Understanding of Low‐Porosity Sulfur Electrode for High‐Energy Lithium–Sulfur Batteries

The lithium–sulfur (Li–S) battery is a promising technology for large‐scale energy storage and vehicle electrification due to its high theoretical energy density and low cost. Reducing the sulfur cathode porosity has been identified recently as a viable strategy for improving the cell practical ener...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials Jg. 13; H. 13
Hauptverfasser: Fu, Yucheng, Singh, Rajesh K, Feng, Shuo, Liu, Jun, Xiao, Jie, Bao, Jie, Xu, Zhijie, Lu, Dongping
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 01.04.2023
Schlagworte:
ISSN:1614-6832, 1614-6840
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The lithium–sulfur (Li–S) battery is a promising technology for large‐scale energy storage and vehicle electrification due to its high theoretical energy density and low cost. Reducing the sulfur cathode porosity has been identified recently as a viable strategy for improving the cell practical energy density and minimizing pore‐filling electrolytes to extend cell life at lean electrolyte conditions. Direct use of a low‐porosity cathode for Li–S battery results in poor electrode wetting, nonuniform electrode reactions, and thus early cell failure. To understand and mitigate the barriers associated with the use of low‐porosity electrodes, multiscale modeling is performed to predict electrode wetting, electrolyte diffusion, and their impacts on sulfur reactions in Li–S cells by explicitly considering the electrode wettability impacts and electrode morphologies. The study elucidates the critical impact of low tortuosity and large channel pore design for promoting electrode wetting and species diffusion. It is suggested that the secondary particle size should be comparable with the electrode thickness to effectively promote electrolyte wettability and sulfur reactivity. This study provides new insights into the low‐porosity electrode material and designs and is expected to accelerate the development of practical high‐energy Li–S batteries. Multiscale modeling and experimental approaches are used to study the working principle of the low‐porosity cathode for lithium–sulfur batteries. Increasing cathode secondary particle size and reducing pore channel tortuosity can promote electrolyte wettability and sulfur reactivity, which makes reducing cathode porosity a viable strategy for improving the cell practical energy density and cycling life at lean electrolyte conditions.
AbstractList The lithium–sulfur (Li–S) battery is a promising technology for large‐scale energy storage and vehicle electrification due to its high theoretical energy density and low cost. Reducing the sulfur cathode porosity has been identified recently as a viable strategy for improving the cell practical energy density and minimizing pore‐filling electrolytes to extend cell life at lean electrolyte conditions. Direct use of a low‐porosity cathode for Li–S battery results in poor electrode wetting, nonuniform electrode reactions, and thus early cell failure. To understand and mitigate the barriers associated with the use of low‐porosity electrodes, multiscale modeling is performed to predict electrode wetting, electrolyte diffusion, and their impacts on sulfur reactions in Li–S cells by explicitly considering the electrode wettability impacts and electrode morphologies. The study elucidates the critical impact of low tortuosity and large channel pore design for promoting electrode wetting and species diffusion. It is suggested that the secondary particle size should be comparable with the electrode thickness to effectively promote electrolyte wettability and sulfur reactivity. This study provides new insights into the low‐porosity electrode material and designs and is expected to accelerate the development of practical high‐energy Li–S batteries. Multiscale modeling and experimental approaches are used to study the working principle of the low‐porosity cathode for lithium–sulfur batteries. Increasing cathode secondary particle size and reducing pore channel tortuosity can promote electrolyte wettability and sulfur reactivity, which makes reducing cathode porosity a viable strategy for improving the cell practical energy density and cycling life at lean electrolyte conditions.
Author Xiao, Jie
Xu, Zhijie
Lu, Dongping
Singh, Rajesh K
Feng, Shuo
Fu, Yucheng
Liu, Jun
Bao, Jie
Author_xml – sequence: 1
  givenname: Yucheng
  surname: Fu
  fullname: Fu, Yucheng
  email: Yucheng.fu@pnnl.gov
  organization: Pacific Northwest National Laboratory
– sequence: 2
  givenname: Rajesh K
  surname: Singh
  fullname: Singh, Rajesh K
  organization: Pacific Northwest National Laboratory
– sequence: 3
  givenname: Shuo
  surname: Feng
  fullname: Feng, Shuo
  organization: Pacific Northwest National Laboratory
– sequence: 4
  givenname: Jun
  surname: Liu
  fullname: Liu, Jun
  organization: Pacific Northwest National Laboratory
– sequence: 5
  givenname: Jie
  surname: Xiao
  fullname: Xiao, Jie
  organization: Pacific Northwest National Laboratory
– sequence: 6
  givenname: Jie
  surname: Bao
  fullname: Bao, Jie
  organization: Pacific Northwest National Laboratory
– sequence: 7
  givenname: Zhijie
  surname: Xu
  fullname: Xu, Zhijie
  organization: Pacific Northwest National Laboratory
– sequence: 8
  givenname: Dongping
  orcidid: 0000-0001-9597-8500
  surname: Lu
  fullname: Lu, Dongping
  email: Dongping.lu@pnnl.gov
  organization: Pacific Northwest National Laboratory
BookMark eNo9kM1qwkAUhYdioda67XpeIHb-kyytpLWQ_kDrsoTRmatT4kyZRCQ7H6HQN_RJqlS8m3MPfJzFd416PniL0C0lI0oIu9PWr0eMMEY4z9QF6lNFRaIyQXrnn7MrNGyaL3I4kdMD2UefM29sbFrtjfNLHACXYbvf_byFGBrXdvh9U8Mm4qK2izYGYzGEiKduuTpAhbdx2eHStSu3We93vyf4Xretjc42N-gSdN3Y4SkHaPZQfEymSfn6-DQZl8mCZ0IlJpVUZkANn0sp5wwUy4GJXCugnDJqhIW5MGkqGdU8BSoZAJOSq5wvCAM-QPn_7tbVtqu-o1vr2FWUVEc51VFOdZZTjYuX53Pjf58WX-s
CitedBy_id crossref_primary_10_1016_j_electacta_2024_144794
crossref_primary_10_1039_D4QM00180J
crossref_primary_10_1002_smll_202400728
crossref_primary_10_1002_smll_202403419
crossref_primary_10_1016_j_cej_2024_150574
crossref_primary_10_1016_j_est_2025_117698
crossref_primary_10_1039_D4QM00359D
crossref_primary_10_1016_j_mtsust_2024_100743
crossref_primary_10_1002_adma_202503365
crossref_primary_10_1016_j_jallcom_2024_175529
crossref_primary_10_1016_j_jallcom_2023_173169
crossref_primary_10_1016_j_jcis_2023_09_124
crossref_primary_10_1002_adfm_202306933
crossref_primary_10_1016_j_jcis_2025_137419
crossref_primary_10_1016_j_cej_2025_160285
crossref_primary_10_1016_j_jpowsour_2023_233548
crossref_primary_10_1016_j_jallcom_2023_173068
crossref_primary_10_1002_adfm_202306939
crossref_primary_10_1002_aenm_202502062
crossref_primary_10_1002_advs_202304146
crossref_primary_10_1016_j_cej_2025_167368
crossref_primary_10_1016_j_jallcom_2025_183755
crossref_primary_10_1002_smll_202309422
crossref_primary_10_1002_adsu_202300275
crossref_primary_10_1016_j_mtchem_2024_102176
crossref_primary_10_1016_j_electacta_2025_145838
crossref_primary_10_1002_smll_202311086
crossref_primary_10_1016_j_cej_2023_146705
crossref_primary_10_1016_j_mtphys_2023_101324
crossref_primary_10_1016_j_carbon_2025_120060
crossref_primary_10_1016_j_apsusc_2024_161263
crossref_primary_10_1039_D3QM00326D
crossref_primary_10_1039_D5NR02720A
crossref_primary_10_1016_j_est_2023_109952
crossref_primary_10_3390_nano14120990
crossref_primary_10_1021_acsaem_5c01629
ContentType Journal Article
Copyright 2023 Battelle Memorial Institute. Advanced Energy Materials published by Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Battelle Memorial Institute. Advanced Energy Materials published by Wiley‐VCH GmbH
DBID 24P
DOI 10.1002/aenm.202203386
DatabaseName Wiley Online Library Open Access
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID AENM202203386
Genre article
GrantInformation_xml – fundername: Advanced Battery Materials Research Program and Battery500 Consortium
  funderid: DEAC02‐05CH11231; DEAC02‐98CH10886
– fundername: Pacific Northwest National Laboratory
  funderid: DE‐AC05‐76RL01830
– fundername: U.S. Department of Energy
GroupedDBID 05W
0R~
1OC
24P
33P
4.4
50Y
5VS
8-0
8-1
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
~S-
ID FETCH-LOGICAL-c3846-d75158f1d3b555b2f629f249a6f13121d4efb4d77521a37f152ff2553693c02f3
IEDL.DBID 24P
ISICitedReferencesCount 85
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000935111800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1614-6832
IngestDate Wed Jun 11 08:26:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3846-d75158f1d3b555b2f629f249a6f13121d4efb4d77521a37f152ff2553693c02f3
ORCID 0000-0001-9597-8500
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202203386
PageCount 8
ParticipantIDs wiley_primary_10_1002_aenm_202203386_AENM202203386
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Advanced energy materials
PublicationYear 2023
References 2017; 6
2017; 7
2021; 5
2015; 5
2019; 11
2019; 10
1995
2020; 13
2020; 167
2004
2020; 11
2016; 18
2014; 257
2014; 137
2016; 163
2020; 6
2015; 27
2021; 33
2016; 219
2022
2021
2004; 151
2014; 16
2022; 15
2017
2014; 260
1981; 39
2017; 121
2008; 155
2016; 8
2011; 166
References_xml – volume: 166
  start-page: 324
  year: 2011
  publication-title: Chem. Eng. J.
– volume: 16
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 39
  start-page: 201
  year: 1981
  publication-title: J. Comput. Phys.
– volume: 5
  start-page: 2014
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 257
  start-page: 402
  year: 2014
  publication-title: J. Power Sources
– volume: 11
  start-page: 5215
  year: 2020
  publication-title: Nat. Commun.
– volume: 121
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 13
  start-page: 3620
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 260
  start-page: 251
  year: 2014
  publication-title: J. Power Sources
– volume: 257
  start-page: 394
  year: 2014
  publication-title: J. Power Sources
– volume: 137
  start-page: 575
  year: 2014
  publication-title: Electrochim. Acta
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 27
  start-page: 1980
  year: 2015
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1095
  year: 2020
  publication-title: ACS Cent. Sci.
– volume: 18
  start-page: 584
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– start-page: 399
  year: 2021
  end-page: 405
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 167
  year: 2020
  publication-title: J. Electrochem. Soc.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 163
  start-page: A730
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 92
  year: 2017
  publication-title: Curr. Opin. Electrochem.
– volume: 151
  year: 2004
  publication-title: J. Electrochem. Soc.
– volume: 10
  start-page: 4597
  year: 2019
  publication-title: Nat. Commun.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– start-page: 123
  year: 2022
  end-page: 158
– year: 2004
– start-page: 3533
  year: 2017
  end-page: 3538
– volume: 15
  start-page: 3842
  year: 2022
  publication-title: Energy Environ. Sci.
– year: 1995
– volume: 155
  start-page: A576
  year: 2008
  publication-title: J. Electrochem. Soc.
– volume: 219
  start-page: 502
  year: 2016
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 5946
  year: 2021
  publication-title: Sustainable Energy Fuels
– volume: 8
  start-page: 4700
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
SSID ssj0000491033
Score 2.6237898
Snippet The lithium–sulfur (Li–S) battery is a promising technology for large‐scale energy storage and vehicle electrification due to its high theoretical energy...
SourceID wiley
SourceType Publisher
SubjectTerms computational fluid dynamics
electrode wetting
lithium–sulfur batteries
low‐porosity electrode
multiscale modeling
Title Understanding of Low‐Porosity Sulfur Electrode for High‐Energy Lithium–Sulfur Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202203386
Volume 13
WOSCitedRecordID wos000935111800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60etCDb_HNHryGZh95HYukeKiloIVeJOxmd7GgiaSN4q0_QfAf9pc4m9TYXvUY2DyYzOx8s8x8H0LXTEeu5opDfBPmcI-EjoQ90eGcC2I8ExFai00E_X44GkWDpSn-mh-iOXCzkVHt1zbAhZy0f0lDhc7sJDmlLlRZ_jragJeFVryB8kFzygL4l7iVnjwgG-744L8_zI0uba8-YhWeVvmlu_v_L9tDOwtsiTu1M-yjNZ0doO0lxsFD9DhcHmbBucG9_H0--xzkhe3e-sD35bMpCxzX6jhKYwC12DaDwKK4mhPEvfH0aVy-zGdfi8U1RyeU3Edo2I0fbm6dhcKCkzIAHo4KAM6EhigmPc-T1Pg0MlCQCd8QBn9JcW0kV0EASV6wwECyNwaKEOZHLHWpYceoleWZPkHYqMCVisgwAkgjtJDSJ0QJrVkapb4rThGtbJa81iwaSc2XTBNrraSxVtKJ-3fN1dlfbjpHW1YTvm6vuUCtaVHqS7SZvk3Hk-Kq8o9vlBa-OA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60CurBt_h2D15Ds4-8jkVSKrahYAu9SNhkd7GgjcRG8dafIPgP-0ucTWptr-IxsFmW2Zmdb4aZbxC6ZiqwFZcc7JswizvEtxJ4Ey3OuSDa0QGh1bAJL4r8wSDozqoJTS9MxQ8xT7gZyyjfa2PgJiFd_2UNFWpkWskptSHMclfRGgdXY1Sd8u48zQIAmNjlQHmANtxyQYF_qBttWl_eYhmflg6mufMPR9tF2zN0iRuVOuyhFTXaR1sLnIMH6KG_2M6CM43b2ft08tnNclO_9YHviydd5Dis5uNIhQHWYlMOAovCslMQt4fjx2HxPJ18zRZXLJ0QdB-ifjPs3bSs2YwFK2UAPSzpAaDxNZEscRwnodqlgYaQTLiaMLgnyZVOuPQ8cPOCeRrcvdYQhjA3YKlNNTtCtVE2UscIa-nZiSSJHwCoEUokiUuIFEqxNEhdW5wgWgotfql4NOKKMZnGRlrxXFpxI4w686_Tv_x0hTZavU47bt9Gd2do00yIr4ptzlFtnBfqAq2nb-Pha35ZKss3_6fCIw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60iujBt_h2D15Ds4-8jkVTFGsIaKEXCUl2FwualNgq3voTBP9hf4mzSYz1Kh4DmyVMZna-WWa-D6FzJj1TcsEhvgkzuEVcI4Ez0eCcx0RZyiO0EptwgsAdDLyw7ibUszAVP0Rz4aYjozyvdYDLkVDtH9bQWGZ6lJxSE8osexEtccsh2rEpD5trFgDAxCwF5QHacMMGB_6mbjRp-_cWv_FpmWC6G__waZtovUaXuFO5wxZakNk2WpvjHNxBD_35cRacK9zL32bTjzAvdP_WO76bPKlJgf1KH0dIDLAW63YQWOSXk4K4Nxw_DifPs-lnvbhi6YSiexf1u_79xZVRaywYKQPoYQgHAI2riGCJZVkJVTb1FJRksa0Ig_8kuFQJF44DaT5mjoJ0rxSUIcz2WGpSxfZQK8szuY-wEo6ZCJK4HoCaWMZJYhMiYilZ6qW2GR8gWhotGlU8GlHFmEwjba2osVbU8YPb5unwLy-doZXwshv1roObI7SqBeKrXptj1BoXE3mCltPX8fClOC195Qv4f8Gn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+of+Low%E2%80%90Porosity+Sulfur+Electrode+for+High%E2%80%90Energy+Lithium%E2%80%93Sulfur+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Fu%2C+Yucheng&rft.au=Singh%2C+Rajesh+K&rft.au=Feng%2C+Shuo&rft.au=Liu%2C+Jun&rft.date=2023-04-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=13&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202203386&rft.externalDBID=10.1002%252Faenm.202203386&rft.externalDocID=AENM202203386
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon