All‐Solid‐State Synaptic Transistor with Ultralow Conductance for Neuromorphic Computing
Electronic synaptic devices are important building blocks for neuromorphic computational systems that can go beyond the constraints of von Neumann architecture. Although two‐terminal memristive devices are demonstrated to be possible candidates, they suffer from several shortcomings related to the f...
Saved in:
| Published in: | Advanced functional materials Vol. 28; no. 42 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken
Wiley Subscription Services, Inc
17.10.2018
Wiley |
| Subjects: | |
| ISSN: | 1616-301X, 1616-3028 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Electronic synaptic devices are important building blocks for neuromorphic computational systems that can go beyond the constraints of von Neumann architecture. Although two‐terminal memristive devices are demonstrated to be possible candidates, they suffer from several shortcomings related to the filament formation mechanism including nonlinear switching, write noise, and high device conductance, all of which limit the accuracy and energy efficiency. Electrochemical three‐terminal transistors, in which the channel conductance can be tuned without filament formation provide an alternative platform for synaptic electronics. Here, an all‐solid‐state electrochemical transistor made with Li ion–based solid dielectric and 2D α‐phase molybdenum oxide (α‐MoO3) nanosheets as the channel is demonstrated. These devices achieve nonvolatile conductance modulation in an ultralow conductance regime (<75 nS) by reversible intercalation of Li ions into the α‐MoO3 lattice. Based on this operating mechanism, the essential functionalities of synapses, such as short‐ and long‐term synaptic plasticity and bidirectional near‐linear analog weight update are demonstrated. Simulations using the handwritten digit data sets demonstrate high recognition accuracy (94.1%) of the synaptic transistor arrays. These results provide an insight into the application of 2D oxides for large‐scale, energy‐efficient neuromorphic computing networks.
All‐solid‐state synaptic transistors based on 2D α‐MoO3 nanosheets are fabricated. The operation mechanism is based on the gate voltage–induced reversible intercalation of Li‐ion dopants into α‐MoO3 channel lattice, which engenders bidirectional, near‐linear analog modulation of channel conductance in an ultralow conductance regime (<75 nS). The essential functionalities of synapses and neuromorphic computing for image recognition are demonstrated. |
|---|---|
| AbstractList | Electronic synaptic devices are important building blocks for neuromorphic computational systems that can go beyond the constraints of von Neumann architecture. Although two‐terminal memristive devices are demonstrated to be possible candidates, they suffer from several shortcomings related to the filament formation mechanism including nonlinear switching, write noise, and high device conductance, all of which limit the accuracy and energy efficiency. Electrochemical three‐terminal transistors, in which the channel conductance can be tuned without filament formation provide an alternative platform for synaptic electronics. Here, an all‐solid‐state electrochemical transistor made with Li ion–based solid dielectric and 2D α‐phase molybdenum oxide (α‐MoO 3 ) nanosheets as the channel is demonstrated. These devices achieve nonvolatile conductance modulation in an ultralow conductance regime (<75 nS) by reversible intercalation of Li ions into the α‐MoO 3 lattice. Based on this operating mechanism, the essential functionalities of synapses, such as short‐ and long‐term synaptic plasticity and bidirectional near‐linear analog weight update are demonstrated. Simulations using the handwritten digit data sets demonstrate high recognition accuracy (94.1%) of the synaptic transistor arrays. These results provide an insight into the application of 2D oxides for large‐scale, energy‐efficient neuromorphic computing networks. Electronic synaptic devices are important building blocks for neuromorphic computational systems that can go beyond the constraints of von Neumann architecture. Although two‐terminal memristive devices are demonstrated to be possible candidates, they suffer from several shortcomings related to the filament formation mechanism including nonlinear switching, write noise, and high device conductance, all of which limit the accuracy and energy efficiency. Electrochemical three‐terminal transistors, in which the channel conductance can be tuned without filament formation provide an alternative platform for synaptic electronics. Here, an all‐solid‐state electrochemical transistor made with Li ion–based solid dielectric and 2D α‐phase molybdenum oxide (α‐MoO3) nanosheets as the channel is demonstrated. These devices achieve nonvolatile conductance modulation in an ultralow conductance regime (<75 nS) by reversible intercalation of Li ions into the α‐MoO3 lattice. Based on this operating mechanism, the essential functionalities of synapses, such as short‐ and long‐term synaptic plasticity and bidirectional near‐linear analog weight update are demonstrated. Simulations using the handwritten digit data sets demonstrate high recognition accuracy (94.1%) of the synaptic transistor arrays. These results provide an insight into the application of 2D oxides for large‐scale, energy‐efficient neuromorphic computing networks. Electronic synaptic devices are important building blocks for neuromorphic computational systems that can go beyond the constraints of von Neumann architecture. Although two-terminal memristive devices are demonstrated to be possible candidates, they suffer from several shortcomings related to the filament formation mechanism including nonlinear switching, write noise, and high device conductance, all of which limit the accuracy and energy efficiency. Electrochemical three-terminal transistors, in which the channel conductance can be tuned without filament formation provide an alternative platform for synaptic electronics. In this work, an all-solid-state electrochemical transistor made with Li ion–based solid dielectric and 2D α-phase molybdenum oxide (α-MoO3) nanosheets as the channel is demonstrated. These devices achieve nonvolatile conductance modulation in an ultralow conductance regime (<75 nS) by reversible intercalation of Li ions into the α-MoO3 lattice. Based on this operating mechanism, the essential functionalities of synapses, such as short- and long-term synaptic plasticity and bidirectional near-linear analog weight update are demonstrated. Simulations using the handwritten digit data sets demonstrate high recognition accuracy (94.1%) of the synaptic transistor arrays. These results provide an insight into the application of 2D oxides for large-scale, energy-efficient neuromorphic computing networks. Electronic synaptic devices are important building blocks for neuromorphic computational systems that can go beyond the constraints of von Neumann architecture. Although two‐terminal memristive devices are demonstrated to be possible candidates, they suffer from several shortcomings related to the filament formation mechanism including nonlinear switching, write noise, and high device conductance, all of which limit the accuracy and energy efficiency. Electrochemical three‐terminal transistors, in which the channel conductance can be tuned without filament formation provide an alternative platform for synaptic electronics. Here, an all‐solid‐state electrochemical transistor made with Li ion–based solid dielectric and 2D α‐phase molybdenum oxide (α‐MoO3) nanosheets as the channel is demonstrated. These devices achieve nonvolatile conductance modulation in an ultralow conductance regime (<75 nS) by reversible intercalation of Li ions into the α‐MoO3 lattice. Based on this operating mechanism, the essential functionalities of synapses, such as short‐ and long‐term synaptic plasticity and bidirectional near‐linear analog weight update are demonstrated. Simulations using the handwritten digit data sets demonstrate high recognition accuracy (94.1%) of the synaptic transistor arrays. These results provide an insight into the application of 2D oxides for large‐scale, energy‐efficient neuromorphic computing networks. All‐solid‐state synaptic transistors based on 2D α‐MoO3 nanosheets are fabricated. The operation mechanism is based on the gate voltage–induced reversible intercalation of Li‐ion dopants into α‐MoO3 channel lattice, which engenders bidirectional, near‐linear analog modulation of channel conductance in an ultralow conductance regime (<75 nS). The essential functionalities of synapses and neuromorphic computing for image recognition are demonstrated. |
| Author | Fuller, Elliot J. Li, Yong‐Qing Liu, Nan Agrawal, Sapan Shen, Bao‐Gen Sun, Young Talin, A. Alec Yang, Chuan‐Sen Shang, Da‐Shan |
| Author_xml | – sequence: 1 givenname: Chuan‐Sen surname: Yang fullname: Yang, Chuan‐Sen organization: Chinese Academy of Sciences – sequence: 2 givenname: Da‐Shan orcidid: 0000-0003-3573-8390 surname: Shang fullname: Shang, Da‐Shan email: shangdashan@iphy.ac.cn organization: Chinese Academy of Sciences – sequence: 3 givenname: Nan surname: Liu fullname: Liu, Nan organization: Chinese Academy of Sciences – sequence: 4 givenname: Elliot J. surname: Fuller fullname: Fuller, Elliot J. organization: Sandia National Laboratories – sequence: 5 givenname: Sapan surname: Agrawal fullname: Agrawal, Sapan organization: Sandia National Laboratories – sequence: 6 givenname: A. Alec surname: Talin fullname: Talin, A. Alec organization: Sandia National Laboratories – sequence: 7 givenname: Yong‐Qing surname: Li fullname: Li, Yong‐Qing organization: Chinese Academy of Sciences – sequence: 8 givenname: Bao‐Gen surname: Shen fullname: Shen, Bao‐Gen organization: Chinese Academy of Sciences – sequence: 9 givenname: Young surname: Sun fullname: Sun, Young email: youngsun@iphy.ac.cn organization: Chinese Academy of Sciences |
| BackLink | https://www.osti.gov/servlets/purl/1472248$$D View this record in Osti.gov |
| BookMark | eNqFkEFLAzEQhYMoqNWr50XPrZnd7G5yLNWqUPWgBQ9CSLOJjWyTNclSevMn-Bv9JW6pVBDE0xuY980b3iHatc4qhE4ADwDj9FxUejFIMVBMoMQ76AAKKPoZTunudoanfXQYwivGUJYZOUDPw7r-fP94cLWp1hpFVMnDyoomGpk8emGDCdH5ZGniPJnW0YvaLZORs1Uro7BSJbrb3qnWu4XzzbyjRm7RtNHYlyO0p0Ud1PG39tB0fPk4uu5P7q9uRsNJX2aU4D4UulSQVRVVONczppmilBQ5w1WZaVWIkhSCUZjNKM1lkRNW6BnVTLI8lzgTWQ-dbu66EA0P0kQl59JZq2TkQMo0JbQznW1MjXdvrQqRv7rW2-4vngIwRgBD3rkGG5f0LgSvNG-8WQi_4oD5uma-rplva-4A8gvo4kU0znZVmfpvjG2wpanV6p8QPrwY3_6wX9nQln8 |
| CitedBy_id | crossref_primary_10_1002_aelm_201901072 crossref_primary_10_1039_D2NR06580K crossref_primary_10_1002_adma_202415743 crossref_primary_10_1016_j_matchemphys_2022_126227 crossref_primary_10_1039_D0NR06719A crossref_primary_10_3390_electronics13152916 crossref_primary_10_1088_2515_7639_ad9ee1 crossref_primary_10_1088_2053_1583_abfa6a crossref_primary_10_1016_j_mee_2022_111778 crossref_primary_10_1016_j_orgel_2022_106529 crossref_primary_10_1038_s41467_020_15158_3 crossref_primary_10_1109_LED_2020_3042208 crossref_primary_10_1038_s41598_022_26587_z crossref_primary_10_1002_adfm_202111956 crossref_primary_10_1002_adma_202403645 crossref_primary_10_1002_adfm_202201510 crossref_primary_10_1002_aelm_202500054 crossref_primary_10_1016_j_nanoen_2021_106654 crossref_primary_10_1002_smll_202006662 crossref_primary_10_1021_acsnano_4c10489 crossref_primary_10_1016_j_materresbull_2024_112803 crossref_primary_10_1002_adma_201902761 crossref_primary_10_1063_5_0014829 crossref_primary_10_1002_adfm_202425635 crossref_primary_10_1063_5_0165109 crossref_primary_10_1002_adfm_201903700 crossref_primary_10_1002_smll_202103543 crossref_primary_10_1002_adfm_202401403 crossref_primary_10_1016_j_chip_2022_100031 crossref_primary_10_1002_aelm_202300839 crossref_primary_10_1002_advs_202201502 crossref_primary_10_1038_s41528_025_00425_4 crossref_primary_10_1063_1_5122249 crossref_primary_10_1016_j_apsusc_2021_150452 crossref_primary_10_1002_smll_202302593 crossref_primary_10_3390_nano12172978 crossref_primary_10_1002_aisy_202100021 crossref_primary_10_1038_s41598_023_48135_z crossref_primary_10_3390_molecules26237233 crossref_primary_10_1038_s41467_023_42488_9 crossref_primary_10_1063_5_0250044 crossref_primary_10_1063_5_0030780 crossref_primary_10_1016_j_orgel_2020_105782 crossref_primary_10_1088_1361_6463_ab5eec crossref_primary_10_1016_j_nanoen_2021_106190 crossref_primary_10_1038_s41467_022_34565_2 crossref_primary_10_1039_D4MH00297K crossref_primary_10_3390_mi11020154 crossref_primary_10_1002_adfm_202100042 crossref_primary_10_1002_adfm_202508673 crossref_primary_10_1002_advs_202001842 crossref_primary_10_1007_s40843_022_2165_8 crossref_primary_10_1002_adma_201906433 crossref_primary_10_1016_j_mtnano_2024_100480 crossref_primary_10_1002_adfm_202400105 crossref_primary_10_1039_D1MH01061A crossref_primary_10_15541_jim20240424 crossref_primary_10_1557_s43579_023_00437_z crossref_primary_10_1088_1674_4926_43_5_051201 crossref_primary_10_1063_5_0069456 crossref_primary_10_1002_inf2_12473 crossref_primary_10_1039_D0NR03141K crossref_primary_10_1016_j_scib_2025_05_044 crossref_primary_10_1088_1361_6528_ab7252 crossref_primary_10_1002_aelm_201901290 crossref_primary_10_1002_aelm_202200078 crossref_primary_10_1007_s40843_023_2653_x crossref_primary_10_3390_nano14100868 crossref_primary_10_1002_aelm_202400550 crossref_primary_10_1063_5_0101168 crossref_primary_10_1063_1_5118217 crossref_primary_10_1002_smll_202305605 crossref_primary_10_1002_adfm_202314649 crossref_primary_10_1109_TED_2022_3151306 crossref_primary_10_1038_s41598_019_55310_8 crossref_primary_10_1088_1361_6528_ad4cf4 crossref_primary_10_1016_j_lfs_2021_119272 crossref_primary_10_1002_adma_202003018 crossref_primary_10_1002_aelm_202200864 crossref_primary_10_1039_D2RA02652J crossref_primary_10_1063_5_0248824 crossref_primary_10_1109_JSEN_2024_3515465 crossref_primary_10_1002_adma_202205294 crossref_primary_10_1063_1_5143382 crossref_primary_10_1063_5_0287232 crossref_primary_10_1007_s11432_022_3601_8 crossref_primary_10_1109_JSTQE_2023_3345488 crossref_primary_10_1038_s41467_025_60050_7 crossref_primary_10_1002_aisy_202000206 crossref_primary_10_1088_1361_6528_ac5444 crossref_primary_10_1002_aisy_201900176 crossref_primary_10_1063_5_0212754 crossref_primary_10_1002_smll_202504071 crossref_primary_10_1016_j_solmat_2024_112960 crossref_primary_10_1063_1_5143815 crossref_primary_10_1088_1361_6528_ab793d crossref_primary_10_1016_j_nanoen_2020_105120 crossref_primary_10_1088_1361_6528_abf071 crossref_primary_10_1038_s41467_022_35396_x crossref_primary_10_1109_TED_2023_3328304 crossref_primary_10_1038_s41699_021_00211_6 crossref_primary_10_3390_electronics13040737 crossref_primary_10_1002_aelm_202101260 crossref_primary_10_1016_j_orgel_2023_106859 crossref_primary_10_1109_LED_2021_3138907 crossref_primary_10_3389_fnins_2024_1279708 crossref_primary_10_1002_adma_202205169 crossref_primary_10_1002_adfm_202109970 crossref_primary_10_1039_D2NR04530C crossref_primary_10_1002_aisy_202000210 crossref_primary_10_1016_j_nanoen_2019_103859 crossref_primary_10_1039_D5CS00251F crossref_primary_10_1002_adfm_202312444 crossref_primary_10_1039_D1NR04156H crossref_primary_10_1039_C9NR03073E crossref_primary_10_1063_5_0082061 crossref_primary_10_1002_aelm_202300476 crossref_primary_10_1103_PhysRevMaterials_5_084005 crossref_primary_10_3390_molecules28135174 crossref_primary_10_1002_aelm_202200721 crossref_primary_10_1016_j_mtphys_2022_100667 crossref_primary_10_1063_5_0159012 crossref_primary_10_1002_adma_201900379 crossref_primary_10_1002_aelm_201900287 crossref_primary_10_1002_aelm_202200607 crossref_primary_10_1007_s40843_021_1901_2 crossref_primary_10_1002_adfm_202107314 crossref_primary_10_1002_adma_202004207 crossref_primary_10_1063_5_0282482 crossref_primary_10_1002_advs_202406242 crossref_primary_10_1007_s40820_023_01035_3 crossref_primary_10_1063_5_0016485 crossref_primary_10_1063_5_0130742 crossref_primary_10_1002_adfm_202104174 crossref_primary_10_1016_j_nanoen_2022_107686 crossref_primary_10_1016_j_nanoen_2021_106038 crossref_primary_10_1038_s41467_024_44759_5 crossref_primary_10_1021_acsnano_5c05240 crossref_primary_10_1002_adma_202301321 crossref_primary_10_1002_pssr_202200378 crossref_primary_10_1016_j_nanoen_2024_109891 crossref_primary_10_1039_D3NR02780E crossref_primary_10_1088_2634_4386_adb512 crossref_primary_10_1002_adma_202300911 crossref_primary_10_1016_j_enrev_2023_100014 crossref_primary_10_1002_adma_202412549 crossref_primary_10_1007_s00339_021_04512_x crossref_primary_10_1063_5_0065840 crossref_primary_10_1002_adfm_202007232 crossref_primary_10_26599_NR_2025_94907350 crossref_primary_10_1063_5_0268617 crossref_primary_10_1002_aisy_202000111 crossref_primary_10_3390_electronics14061183 crossref_primary_10_1039_D1NR00148E crossref_primary_10_1002_smll_202504066 crossref_primary_10_1063_5_0099827 crossref_primary_10_1088_1674_4926_24090042 crossref_primary_10_1088_2631_7990_ad2e13 crossref_primary_10_1002_smsc_202100049 crossref_primary_10_1039_C9NR02027F crossref_primary_10_1002_adfm_202107973 crossref_primary_10_1002_aelm_202400167 crossref_primary_10_1002_adfm_202010971 crossref_primary_10_1002_advs_202103808 crossref_primary_10_1002_advs_202308847 crossref_primary_10_1002_inf2_12299 crossref_primary_10_1063_5_0092968 crossref_primary_10_1002_smll_202000041 crossref_primary_10_1016_j_nanoen_2022_107985 crossref_primary_10_1016_j_nanoen_2021_106010 crossref_primary_10_1016_j_nanoen_2022_107744 crossref_primary_10_1007_s12598_024_02699_5 crossref_primary_10_1002_aelm_202200810 crossref_primary_10_1039_D3MH01766D crossref_primary_10_1080_14686996_2022_2162325 crossref_primary_10_35848_1347_4065_ad1fb0 crossref_primary_10_1002_aelm_201901100 crossref_primary_10_1007_s40843_021_2029_y crossref_primary_10_1038_s41699_023_00427_8 crossref_primary_10_1088_1674_1056_ab75da crossref_primary_10_1038_s41528_025_00444_1 crossref_primary_10_1063_1_5106381 crossref_primary_10_1002_aelm_201901107 crossref_primary_10_1007_s40042_025_01315_8 crossref_primary_10_1002_adma_202511728 crossref_primary_10_1016_j_mtener_2022_101154 crossref_primary_10_1021_acsaelm_5c00454 crossref_primary_10_1038_s41467_022_32078_6 crossref_primary_10_1002_smll_202506100 crossref_primary_10_1109_LED_2020_3019938 crossref_primary_10_1063_5_0244406 crossref_primary_10_1063_5_0202008 crossref_primary_10_1002_pssr_201900073 crossref_primary_10_1016_j_nantod_2024_102184 crossref_primary_10_1063_5_0059804 crossref_primary_10_1002_smll_202502874 crossref_primary_10_1088_2634_4386_ac29ca crossref_primary_10_1002_adfm_201904602 crossref_primary_10_1038_s41928_022_00876_x crossref_primary_10_1007_s12274_022_4070_7 crossref_primary_10_1088_1361_6528_abfc0a crossref_primary_10_1021_acsnano_5c06027 crossref_primary_10_1088_2053_1583_ac210a crossref_primary_10_1002_aelm_201901217 crossref_primary_10_1002_aisy_202000149 crossref_primary_10_1016_j_apsusc_2020_147738 crossref_primary_10_1002_aelm_202200922 crossref_primary_10_1109_TED_2022_3154668 crossref_primary_10_3390_ma13020281 crossref_primary_10_3390_nano12101728 crossref_primary_10_1088_2634_4386_ac734a crossref_primary_10_1016_j_cej_2025_163079 crossref_primary_10_1038_s41578_021_00314_y crossref_primary_10_1016_j_nanoen_2023_108698 crossref_primary_10_1038_s41598_020_79452_2 crossref_primary_10_1007_s40843_022_2408_7 crossref_primary_10_1002_advs_202400872 crossref_primary_10_1088_2053_1583_ab23ba crossref_primary_10_1002_adfm_201901107 crossref_primary_10_1016_j_nanoen_2019_104000 crossref_primary_10_1002_smsc_202200008 crossref_primary_10_1038_s41467_023_42172_y crossref_primary_10_1088_1361_6528_acebf4 crossref_primary_10_1088_2634_4386_ade428 crossref_primary_10_1002_aelm_202200915 crossref_primary_10_1016_j_sse_2022_108257 crossref_primary_10_1039_D2MH00090C crossref_primary_10_1007_s40843_022_2359_6 crossref_primary_10_3390_ma18184320 crossref_primary_10_1002_adfm_202212367 crossref_primary_10_1002_aisy_202000156 crossref_primary_10_1002_pssr_202100255 crossref_primary_10_1063_5_0086164 crossref_primary_10_1016_j_mtnano_2019_100059 crossref_primary_10_1103_PhysRevMaterials_5_115401 crossref_primary_10_1039_D3RA00782K crossref_primary_10_1002_adfm_202513449 crossref_primary_10_1002_adma_202305857 crossref_primary_10_3390_s23125413 crossref_primary_10_1016_j_carbon_2021_08_020 crossref_primary_10_1002_pssr_201800674 crossref_primary_10_1016_j_nanoen_2022_107142 crossref_primary_10_1038_s41427_023_00481_0 crossref_primary_10_1063_5_0055067 crossref_primary_10_1002_aelm_202200343 crossref_primary_10_1002_pssr_202000394 crossref_primary_10_1016_j_nanoen_2019_104097 crossref_primary_10_1038_s41467_019_11823_4 crossref_primary_10_1002_adfm_202513684 crossref_primary_10_1186_s40580_024_00415_8 crossref_primary_10_1002_adfm_202100069 crossref_primary_10_1038_s41928_022_00836_5 crossref_primary_10_1002_adma_202208600 crossref_primary_10_1038_s41598_020_65237_0 crossref_primary_10_1002_aelm_201900467 crossref_primary_10_1039_D5TC02043C crossref_primary_10_1039_D5TC00406C crossref_primary_10_1038_s41467_020_17849_3 crossref_primary_10_1038_s41598_020_72684_2 crossref_primary_10_1063_5_0107556 crossref_primary_10_1063_1_5138193 crossref_primary_10_1016_j_nanoen_2020_105648 crossref_primary_10_1002_aelm_202100219 crossref_primary_10_1007_s12274_023_6070_7 crossref_primary_10_1007_s13233_023_00188_9 crossref_primary_10_1016_j_carbon_2020_04_096 crossref_primary_10_1016_j_nanoen_2020_104790 crossref_primary_10_1063_5_0169127 crossref_primary_10_3390_ijms232415901 crossref_primary_10_1038_s41378_023_00566_4 crossref_primary_10_1002_adma_202410783 crossref_primary_10_3390_nano12173063 crossref_primary_10_1007_s12274_021_3381_4 crossref_primary_10_1126_science_aaw5581 crossref_primary_10_1002_adma_202416649 crossref_primary_10_1002_admt_201800589 crossref_primary_10_1109_TED_2022_3211478 crossref_primary_10_1016_j_orgel_2020_105749 crossref_primary_10_1016_j_apmt_2021_101223 crossref_primary_10_1021_acsomega_5c01052 crossref_primary_10_1002_aelm_202001243 crossref_primary_10_1002_adfm_202423225 crossref_primary_10_1088_2634_4386_acf1c6 crossref_primary_10_1002_smtd_202201719 crossref_primary_10_1002_admt_202401617 crossref_primary_10_1038_s41565_020_0724_3 crossref_primary_10_1002_adom_202303248 crossref_primary_10_1002_adfm_202313802 crossref_primary_10_1002_aisy_202300123 crossref_primary_10_1109_TED_2019_2951582 crossref_primary_10_1002_adfm_202005443 crossref_primary_10_1007_s11467_023_1305_3 crossref_primary_10_1088_2058_8585_ac4bb2 crossref_primary_10_1007_s40820_022_00945_y crossref_primary_10_1063_5_0059697 crossref_primary_10_1088_1361_6641_ac25c8 crossref_primary_10_3390_nano12152596 crossref_primary_10_1016_j_apmt_2025_102628 crossref_primary_10_1002_aisy_202000180 crossref_primary_10_1016_j_matdes_2021_110022 crossref_primary_10_1002_admt_202200466 crossref_primary_10_1063_5_0200811 crossref_primary_10_1016_j_orgel_2019_105409 crossref_primary_10_1002_aelm_202300540 crossref_primary_10_1002_smll_202502601 crossref_primary_10_31613_ceramist_2025_00038 crossref_primary_10_1002_smll_202505436 crossref_primary_10_1002_aisy_202500416 crossref_primary_10_1063_5_0124219 crossref_primary_10_1038_s41598_020_68793_7 crossref_primary_10_1038_s41467_022_34178_9 crossref_primary_10_1063_5_0003696 crossref_primary_10_3390_nano14020203 crossref_primary_10_1007_s40843_025_3405_y crossref_primary_10_1109_JETCAS_2023_3330832 crossref_primary_10_1002_aisy_202000196 crossref_primary_10_1088_1361_6463_abad63 crossref_primary_10_1016_j_cap_2021_08_014 crossref_primary_10_1002_aelm_202001104 crossref_primary_10_1002_adfm_202201048 crossref_primary_10_1002_aelm_202300652 |
| Cites_doi | 10.1038/nature14441 10.1109/TED.2015.2439635 10.1016/0022-4596(88)90225-3 10.1113/jphysiol.1990.sp018310 10.1038/s41563-017-0001-5 10.1002/adma.201800195 10.1038/ncomms5232 10.1039/C6CP06004H 10.1002/adma.201103379 10.1109/5.726791 10.1021/acsnano.5b00336 10.1039/C4NR07545E 10.1038/ncomms4158 10.1002/adma.201203116 10.1038/354515a0 10.1002/adma.201503575 10.1002/adma.201203680 10.1063/1.4807424 10.1002/adma.201604310 10.1038/nmat4856 10.1126/science.1254642 10.1038/nmat4756 10.1109/JPROC.2015.2444094 10.1016/0022-4596(86)90120-9 10.1038/nmat3054 10.1002/adfm.201704455 10.1038/ncomms15199 10.1109/LED.2015.2418342 10.1002/adfm.201503698 10.1109/5.58356 10.1038/s41586-018-0180-5 10.1088/0957-4484/24/38/382001 10.1021/nl203649p 10.1002/adfm.201103148 10.1039/C6CP00823B 10.1038/nature03190 10.1126/sciadv.1501326 10.1523/JNEUROSCI.16-18-05661.1996 10.1038/ncomms3676 10.1146/annurev.physiol.64.092501.114547 10.1021/acsami.6b13746 10.1038/nnano.2012.240 10.1038/s41928-017-0006-8 10.1021/ja909110s 10.1016/j.bbr.2008.09.025 10.1523/JNEUROSCI.18-24-10464.1998 10.1145/359576.359579 10.1016/j.electacta.2007.04.016 10.1088/0957-4484/27/36/365204 10.1002/adma.201503674 10.1002/adma.201000282 10.1109/TNN.2005.860850 10.1002/adma.201700906 |
| ContentType | Journal Article |
| Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| CorporateAuthor | Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES) Sandia National Lab. (SNL-CA), Livermore, CA (United States) |
| CorporateAuthor_xml | – name: Sandia National Lab. (SNL-CA), Livermore, CA (United States) – name: Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES) |
| DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M OIOZB OTOTI |
| DOI | 10.1002/adfm.201804170 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | CrossRef Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1616-3028 |
| EndPage | n/a |
| ExternalDocumentID | 1472248 10_1002_adfm_201804170 ADFM201804170 |
| Genre | article |
| GrantInformation_xml | – fundername: U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences funderid: DESC0001160 – fundername: National Key Research Program of China funderid: 2016YFA0300701 – fundername: Nanostructures for Electrical Energy Storage – fundername: State Key Laboratory of Materials Processing and Die & Mould Technology funderid: P2018‐004 – fundername: Energy Frontier Research Center – fundername: Chinese Academy of Sciences funderid: XDB07030200 – fundername: National Nature Science Foundation of China funderid: 61874138; 51671213; 11534015; 51725104 – fundername: U.S. Department of Energy's National Nuclear Security Administration funderid: DE‐NA‐0003525 |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAMMB AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF O8X 7SP 7SR 7U5 8BQ 8FD JG9 L7M AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OIOZB OTOTI |
| ID | FETCH-LOGICAL-c3840-16f7e13dd8e05fb9f9e8846590d73fe6a746a981bb885c65496fb8f9c955c03a3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 429 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000448257800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1616-301X |
| IngestDate | Mon Jul 03 03:55:00 EDT 2023 Sun Nov 09 06:56:52 EST 2025 Sat Nov 29 07:23:56 EST 2025 Tue Nov 18 21:45:42 EST 2025 Wed Jan 22 16:44:35 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 42 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3840-16f7e13dd8e05fb9f9e8846590d73fe6a746a981bb885c65496fb8f9c955c03a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 AC04-94AL85000; 61874138; 51671213; 11534015; 51725104; 2016YFA0300701; XDB07030200; P2018‐004; SC0001160; NA0003525; NA‐0003525 Chinese Academy of Sciences (CAS) Univ. of Maryland, College Park, MD (United States). Nanostructures for Electrical Energy Storage (NEES) USDOE Office of Science (SC), Basic Energy Sciences (BES) National Nature Science Foundation of China (NSFC) SAND-2018-9254J National Key Research Program of China USDOE National Nuclear Security Administration (NNSA) |
| ORCID | 0000-0003-3573-8390 0000000335738390 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1472248 |
| PQID | 2119941015 |
| PQPubID | 2045204 |
| PageCount | 10 |
| ParticipantIDs | osti_scitechconnect_1472248 proquest_journals_2119941015 crossref_primary_10_1002_adfm_201804170 crossref_citationtrail_10_1002_adfm_201804170 wiley_primary_10_1002_adfm_201804170_ADFM201804170 |
| PublicationCentury | 2000 |
| PublicationDate | October 17, 2018 |
| PublicationDateYYYYMMDD | 2018-10-17 |
| PublicationDate_xml | – month: 10 year: 2018 text: October 17, 2018 day: 17 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: United States |
| PublicationTitle | Advanced functional materials |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc Wiley |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
| References | 2017; 8 2015; 36 2013; 25 2013; 4 1991; 354 2013; 24 2015; 103 1988; 76 2009; 199 1897 2011; 10 2013; 8 2012; 12 1998; 86 2017; 9 2010; 22 1998; 18 2014; 5 2000 1978; 21 2018; 1 2018; 30 2011; 23 2012; 22 2018; 28 1991; 78 2015; 521 2005; 433 2006; 17 2013; 102 2017; 29 2016; 18 2015; 9 1996; 16 2015; 7 2017; 53 2018; 17 2015; 27 2016; 2 1986; 64 2002; 64 2015; 62 2017; 16 2018; 558 2010; 132 2017 2017; 19 2016 2015 2014 2013 2016; 28 2016; 27 2016; 26 1990; 430 2014; 345 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 (e_1_2_7_60_1) 2000 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 Bache K. (e_1_2_7_56_1) 2016 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Foster M. (e_1_2_7_50_1) 1897 Park S. (e_1_2_7_20_1) 2013 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 Wang I. T. (e_1_2_7_21_1) 2014 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 Chen P. Y. (e_1_2_7_23_1) 2015 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Jacobs‐Gedrim R. B. (e_1_2_7_58_1) 2017 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
| References_xml | – volume: 4 start-page: 2676 year: 2013 publication-title: Nat. Commun. – volume: 345 start-page: 668 year: 2014 publication-title: Science – volume: 558 start-page: 60 year: 2018 publication-title: Nature – volume: 21 start-page: 613 year: 1978 publication-title: Commun. ACM – volume: 29 start-page: 1604310 year: 2017 publication-title: Adv. Mater. – volume: 27 start-page: 365204 year: 2016 publication-title: Nanotechnology – volume: 5 start-page: 3158 year: 2014 publication-title: Nat. Commun. – volume: 18 start-page: 10464 year: 1998 publication-title: J. Neurosci. – volume: 433 start-page: 47 year: 2005 publication-title: Nature – volume: 12 start-page: 1784 year: 2012 publication-title: Nano Lett. – volume: 354 start-page: 515 year: 1991 publication-title: Nature – start-page: 854 year: 2013 – volume: 27 start-page: 7176 year: 2015 publication-title: Adv. Mater. – volume: 8 start-page: 13 year: 2013 publication-title: Nat. Nanotechnol. – volume: 10 start-page: 591 year: 2011 publication-title: Nat. Mater. – volume: 1 start-page: 22 year: 2018 publication-title: Nat. Electron. – start-page: 194 year: 2015 – volume: 28 start-page: 1704455 year: 2018 publication-title: Adv. Funct. Mater. – volume: 16 start-page: 5661 year: 1996 publication-title: J. Neurosci. – volume: 2 start-page: e1501326 year: 2016 publication-title: Sci. Adv. – volume: 76 start-page: 319 year: 1988 publication-title: J. Solid State Chem. – volume: 430 start-page: 605 year: 1990 publication-title: J. Physiol. – volume: 17 start-page: 335 year: 2018 publication-title: Nat. Mater. – start-page: 1 year: 2017 – volume: 22 start-page: 2448 year: 2010 publication-title: Adv. Mater. – volume: 30 start-page: 1800195 year: 2018 publication-title: Adv. Mater. – volume: 103 start-page: 1379 year: 2015 publication-title: Proc. IEEE – volume: 36 start-page: 457 year: 2015 publication-title: IEEE Electron Device Lett. – volume: 78 start-page: 1629 year: 1991 publication-title: Proc. IEEE – volume: 8 start-page: 15199 year: 2017 publication-title: Nat. Commun. – volume: 23 start-page: 5633 year: 2011 publication-title: Adv. Mater. – volume: 17 start-page: 211 year: 2006 publication-title: IEEE Trans. Neural Networks – volume: 199 start-page: 108 year: 2009 publication-title: Behav. Brain Res. – year: 1897 – volume: 19 start-page: 4190 year: 2017 publication-title: Phys. Chem. Chem. Phys. – year: 2000 – volume: 16 start-page: 414 year: 2017 publication-title: Nat. Mater. – volume: 25 start-page: 1774 year: 2013 publication-title: Adv. Mater. – volume: 22 start-page: 2759 year: 2012 publication-title: Adv. Funct. Mater. – year: 2016 – volume: 26 start-page: 91 year: 2016 publication-title: Adv. Funct. Mater. – volume: 62 start-page: 3498 year: 2015 publication-title: IEEE Trans. Electron Devices – volume: 5 start-page: 4232 year: 2014 publication-title: Nat. Commun. – volume: 64 start-page: 47 year: 1986 publication-title: J. Solid State Chem. – volume: 24 start-page: 382001 year: 2013 publication-title: Nanotechnology – volume: 9 start-page: 1609 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 377 year: 2016 publication-title: Adv. Mater. – volume: 29 start-page: 1700906 year: 2017 publication-title: Adv. Mater. – volume: 9 start-page: 3226 year: 2015 publication-title: ACS Nano – volume: 521 start-page: 61 year: 2015 publication-title: Nature – volume: 16 start-page: 101 year: 2017 publication-title: Nat. Mater. – volume: 53 start-page: 1503 year: 2017 publication-title: Electrochim. Acta – volume: 102 start-page: 213502 year: 2013 publication-title: Appl. Phys. Lett. – volume: 25 start-page: 1693 year: 2013 publication-title: Adv. Mater. – volume: 18 start-page: 12466 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 7 start-page: 6023 year: 2015 publication-title: Nanoscale – start-page: 665 year: 2014 – volume: 132 start-page: 6672 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 64 start-page: 355 year: 2002 publication-title: Annu. Rev. Physiol. – volume: 86 start-page: 2278 year: 1998 publication-title: Proc. IEEE – ident: e_1_2_7_17_1 doi: 10.1038/nature14441 – ident: e_1_2_7_22_1 doi: 10.1109/TED.2015.2439635 – ident: e_1_2_7_47_1 doi: 10.1016/0022-4596(88)90225-3 – ident: e_1_2_7_51_1 doi: 10.1113/jphysiol.1990.sp018310 – ident: e_1_2_7_55_1 doi: 10.1038/s41563-017-0001-5 – ident: e_1_2_7_41_1 doi: 10.1002/adma.201800195 – ident: e_1_2_7_26_1 doi: 10.1038/ncomms5232 – ident: e_1_2_7_16_1 doi: 10.1039/C6CP06004H – ident: e_1_2_7_28_1 doi: 10.1002/adma.201103379 – start-page: 665 volume-title: in Proc. IEEE Int. Electron Devices Meeting year: 2014 ident: e_1_2_7_21_1 – ident: e_1_2_7_57_1 doi: 10.1109/5.726791 – volume-title: A Textbook of Physiology, Part 3: The Central Nervous System year: 1897 ident: e_1_2_7_50_1 – ident: e_1_2_7_44_1 doi: 10.1021/acsnano.5b00336 – ident: e_1_2_7_27_1 doi: 10.1039/C4NR07545E – ident: e_1_2_7_32_1 doi: 10.1038/ncomms4158 – ident: e_1_2_7_33_1 doi: 10.1002/adma.201203116 – ident: e_1_2_7_4_1 doi: 10.1038/354515a0 – ident: e_1_2_7_15_1 doi: 10.1002/adma.201503575 – ident: e_1_2_7_13_1 doi: 10.1002/adma.201203680 – ident: e_1_2_7_30_1 doi: 10.1063/1.4807424 – ident: e_1_2_7_38_1 doi: 10.1002/adma.201604310 – ident: e_1_2_7_39_1 doi: 10.1038/nmat4856 – ident: e_1_2_7_3_1 doi: 10.1126/science.1254642 – ident: e_1_2_7_14_1 doi: 10.1038/nmat4756 – ident: e_1_2_7_5_1 doi: 10.1109/JPROC.2015.2444094 – ident: e_1_2_7_48_1 doi: 10.1016/0022-4596(86)90120-9 – ident: e_1_2_7_18_1 doi: 10.1038/nmat3054 – ident: e_1_2_7_12_1 doi: 10.1002/adfm.201704455 – ident: e_1_2_7_19_1 doi: 10.1038/ncomms15199 – ident: e_1_2_7_24_1 doi: 10.1109/LED.2015.2418342 – ident: e_1_2_7_42_1 doi: 10.1002/adfm.201503698 – ident: e_1_2_7_2_1 doi: 10.1109/5.58356 – ident: e_1_2_7_59_1 doi: 10.1038/s41586-018-0180-5 – ident: e_1_2_7_7_1 doi: 10.1088/0957-4484/24/38/382001 – ident: e_1_2_7_43_1 doi: 10.1021/nl203649p – ident: e_1_2_7_11_1 doi: 10.1002/adfm.201103148 – ident: e_1_2_7_45_1 doi: 10.1039/C6CP00823B – ident: e_1_2_7_29_1 doi: 10.1038/nature03190 – ident: e_1_2_7_40_1 doi: 10.1126/sciadv.1501326 – ident: e_1_2_7_53_1 doi: 10.1523/JNEUROSCI.16-18-05661.1996 – ident: e_1_2_7_31_1 doi: 10.1038/ncomms3676 – volume-title: International Technology Roadmap for Semiconductors 2013 Edition year: 2000 ident: e_1_2_7_60_1 – ident: e_1_2_7_54_1 doi: 10.1146/annurev.physiol.64.092501.114547 – ident: e_1_2_7_35_1 doi: 10.1021/acsami.6b13746 – volume-title: UCI Machine Learning Repository year: 2016 ident: e_1_2_7_56_1 – ident: e_1_2_7_9_1 doi: 10.1038/nnano.2012.240 – ident: e_1_2_7_8_1 doi: 10.1038/s41928-017-0006-8 – ident: e_1_2_7_49_1 doi: 10.1021/ja909110s – start-page: 194 volume-title: IEEE/ACM Int. Conf. on Computer‐Aided Design (ICCAD) year: 2015 ident: e_1_2_7_23_1 – start-page: 1 volume-title: IEEE Int. Conf. on Rebooting Computing (ICRC) year: 2017 ident: e_1_2_7_58_1 – ident: e_1_2_7_52_1 doi: 10.1016/j.bbr.2008.09.025 – ident: e_1_2_7_10_1 doi: 10.1523/JNEUROSCI.18-24-10464.1998 – ident: e_1_2_7_1_1 doi: 10.1145/359576.359579 – start-page: 854 volume-title: in Proc. IEEE Int. Electron Devices Meeting year: 2013 ident: e_1_2_7_20_1 – ident: e_1_2_7_46_1 doi: 10.1016/j.electacta.2007.04.016 – ident: e_1_2_7_25_1 doi: 10.1088/0957-4484/27/36/365204 – ident: e_1_2_7_36_1 doi: 10.1002/adma.201503674 – ident: e_1_2_7_34_1 doi: 10.1002/adma.201000282 – ident: e_1_2_7_6_1 doi: 10.1109/TNN.2005.860850 – ident: e_1_2_7_37_1 doi: 10.1002/adma.201700906 |
| SSID | ssj0017734 |
| Score | 2.685288 |
| Snippet | Electronic synaptic devices are important building blocks for neuromorphic computational systems that can go beyond the constraints of von Neumann... |
| SourceID | osti proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Computer simulation CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY electrochemical transistor Electronic devices Handwriting Handwriting recognition ion intercalation Materials science MATHEMATICS AND COMPUTING molybdenum oxide Molybdenum oxides Molybdenum trioxide Neuromorphic computing Resistance Scale (corrosion) Semiconductor devices Switching theory Synapses synaptic plasticity synaptic transistor Transistors Weight |
| Title | All‐Solid‐State Synaptic Transistor with Ultralow Conductance for Neuromorphic Computing |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201804170 https://www.proquest.com/docview/2119941015 https://www.osti.gov/servlets/purl/1472248 |
| Volume | 28 |
| WOSCitedRecordID | wos000448257800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 issn: 1616-301X databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEB7Kpof20KRNSjabBB0KPZlY_pN0XDZZckhCabplDwEjyRIEHDtkty299RHyjH2Szthed_cQCunJNshjo5nRfKOfbwA-IEbQLnSYqcaJCRKOujAJN4FPLNqXjoxpKs99vRBXV3I-V5_WTvG3_BD9hBt5RjNek4Nrszj5SxqqC08nyTkR6AhM2rciFJ4OYOv083R20a8kCNGuLGec9njx-Yq4MYxONiVsBKZBjQ62ATrXoWsTe6bb___XO_Cmw51s3BrKW3jhqnfweo2NcBduxmX5-9fjdV3eFnQlGMquf1YaRxXLmqDWcIowmrtls5LmSOofbFJXxBlL1sMQAbOG7uOuRv3hW23RCBS_B7Pp2ZfJedAVXwhsLGm9N_PC8bgopAtTb5RXTiJWSVVYiNi7TIsk0wpBr5EytRmmmZk30iur0tSiluP3MKjqyu0DS3XGrZRKW40x08Q6NL6IE5TBRSGicAjBqudz2zGTU4GMMm85laOcei3ve20IH_v29y0nx5MtR6TIHNEEUeJa2jtkl5juCEQucgiHK_3mnecucmK8UwkOVOkQokaT__hGPj6dXvZPB895aQSv6J5CIheHMFg-fHNH8NJ-X94uHo47i_4DOar39w |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEB7KptDmkP7TTdJWh0JPJpb_JB2XpEtKN0tpsmUPBSHJEgRcuySbltzyCH3GPklnbK-bPZRC6cnYyLLRzGi-GUnfALxGjGB87DFSTTMbZRxlYTNuo5A51C-TWNtWnvs0E_O5XC7Vh343IZ2F6fghhoQbWUY7X5OBU0L64DdrqCkDHSXnxKAjMGrfylCXUMm3jj5OF7NhKUGIbmm54LTJiy_XzI1xcrDZw4ZnGjVoYRuo8zZ2bZ3P9MF_-O2HsNMjTzbpVOUR3PH1Y9i-xUf4BD5PqurnzY_Tpjov6UpAlJ1e1wbnFcdat9ayijDK3rJFRVmS5js7bGpijSX9YYiBWUv48aVBCeJbXdkI7P4pLKZvzw6Po778QuRSSSu-RRCep2UpfZwHq4LyEtFKruJSpMEXRmSFUQh7rZS5KzDQLIKVQTmV5w7lnD6DUd3U_jmw3BTcSamMM-g1bWpiG8o0wz64KEUSjyFaD712PTc5lciodMeqnGgaNT2M2hjeDO2_dqwcf2y5R5LUiCeIFNfR7iG3woBHIHaRY9hfC1j3tnupifNOZThV5WNIWlH-5Rt6cjQ9Ge52_-WlV3Dv-Oxkpmfv5u_34D49JwfJxT6MVhdX_gXcdd9W55cXL3v1_gUWX_vn |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEC5kVkQPvhfHXTUHwVOznX4lOQ47NorjsLiOzEEISTqBhbZ72R0Vb_4Ef6O_xKrunnbnIIJ4arpJ0iFVlfoqj68AniNGMD72GKmmmY0yjrKwGbdRyBzql0ms7TLPfViI5VKu1-pkOE1Id2F6fohxwY0so5uvycD9eRWOfrOGmirQVXJODDoCo_a9jDLJTGBv_q5cLcatBCH6reWC0yEvvt4yN8bJ0W4LO55p0qKF7aDOq9i1cz7lnf_Q7btwe0CebNaryj245pv7cOsKH-ED-Dir65_ff5y29VlFTwKi7PRbY3Becaxzax2rCKPVW7aqaZWk_cqO24ZYY0l_GGJg1hF-fGpRglirTxuBzT-EVfny_fGraEi_ELlU0o5vEYTnaVVJH-fBqqC8RLSSq7gSafCFEVlhFMJeK2XuCgw0i2BlUE7luUM5p_swadrGPwKWm4I7KZVxBr2mTU1sQ5Vm2AYXlUjiKUTboddu4CanFBm17lmVE02jpsdRm8KLsfx5z8rxx5IHJEmNeIJIcR2dHnIbDHgEYhc5hcOtgPVgu5eaOO9UhlNVPoWkE-Vf_qFn8_Lt-Pb4Xyo9gxsn81IvXi_fHMBN-kz-kYtDmGwuPvsncN192ZxdXjwdtPsXpw_7Yg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=All%E2%80%90Solid%E2%80%90State+Synaptic+Transistor+with+Ultralow+Conductance+for+Neuromorphic+Computing&rft.jtitle=Advanced+functional+materials&rft.au=Yang%2C+Chuan%E2%80%90Sen&rft.au=Shang%2C+Da%E2%80%90Shan&rft.au=Liu%2C+Nan&rft.au=Fuller%2C+Elliot+J.&rft.date=2018-10-17&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=42&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201804170&rft.externalDBID=10.1002%252Fadfm.201804170&rft.externalDocID=ADFM201804170 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |