Understanding of Low‐Porosity Sulfur Electrode for High‐Energy Lithium–Sulfur Batteries
The lithium–sulfur (Li–S) battery is a promising technology for large‐scale energy storage and vehicle electrification due to its high theoretical energy density and low cost. Reducing the sulfur cathode porosity has been identified recently as a viable strategy for improving the cell practical ener...
Gespeichert in:
| Veröffentlicht in: | Advanced energy materials Jg. 13; H. 13 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
01.04.2023
|
| Schlagworte: | |
| ISSN: | 1614-6832, 1614-6840 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The lithium–sulfur (Li–S) battery is a promising technology for large‐scale energy storage and vehicle electrification due to its high theoretical energy density and low cost. Reducing the sulfur cathode porosity has been identified recently as a viable strategy for improving the cell practical energy density and minimizing pore‐filling electrolytes to extend cell life at lean electrolyte conditions. Direct use of a low‐porosity cathode for Li–S battery results in poor electrode wetting, nonuniform electrode reactions, and thus early cell failure. To understand and mitigate the barriers associated with the use of low‐porosity electrodes, multiscale modeling is performed to predict electrode wetting, electrolyte diffusion, and their impacts on sulfur reactions in Li–S cells by explicitly considering the electrode wettability impacts and electrode morphologies. The study elucidates the critical impact of low tortuosity and large channel pore design for promoting electrode wetting and species diffusion. It is suggested that the secondary particle size should be comparable with the electrode thickness to effectively promote electrolyte wettability and sulfur reactivity. This study provides new insights into the low‐porosity electrode material and designs and is expected to accelerate the development of practical high‐energy Li–S batteries.
Multiscale modeling and experimental approaches are used to study the working principle of the low‐porosity cathode for lithium–sulfur batteries. Increasing cathode secondary particle size and reducing pore channel tortuosity can promote electrolyte wettability and sulfur reactivity, which makes reducing cathode porosity a viable strategy for improving the cell practical energy density and cycling life at lean electrolyte conditions. |
|---|---|
| AbstractList | The lithium–sulfur (Li–S) battery is a promising technology for large‐scale energy storage and vehicle electrification due to its high theoretical energy density and low cost. Reducing the sulfur cathode porosity has been identified recently as a viable strategy for improving the cell practical energy density and minimizing pore‐filling electrolytes to extend cell life at lean electrolyte conditions. Direct use of a low‐porosity cathode for Li–S battery results in poor electrode wetting, nonuniform electrode reactions, and thus early cell failure. To understand and mitigate the barriers associated with the use of low‐porosity electrodes, multiscale modeling is performed to predict electrode wetting, electrolyte diffusion, and their impacts on sulfur reactions in Li–S cells by explicitly considering the electrode wettability impacts and electrode morphologies. The study elucidates the critical impact of low tortuosity and large channel pore design for promoting electrode wetting and species diffusion. It is suggested that the secondary particle size should be comparable with the electrode thickness to effectively promote electrolyte wettability and sulfur reactivity. This study provides new insights into the low‐porosity electrode material and designs and is expected to accelerate the development of practical high‐energy Li–S batteries.
Multiscale modeling and experimental approaches are used to study the working principle of the low‐porosity cathode for lithium–sulfur batteries. Increasing cathode secondary particle size and reducing pore channel tortuosity can promote electrolyte wettability and sulfur reactivity, which makes reducing cathode porosity a viable strategy for improving the cell practical energy density and cycling life at lean electrolyte conditions. |
| Author | Xiao, Jie Xu, Zhijie Lu, Dongping Singh, Rajesh K Feng, Shuo Fu, Yucheng Liu, Jun Bao, Jie |
| Author_xml | – sequence: 1 givenname: Yucheng surname: Fu fullname: Fu, Yucheng email: Yucheng.fu@pnnl.gov organization: Pacific Northwest National Laboratory – sequence: 2 givenname: Rajesh K surname: Singh fullname: Singh, Rajesh K organization: Pacific Northwest National Laboratory – sequence: 3 givenname: Shuo surname: Feng fullname: Feng, Shuo organization: Pacific Northwest National Laboratory – sequence: 4 givenname: Jun surname: Liu fullname: Liu, Jun organization: Pacific Northwest National Laboratory – sequence: 5 givenname: Jie surname: Xiao fullname: Xiao, Jie organization: Pacific Northwest National Laboratory – sequence: 6 givenname: Jie surname: Bao fullname: Bao, Jie organization: Pacific Northwest National Laboratory – sequence: 7 givenname: Zhijie surname: Xu fullname: Xu, Zhijie organization: Pacific Northwest National Laboratory – sequence: 8 givenname: Dongping orcidid: 0000-0001-9597-8500 surname: Lu fullname: Lu, Dongping email: Dongping.lu@pnnl.gov organization: Pacific Northwest National Laboratory |
| BookMark | eNo9kM1qwkAUhYdioda67XpeIHb-kyytpLWQ_kDrsoTRmatT4kyZRCQ7H6HQN_RJqlS8m3MPfJzFd416PniL0C0lI0oIu9PWr0eMMEY4z9QF6lNFRaIyQXrnn7MrNGyaL3I4kdMD2UefM29sbFrtjfNLHACXYbvf_byFGBrXdvh9U8Mm4qK2izYGYzGEiKduuTpAhbdx2eHStSu3We93vyf4Xretjc42N-gSdN3Y4SkHaPZQfEymSfn6-DQZl8mCZ0IlJpVUZkANn0sp5wwUy4GJXCugnDJqhIW5MGkqGdU8BSoZAJOSq5wvCAM-QPn_7tbVtqu-o1vr2FWUVEc51VFOdZZTjYuX53Pjf58WX-s |
| CitedBy_id | crossref_primary_10_1016_j_electacta_2024_144794 crossref_primary_10_1039_D4QM00180J crossref_primary_10_1002_smll_202400728 crossref_primary_10_1002_smll_202403419 crossref_primary_10_1016_j_cej_2024_150574 crossref_primary_10_1016_j_est_2025_117698 crossref_primary_10_1039_D4QM00359D crossref_primary_10_1016_j_mtsust_2024_100743 crossref_primary_10_1002_adma_202503365 crossref_primary_10_1016_j_jallcom_2024_175529 crossref_primary_10_1016_j_jallcom_2023_173169 crossref_primary_10_1016_j_jcis_2023_09_124 crossref_primary_10_1002_adfm_202306933 crossref_primary_10_1016_j_jcis_2025_137419 crossref_primary_10_1016_j_cej_2025_160285 crossref_primary_10_1016_j_jpowsour_2023_233548 crossref_primary_10_1016_j_jallcom_2023_173068 crossref_primary_10_1002_adfm_202306939 crossref_primary_10_1002_aenm_202502062 crossref_primary_10_1002_advs_202304146 crossref_primary_10_1016_j_cej_2025_167368 crossref_primary_10_1016_j_jallcom_2025_183755 crossref_primary_10_1002_smll_202309422 crossref_primary_10_1002_adsu_202300275 crossref_primary_10_1016_j_mtchem_2024_102176 crossref_primary_10_1016_j_electacta_2025_145838 crossref_primary_10_1002_smll_202311086 crossref_primary_10_1016_j_cej_2023_146705 crossref_primary_10_1016_j_mtphys_2023_101324 crossref_primary_10_1016_j_carbon_2025_120060 crossref_primary_10_1016_j_apsusc_2024_161263 crossref_primary_10_1039_D3QM00326D crossref_primary_10_1039_D5NR02720A crossref_primary_10_1016_j_est_2023_109952 crossref_primary_10_3390_nano14120990 crossref_primary_10_1021_acsaem_5c01629 |
| ContentType | Journal Article |
| Copyright | 2023 Battelle Memorial Institute. Advanced Energy Materials published by Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2023 Battelle Memorial Institute. Advanced Energy Materials published by Wiley‐VCH GmbH |
| DBID | 24P |
| DOI | 10.1002/aenm.202203386 |
| DatabaseName | Wiley Online Library Open Access |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1614-6840 |
| EndPage | n/a |
| ExternalDocumentID | AENM202203386 |
| Genre | article |
| GrantInformation_xml | – fundername: Advanced Battery Materials Research Program and Battery500 Consortium funderid: DEAC02‐05CH11231; DEAC02‐98CH10886 – fundername: Pacific Northwest National Laboratory funderid: DE‐AC05‐76RL01830 – fundername: U.S. Department of Energy |
| GroupedDBID | 05W 0R~ 1OC 24P 33P 4.4 50Y 5VS 8-0 8-1 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMLS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFWVQ AFZJQ AGHNM AGYGG AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR ZZTAW ~S- |
| ID | FETCH-LOGICAL-c3846-d75158f1d3b555b2f629f249a6f13121d4efb4d77521a37f152ff2553693c02f3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 85 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000935111800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1614-6832 |
| IngestDate | Wed Jun 11 08:26:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| License | Attribution-NonCommercial |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3846-d75158f1d3b555b2f629f249a6f13121d4efb4d77521a37f152ff2553693c02f3 |
| ORCID | 0000-0001-9597-8500 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202203386 |
| PageCount | 8 |
| ParticipantIDs | wiley_primary_10_1002_aenm_202203386_AENM202203386 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-01 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Advanced energy materials |
| PublicationYear | 2023 |
| References | 2017; 6 2017; 7 2021; 5 2015; 5 2019; 11 2019; 10 1995 2020; 13 2020; 167 2004 2020; 11 2016; 18 2014; 257 2014; 137 2016; 163 2020; 6 2015; 27 2021; 33 2016; 219 2022 2021 2004; 151 2014; 16 2022; 15 2017 2014; 260 1981; 39 2017; 121 2008; 155 2016; 8 2011; 166 |
| References_xml | – volume: 166 start-page: 324 year: 2011 publication-title: Chem. Eng. J. – volume: 16 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 39 start-page: 201 year: 1981 publication-title: J. Comput. Phys. – volume: 5 start-page: 2014 year: 2015 publication-title: Adv. Energy Mater. – volume: 257 start-page: 402 year: 2014 publication-title: J. Power Sources – volume: 11 start-page: 5215 year: 2020 publication-title: Nat. Commun. – volume: 121 year: 2017 publication-title: J. Phys. Chem. C – volume: 13 start-page: 3620 year: 2020 publication-title: Energy Environ. Sci. – volume: 260 start-page: 251 year: 2014 publication-title: J. Power Sources – volume: 257 start-page: 394 year: 2014 publication-title: J. Power Sources – volume: 137 start-page: 575 year: 2014 publication-title: Electrochim. Acta – volume: 7 year: 2017 publication-title: Sci. Rep. – volume: 27 start-page: 1980 year: 2015 publication-title: Adv. Mater. – volume: 6 start-page: 1095 year: 2020 publication-title: ACS Cent. Sci. – volume: 18 start-page: 584 year: 2016 publication-title: Phys. Chem. Chem. Phys. – start-page: 399 year: 2021 end-page: 405 – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 167 year: 2020 publication-title: J. Electrochem. Soc. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 163 start-page: A730 year: 2016 publication-title: J. Electrochem. Soc. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 6 start-page: 92 year: 2017 publication-title: Curr. Opin. Electrochem. – volume: 151 year: 2004 publication-title: J. Electrochem. Soc. – volume: 10 start-page: 4597 year: 2019 publication-title: Nat. Commun. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – start-page: 123 year: 2022 end-page: 158 – year: 2004 – start-page: 3533 year: 2017 end-page: 3538 – volume: 15 start-page: 3842 year: 2022 publication-title: Energy Environ. Sci. – year: 1995 – volume: 155 start-page: A576 year: 2008 publication-title: J. Electrochem. Soc. – volume: 219 start-page: 502 year: 2016 publication-title: Electrochim. Acta – volume: 5 start-page: 5946 year: 2021 publication-title: Sustainable Energy Fuels – volume: 8 start-page: 4700 year: 2016 publication-title: ACS Appl. Mater. Interfaces |
| SSID | ssj0000491033 |
| Score | 2.6237898 |
| Snippet | The lithium–sulfur (Li–S) battery is a promising technology for large‐scale energy storage and vehicle electrification due to its high theoretical energy... |
| SourceID | wiley |
| SourceType | Publisher |
| SubjectTerms | computational fluid dynamics electrode wetting lithium–sulfur batteries low‐porosity electrode multiscale modeling |
| Title | Understanding of Low‐Porosity Sulfur Electrode for High‐Energy Lithium–Sulfur Batteries |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202203386 |
| Volume | 13 |
| WOSCitedRecordID | wos000935111800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60etCDb_HNHryGZh95HYukeKiloIVeJOxmd7GgiaSN4q0_QfAf9pc4m9TYXvUY2DyYzOx8s8x8H0LXTEeu5opDfBPmcI-EjoQ90eGcC2I8ExFai00E_X44GkWDpSn-mh-iOXCzkVHt1zbAhZy0f0lDhc7sJDmlLlRZ_jragJeFVryB8kFzygL4l7iVnjwgG-744L8_zI0uba8-YhWeVvmlu_v_L9tDOwtsiTu1M-yjNZ0doO0lxsFD9DhcHmbBucG9_H0--xzkhe3e-sD35bMpCxzX6jhKYwC12DaDwKK4mhPEvfH0aVy-zGdfi8U1RyeU3Edo2I0fbm6dhcKCkzIAHo4KAM6EhigmPc-T1Pg0MlCQCd8QBn9JcW0kV0EASV6wwECyNwaKEOZHLHWpYceoleWZPkHYqMCVisgwAkgjtJDSJ0QJrVkapb4rThGtbJa81iwaSc2XTBNrraSxVtKJ-3fN1dlfbjpHW1YTvm6vuUCtaVHqS7SZvk3Hk-Kq8o9vlBa-OA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60CurBt_h2D15Ds4-8jkVSKrahYAu9SNhkd7GgjcRG8dafIPgP-0ucTWptr-IxsFmW2Zmdb4aZbxC6ZiqwFZcc7JswizvEtxJ4Ey3OuSDa0QGh1bAJL4r8wSDozqoJTS9MxQ8xT7gZyyjfa2PgJiFd_2UNFWpkWskptSHMclfRGgdXY1Sd8u48zQIAmNjlQHmANtxyQYF_qBttWl_eYhmflg6mufMPR9tF2zN0iRuVOuyhFTXaR1sLnIMH6KG_2M6CM43b2ft08tnNclO_9YHviydd5Dis5uNIhQHWYlMOAovCslMQt4fjx2HxPJ18zRZXLJ0QdB-ifjPs3bSs2YwFK2UAPSzpAaDxNZEscRwnodqlgYaQTLiaMLgnyZVOuPQ8cPOCeRrcvdYQhjA3YKlNNTtCtVE2UscIa-nZiSSJHwCoEUokiUuIFEqxNEhdW5wgWgotfql4NOKKMZnGRlrxXFpxI4w686_Tv_x0hTZavU47bt9Gd2do00yIr4ptzlFtnBfqAq2nb-Pha35ZKss3_6fCIw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60iujBt_h2D15Ds4-8jkVTFGsIaKEXCUl2FwualNgq3voTBP9hf4mzSYz1Kh4DmyVMZna-WWa-D6FzJj1TcsEhvgkzuEVcI4Ez0eCcx0RZyiO0EptwgsAdDLyw7ibUszAVP0Rz4aYjozyvdYDLkVDtH9bQWGZ6lJxSE8osexEtccsh2rEpD5trFgDAxCwF5QHacMMGB_6mbjRp-_cWv_FpmWC6G__waZtovUaXuFO5wxZakNk2WpvjHNxBD_35cRacK9zL32bTjzAvdP_WO76bPKlJgf1KH0dIDLAW63YQWOSXk4K4Nxw_DifPs-lnvbhi6YSiexf1u_79xZVRaywYKQPoYQgHAI2riGCJZVkJVTb1FJRksa0Ig_8kuFQJF44DaT5mjoJ0rxSUIcz2WGpSxfZQK8szuY-wEo6ZCJK4HoCaWMZJYhMiYilZ6qW2GR8gWhotGlU8GlHFmEwjba2osVbU8YPb5unwLy-doZXwshv1roObI7SqBeKrXptj1BoXE3mCltPX8fClOC195Qv4f8Gn |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+of+Low%E2%80%90Porosity+Sulfur+Electrode+for+High%E2%80%90Energy+Lithium%E2%80%93Sulfur+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Fu%2C+Yucheng&rft.au=Singh%2C+Rajesh+K&rft.au=Feng%2C+Shuo&rft.au=Liu%2C+Jun&rft.date=2023-04-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=13&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202203386&rft.externalDBID=10.1002%252Faenm.202203386&rft.externalDocID=AENM202203386 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |