA1sA3SuQ1c_9_T2_v-vP8FuhTtJt1SUffhgis_wcY2N8ABs30zs079Hv0mIovMyI4Olj64i_u1EIkInFw9luDA5my5dQO-Y3BZEkv7fAtEktk8QnRONBW8kKjfpOn8kM5tN7-S4MItDGPYuBmeXQZWGIVAxzl2BYo7SJnex_CzOfbJqE-VSZ1ZTG1qDazabcWltimMlpSrpZFpFTCU5Ywav-As0imlhvgIJuaSKZ7FNTYch9sp4brFpoyJNlZa6BcFKBkJVHOUuVcZElOzKVLj-E3X_teBHXf5Pyc7xasljJ1KBuMKR4yrnRaQWwiXk4pS14GQlaVHZ8FzQFJeicZIyrEy9TN_4huie937VT0fvqXQMO-6-9DA8gcZitjTfYFvdL27ns--Vbj8D_XX68Q |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7STaHtoemTbPOoDoWeTGxZtrzHJcmSkM1Smg3dm5D1CIGtN2x2S3vrT-hv7C_pjOx1socSKAVfLCTZaGakT9LMNwAfHI-tTh1ucorYRiIvy6iXxWmUecTOXHtEsSIkm5CjUTGZ9D413oQUC1PzQ7QHbmQZYb4mA6cD6YM71lBtPYWSc075l-Qj2BSoS1kHNo8-Dy6H7VWClPXVcp6Qk1cyWTE3xvxgvYe1lakzQwtbQ533sWtYfAZb_-G3X8DzBnmyfq0qL2HDVa_g2T0-wtfgL9zU__75KxwTovCC1Nh4GeKrWCidasTo7Ph7HTDMDmdLCum9YtcV0-ziR4V4EvtniM-ZxYpfNKo365NHkpvPZ1_1VeUWb-BycDw-PImaRAyRSXH1iowgUpuSovlFWoZ01S4ptS285T72DndtvpDa-xxnS85N1iusSYTJSiEcPulb6FSzym0Di6XmRhapz11PIPoqZOmxa2cSy43VtgvRSgjKNCzllCxjqmp-Za5o_FQ7fl342Na_qfk5_lpzh2SqEFkQPa4hPyKzUJSSS3LRhd2VqFVjxbeK57gZTbNcYGMehPrAN1T_aHDevr37l0bv4cnJ-Hyohqejsx14SuW1v-EudBbzpduDx-bb4vp2vt8o-h8IJv7h |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB7BFiE4lH-xtIAPSJyiJo4TJ8dVtxGIsqpoK_ZmOf6pKi3ZaruL4MYj9Bn7JMw42bR7QEgIKZdYthN5PPY39sw3AO8cj61OHRo5RWwjkdd1VGZxGmUesTPXHlGsCMkm5GRSTKflUedNSLEwLT9Ef-BGmhHWa1Jwd2H93g1rqLaeQsk5p_xL8i5siazMUTe3xl-q08P-KkHK9mo5T8jJK5mumRtjvrfZw8bONJijhm2gztvYNWw-1aP_8NuPYbtDnmzUTpUncMc1T-HhLT7CZ-CP3cxf_7oKx4QovCA1drIK8VUslM40YnR28KMNGGb78xWF9J6x84ZpdvyzQTyJ_TPE58xixa8apzcbkUeSWyzm3_RZ45bP4bQ6ONn_EHWJGCKT4u4VGUGkNjVF84u0DumqXVJrW3jLfewdWm2-kNr7HFdLzk1WFtYkwmS1EA6f9AUMmnnjXgKLpeZGFqnPXSkQfRWy9ti1M4nlxmo7hGgtBGU6lnJKljFTLb8yVzR-qh-_Ibzv61-0_Bx_rLlDMlWILIge15AfkVkqSskluRjC7lrUqtPiS8VzNEbTLBfYmAeh_uUbajSuPvdvr_6l0Vu4fzSu1OHHyacdeEDFrbvhLgyWi5V7DffM9-X55eJNN89_A5Q9_lw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self%E2%80%90Intercalation+Tunable+Interlayer+Exchange+Coupling+in+a+Synthetic+van+der+Waals+Antiferromagnet&rft.jtitle=Advanced+functional+materials&rft.au=Zhang%2C+Xiaoqian&rft.au=Liu%2C+Wenqing&rft.au=Niu%2C+Wei&rft.au=Lu%2C+Qiangsheng&rft.date=2022-08-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=32&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202202977&rft.externalDBID=10.1002%252Fadfm.202202977&rft.externalDocID=ADFM202202977 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |