All‐Solid‐State Synaptic Transistor with Ultralow Conductance for Neuromorphic Computing

Electronic synaptic devices are important building blocks for neuromorphic computational systems that can go beyond the constraints of von Neumann architecture. Although two‐terminal memristive devices are demonstrated to be possible candidates, they suffer from several shortcomings related to the f...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials Vol. 28; no. 42
Main Authors: Yang, Chuan‐Sen, Shang, Da‐Shan, Liu, Nan, Fuller, Elliot J., Agrawal, Sapan, Talin, A. Alec, Li, Yong‐Qing, Shen, Bao‐Gen, Sun, Young
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 17.10.2018
Wiley
Subjects:
ISSN:1616-301X, 1616-3028
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Electronic synaptic devices are important building blocks for neuromorphic computational systems that can go beyond the constraints of von Neumann architecture. Although two‐terminal memristive devices are demonstrated to be possible candidates, they suffer from several shortcomings related to the filament formation mechanism including nonlinear switching, write noise, and high device conductance, all of which limit the accuracy and energy efficiency. Electrochemical three‐terminal transistors, in which the channel conductance can be tuned without filament formation provide an alternative platform for synaptic electronics. Here, an all‐solid‐state electrochemical transistor made with Li ion–based solid dielectric and 2D α‐phase molybdenum oxide (α‐MoO3) nanosheets as the channel is demonstrated. These devices achieve nonvolatile conductance modulation in an ultralow conductance regime (<75 nS) by reversible intercalation of Li ions into the α‐MoO3 lattice. Based on this operating mechanism, the essential functionalities of synapses, such as short‐ and long‐term synaptic plasticity and bidirectional near‐linear analog weight update are demonstrated. Simulations using the handwritten digit data sets demonstrate high recognition accuracy (94.1%) of the synaptic transistor arrays. These results provide an insight into the application of 2D oxides for large‐scale, energy‐efficient neuromorphic computing networks. All‐solid‐state synaptic transistors based on 2D α‐MoO3 nanosheets are fabricated. The operation mechanism is based on the gate voltage–induced reversible intercalation of Li‐ion dopants into α‐MoO3 channel lattice, which engenders bidirectional, near‐linear analog modulation of channel conductance in an ultralow conductance regime (<75 nS). The essential functionalities of synapses and neuromorphic computing for image recognition are demonstrated.
AbstractList Electronic synaptic devices are important building blocks for neuromorphic computational systems that can go beyond the constraints of von Neumann architecture. Although two‐terminal memristive devices are demonstrated to be possible candidates, they suffer from several shortcomings related to the filament formation mechanism including nonlinear switching, write noise, and high device conductance, all of which limit the accuracy and energy efficiency. Electrochemical three‐terminal transistors, in which the channel conductance can be tuned without filament formation provide an alternative platform for synaptic electronics. Here, an all‐solid‐state electrochemical transistor made with Li ion–based solid dielectric and 2D α‐phase molybdenum oxide (α‐MoO 3 ) nanosheets as the channel is demonstrated. These devices achieve nonvolatile conductance modulation in an ultralow conductance regime (<75 nS) by reversible intercalation of Li ions into the α‐MoO 3 lattice. Based on this operating mechanism, the essential functionalities of synapses, such as short‐ and long‐term synaptic plasticity and bidirectional near‐linear analog weight update are demonstrated. Simulations using the handwritten digit data sets demonstrate high recognition accuracy (94.1%) of the synaptic transistor arrays. These results provide an insight into the application of 2D oxides for large‐scale, energy‐efficient neuromorphic computing networks.
Electronic synaptic devices are important building blocks for neuromorphic computational systems that can go beyond the constraints of von Neumann architecture. Although two‐terminal memristive devices are demonstrated to be possible candidates, they suffer from several shortcomings related to the filament formation mechanism including nonlinear switching, write noise, and high device conductance, all of which limit the accuracy and energy efficiency. Electrochemical three‐terminal transistors, in which the channel conductance can be tuned without filament formation provide an alternative platform for synaptic electronics. Here, an all‐solid‐state electrochemical transistor made with Li ion–based solid dielectric and 2D α‐phase molybdenum oxide (α‐MoO3) nanosheets as the channel is demonstrated. These devices achieve nonvolatile conductance modulation in an ultralow conductance regime (<75 nS) by reversible intercalation of Li ions into the α‐MoO3 lattice. Based on this operating mechanism, the essential functionalities of synapses, such as short‐ and long‐term synaptic plasticity and bidirectional near‐linear analog weight update are demonstrated. Simulations using the handwritten digit data sets demonstrate high recognition accuracy (94.1%) of the synaptic transistor arrays. These results provide an insight into the application of 2D oxides for large‐scale, energy‐efficient neuromorphic computing networks.
Electronic synaptic devices are important building blocks for neuromorphic computational systems that can go beyond the constraints of von Neumann architecture. Although two-terminal memristive devices are demonstrated to be possible candidates, they suffer from several shortcomings related to the filament formation mechanism including nonlinear switching, write noise, and high device conductance, all of which limit the accuracy and energy efficiency. Electrochemical three-terminal transistors, in which the channel conductance can be tuned without filament formation provide an alternative platform for synaptic electronics. In this work, an all-solid-state electrochemical transistor made with Li ion–based solid dielectric and 2D α-phase molybdenum oxide (α-MoO3) nanosheets as the channel is demonstrated. These devices achieve nonvolatile conductance modulation in an ultralow conductance regime (<75 nS) by reversible intercalation of Li ions into the α-MoO3 lattice. Based on this operating mechanism, the essential functionalities of synapses, such as short- and long-term synaptic plasticity and bidirectional near-linear analog weight update are demonstrated. Simulations using the handwritten digit data sets demonstrate high recognition accuracy (94.1%) of the synaptic transistor arrays. These results provide an insight into the application of 2D oxides for large-scale, energy-efficient neuromorphic computing networks.
Electronic synaptic devices are important building blocks for neuromorphic computational systems that can go beyond the constraints of von Neumann architecture. Although two‐terminal memristive devices are demonstrated to be possible candidates, they suffer from several shortcomings related to the filament formation mechanism including nonlinear switching, write noise, and high device conductance, all of which limit the accuracy and energy efficiency. Electrochemical three‐terminal transistors, in which the channel conductance can be tuned without filament formation provide an alternative platform for synaptic electronics. Here, an all‐solid‐state electrochemical transistor made with Li ion–based solid dielectric and 2D α‐phase molybdenum oxide (α‐MoO3) nanosheets as the channel is demonstrated. These devices achieve nonvolatile conductance modulation in an ultralow conductance regime (<75 nS) by reversible intercalation of Li ions into the α‐MoO3 lattice. Based on this operating mechanism, the essential functionalities of synapses, such as short‐ and long‐term synaptic plasticity and bidirectional near‐linear analog weight update are demonstrated. Simulations using the handwritten digit data sets demonstrate high recognition accuracy (94.1%) of the synaptic transistor arrays. These results provide an insight into the application of 2D oxides for large‐scale, energy‐efficient neuromorphic computing networks. All‐solid‐state synaptic transistors based on 2D α‐MoO3 nanosheets are fabricated. The operation mechanism is based on the gate voltage–induced reversible intercalation of Li‐ion dopants into α‐MoO3 channel lattice, which engenders bidirectional, near‐linear analog modulation of channel conductance in an ultralow conductance regime (<75 nS). The essential functionalities of synapses and neuromorphic computing for image recognition are demonstrated.
Author Fuller, Elliot J.
Li, Yong‐Qing
Liu, Nan
Agrawal, Sapan
Shen, Bao‐Gen
Sun, Young
Talin, A. Alec
Yang, Chuan‐Sen
Shang, Da‐Shan
Author_xml – sequence: 1
  givenname: Chuan‐Sen
  surname: Yang
  fullname: Yang, Chuan‐Sen
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Da‐Shan
  orcidid: 0000-0003-3573-8390
  surname: Shang
  fullname: Shang, Da‐Shan
  email: shangdashan@iphy.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Nan
  surname: Liu
  fullname: Liu, Nan
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Elliot J.
  surname: Fuller
  fullname: Fuller, Elliot J.
  organization: Sandia National Laboratories
– sequence: 5
  givenname: Sapan
  surname: Agrawal
  fullname: Agrawal, Sapan
  organization: Sandia National Laboratories
– sequence: 6
  givenname: A. Alec
  surname: Talin
  fullname: Talin, A. Alec
  organization: Sandia National Laboratories
– sequence: 7
  givenname: Yong‐Qing
  surname: Li
  fullname: Li, Yong‐Qing
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Bao‐Gen
  surname: Shen
  fullname: Shen, Bao‐Gen
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Young
  surname: Sun
  fullname: Sun, Young
  email: youngsun@iphy.ac.cn
  organization: Chinese Academy of Sciences
BackLink https://www.osti.gov/servlets/purl/1472248$$D View this record in Osti.gov
BookMark eNqFkEFLAzEQhYMoqNWr50XPrZnd7G5yLNWqUPWgBQ9CSLOJjWyTNclSevMn-Bv9JW6pVBDE0xuY980b3iHatc4qhE4ADwDj9FxUejFIMVBMoMQ76AAKKPoZTunudoanfXQYwivGUJYZOUDPw7r-fP94cLWp1hpFVMnDyoomGpk8emGDCdH5ZGniPJnW0YvaLZORs1Uro7BSJbrb3qnWu4XzzbyjRm7RtNHYlyO0p0Ud1PG39tB0fPk4uu5P7q9uRsNJX2aU4D4UulSQVRVVONczppmilBQ5w1WZaVWIkhSCUZjNKM1lkRNW6BnVTLI8lzgTWQ-dbu66EA0P0kQl59JZq2TkQMo0JbQznW1MjXdvrQqRv7rW2-4vngIwRgBD3rkGG5f0LgSvNG-8WQi_4oD5uma-rplva-4A8gvo4kU0znZVmfpvjG2wpanV6p8QPrwY3_6wX9nQln8
CitedBy_id crossref_primary_10_1002_aelm_201901072
crossref_primary_10_1039_D2NR06580K
crossref_primary_10_1002_adma_202415743
crossref_primary_10_1016_j_matchemphys_2022_126227
crossref_primary_10_1039_D0NR06719A
crossref_primary_10_3390_electronics13152916
crossref_primary_10_1088_2515_7639_ad9ee1
crossref_primary_10_1088_2053_1583_abfa6a
crossref_primary_10_1016_j_mee_2022_111778
crossref_primary_10_1016_j_orgel_2022_106529
crossref_primary_10_1038_s41467_020_15158_3
crossref_primary_10_1109_LED_2020_3042208
crossref_primary_10_1038_s41598_022_26587_z
crossref_primary_10_1002_adfm_202111956
crossref_primary_10_1002_adma_202403645
crossref_primary_10_1002_adfm_202201510
crossref_primary_10_1002_aelm_202500054
crossref_primary_10_1016_j_nanoen_2021_106654
crossref_primary_10_1002_smll_202006662
crossref_primary_10_1021_acsnano_4c10489
crossref_primary_10_1016_j_materresbull_2024_112803
crossref_primary_10_1002_adma_201902761
crossref_primary_10_1063_5_0014829
crossref_primary_10_1002_adfm_202425635
crossref_primary_10_1063_5_0165109
crossref_primary_10_1002_adfm_201903700
crossref_primary_10_1002_smll_202103543
crossref_primary_10_1002_adfm_202401403
crossref_primary_10_1016_j_chip_2022_100031
crossref_primary_10_1002_aelm_202300839
crossref_primary_10_1002_advs_202201502
crossref_primary_10_1038_s41528_025_00425_4
crossref_primary_10_1063_1_5122249
crossref_primary_10_1016_j_apsusc_2021_150452
crossref_primary_10_1002_smll_202302593
crossref_primary_10_3390_nano12172978
crossref_primary_10_1002_aisy_202100021
crossref_primary_10_1038_s41598_023_48135_z
crossref_primary_10_3390_molecules26237233
crossref_primary_10_1038_s41467_023_42488_9
crossref_primary_10_1063_5_0250044
crossref_primary_10_1063_5_0030780
crossref_primary_10_1016_j_orgel_2020_105782
crossref_primary_10_1088_1361_6463_ab5eec
crossref_primary_10_1016_j_nanoen_2021_106190
crossref_primary_10_1038_s41467_022_34565_2
crossref_primary_10_1039_D4MH00297K
crossref_primary_10_3390_mi11020154
crossref_primary_10_1002_adfm_202100042
crossref_primary_10_1002_adfm_202508673
crossref_primary_10_1002_advs_202001842
crossref_primary_10_1007_s40843_022_2165_8
crossref_primary_10_1002_adma_201906433
crossref_primary_10_1016_j_mtnano_2024_100480
crossref_primary_10_1002_adfm_202400105
crossref_primary_10_1039_D1MH01061A
crossref_primary_10_15541_jim20240424
crossref_primary_10_1557_s43579_023_00437_z
crossref_primary_10_1088_1674_4926_43_5_051201
crossref_primary_10_1063_5_0069456
crossref_primary_10_1002_inf2_12473
crossref_primary_10_1039_D0NR03141K
crossref_primary_10_1016_j_scib_2025_05_044
crossref_primary_10_1088_1361_6528_ab7252
crossref_primary_10_1002_aelm_201901290
crossref_primary_10_1002_aelm_202200078
crossref_primary_10_1007_s40843_023_2653_x
crossref_primary_10_3390_nano14100868
crossref_primary_10_1002_aelm_202400550
crossref_primary_10_1063_5_0101168
crossref_primary_10_1063_1_5118217
crossref_primary_10_1002_smll_202305605
crossref_primary_10_1002_adfm_202314649
crossref_primary_10_1109_TED_2022_3151306
crossref_primary_10_1038_s41598_019_55310_8
crossref_primary_10_1088_1361_6528_ad4cf4
crossref_primary_10_1016_j_lfs_2021_119272
crossref_primary_10_1002_adma_202003018
crossref_primary_10_1002_aelm_202200864
crossref_primary_10_1039_D2RA02652J
crossref_primary_10_1063_5_0248824
crossref_primary_10_1109_JSEN_2024_3515465
crossref_primary_10_1002_adma_202205294
crossref_primary_10_1063_1_5143382
crossref_primary_10_1063_5_0287232
crossref_primary_10_1007_s11432_022_3601_8
crossref_primary_10_1109_JSTQE_2023_3345488
crossref_primary_10_1038_s41467_025_60050_7
crossref_primary_10_1002_aisy_202000206
crossref_primary_10_1088_1361_6528_ac5444
crossref_primary_10_1002_aisy_201900176
crossref_primary_10_1063_5_0212754
crossref_primary_10_1002_smll_202504071
crossref_primary_10_1016_j_solmat_2024_112960
crossref_primary_10_1063_1_5143815
crossref_primary_10_1088_1361_6528_ab793d
crossref_primary_10_1016_j_nanoen_2020_105120
crossref_primary_10_1088_1361_6528_abf071
crossref_primary_10_1038_s41467_022_35396_x
crossref_primary_10_1109_TED_2023_3328304
crossref_primary_10_1038_s41699_021_00211_6
crossref_primary_10_3390_electronics13040737
crossref_primary_10_1002_aelm_202101260
crossref_primary_10_1016_j_orgel_2023_106859
crossref_primary_10_1109_LED_2021_3138907
crossref_primary_10_3389_fnins_2024_1279708
crossref_primary_10_1002_adma_202205169
crossref_primary_10_1002_adfm_202109970
crossref_primary_10_1039_D2NR04530C
crossref_primary_10_1002_aisy_202000210
crossref_primary_10_1016_j_nanoen_2019_103859
crossref_primary_10_1039_D5CS00251F
crossref_primary_10_1002_adfm_202312444
crossref_primary_10_1039_D1NR04156H
crossref_primary_10_1039_C9NR03073E
crossref_primary_10_1063_5_0082061
crossref_primary_10_1002_aelm_202300476
crossref_primary_10_1103_PhysRevMaterials_5_084005
crossref_primary_10_3390_molecules28135174
crossref_primary_10_1002_aelm_202200721
crossref_primary_10_1016_j_mtphys_2022_100667
crossref_primary_10_1063_5_0159012
crossref_primary_10_1002_adma_201900379
crossref_primary_10_1002_aelm_201900287
crossref_primary_10_1002_aelm_202200607
crossref_primary_10_1007_s40843_021_1901_2
crossref_primary_10_1002_adfm_202107314
crossref_primary_10_1002_adma_202004207
crossref_primary_10_1063_5_0282482
crossref_primary_10_1002_advs_202406242
crossref_primary_10_1007_s40820_023_01035_3
crossref_primary_10_1063_5_0016485
crossref_primary_10_1063_5_0130742
crossref_primary_10_1002_adfm_202104174
crossref_primary_10_1016_j_nanoen_2022_107686
crossref_primary_10_1016_j_nanoen_2021_106038
crossref_primary_10_1038_s41467_024_44759_5
crossref_primary_10_1021_acsnano_5c05240
crossref_primary_10_1002_adma_202301321
crossref_primary_10_1002_pssr_202200378
crossref_primary_10_1016_j_nanoen_2024_109891
crossref_primary_10_1039_D3NR02780E
crossref_primary_10_1088_2634_4386_adb512
crossref_primary_10_1002_adma_202300911
crossref_primary_10_1016_j_enrev_2023_100014
crossref_primary_10_1002_adma_202412549
crossref_primary_10_1007_s00339_021_04512_x
crossref_primary_10_1063_5_0065840
crossref_primary_10_1002_adfm_202007232
crossref_primary_10_26599_NR_2025_94907350
crossref_primary_10_1063_5_0268617
crossref_primary_10_1002_aisy_202000111
crossref_primary_10_3390_electronics14061183
crossref_primary_10_1039_D1NR00148E
crossref_primary_10_1002_smll_202504066
crossref_primary_10_1063_5_0099827
crossref_primary_10_1088_1674_4926_24090042
crossref_primary_10_1088_2631_7990_ad2e13
crossref_primary_10_1002_smsc_202100049
crossref_primary_10_1039_C9NR02027F
crossref_primary_10_1002_adfm_202107973
crossref_primary_10_1002_aelm_202400167
crossref_primary_10_1002_adfm_202010971
crossref_primary_10_1002_advs_202103808
crossref_primary_10_1002_advs_202308847
crossref_primary_10_1002_inf2_12299
crossref_primary_10_1063_5_0092968
crossref_primary_10_1002_smll_202000041
crossref_primary_10_1016_j_nanoen_2022_107985
crossref_primary_10_1016_j_nanoen_2021_106010
crossref_primary_10_1016_j_nanoen_2022_107744
crossref_primary_10_1007_s12598_024_02699_5
crossref_primary_10_1002_aelm_202200810
crossref_primary_10_1039_D3MH01766D
crossref_primary_10_1080_14686996_2022_2162325
crossref_primary_10_35848_1347_4065_ad1fb0
crossref_primary_10_1002_aelm_201901100
crossref_primary_10_1007_s40843_021_2029_y
crossref_primary_10_1038_s41699_023_00427_8
crossref_primary_10_1088_1674_1056_ab75da
crossref_primary_10_1038_s41528_025_00444_1
crossref_primary_10_1063_1_5106381
crossref_primary_10_1002_aelm_201901107
crossref_primary_10_1007_s40042_025_01315_8
crossref_primary_10_1002_adma_202511728
crossref_primary_10_1016_j_mtener_2022_101154
crossref_primary_10_1021_acsaelm_5c00454
crossref_primary_10_1038_s41467_022_32078_6
crossref_primary_10_1002_smll_202506100
crossref_primary_10_1109_LED_2020_3019938
crossref_primary_10_1063_5_0244406
crossref_primary_10_1063_5_0202008
crossref_primary_10_1002_pssr_201900073
crossref_primary_10_1016_j_nantod_2024_102184
crossref_primary_10_1063_5_0059804
crossref_primary_10_1002_smll_202502874
crossref_primary_10_1088_2634_4386_ac29ca
crossref_primary_10_1002_adfm_201904602
crossref_primary_10_1038_s41928_022_00876_x
crossref_primary_10_1007_s12274_022_4070_7
crossref_primary_10_1088_1361_6528_abfc0a
crossref_primary_10_1021_acsnano_5c06027
crossref_primary_10_1088_2053_1583_ac210a
crossref_primary_10_1002_aelm_201901217
crossref_primary_10_1002_aisy_202000149
crossref_primary_10_1016_j_apsusc_2020_147738
crossref_primary_10_1002_aelm_202200922
crossref_primary_10_1109_TED_2022_3154668
crossref_primary_10_3390_ma13020281
crossref_primary_10_3390_nano12101728
crossref_primary_10_1088_2634_4386_ac734a
crossref_primary_10_1016_j_cej_2025_163079
crossref_primary_10_1038_s41578_021_00314_y
crossref_primary_10_1016_j_nanoen_2023_108698
crossref_primary_10_1038_s41598_020_79452_2
crossref_primary_10_1007_s40843_022_2408_7
crossref_primary_10_1002_advs_202400872
crossref_primary_10_1088_2053_1583_ab23ba
crossref_primary_10_1002_adfm_201901107
crossref_primary_10_1016_j_nanoen_2019_104000
crossref_primary_10_1002_smsc_202200008
crossref_primary_10_1038_s41467_023_42172_y
crossref_primary_10_1088_1361_6528_acebf4
crossref_primary_10_1088_2634_4386_ade428
crossref_primary_10_1002_aelm_202200915
crossref_primary_10_1016_j_sse_2022_108257
crossref_primary_10_1039_D2MH00090C
crossref_primary_10_1007_s40843_022_2359_6
crossref_primary_10_3390_ma18184320
crossref_primary_10_1002_adfm_202212367
crossref_primary_10_1002_aisy_202000156
crossref_primary_10_1002_pssr_202100255
crossref_primary_10_1063_5_0086164
crossref_primary_10_1016_j_mtnano_2019_100059
crossref_primary_10_1103_PhysRevMaterials_5_115401
crossref_primary_10_1039_D3RA00782K
crossref_primary_10_1002_adfm_202513449
crossref_primary_10_1002_adma_202305857
crossref_primary_10_3390_s23125413
crossref_primary_10_1016_j_carbon_2021_08_020
crossref_primary_10_1002_pssr_201800674
crossref_primary_10_1016_j_nanoen_2022_107142
crossref_primary_10_1038_s41427_023_00481_0
crossref_primary_10_1063_5_0055067
crossref_primary_10_1002_aelm_202200343
crossref_primary_10_1002_pssr_202000394
crossref_primary_10_1016_j_nanoen_2019_104097
crossref_primary_10_1038_s41467_019_11823_4
crossref_primary_10_1002_adfm_202513684
crossref_primary_10_1186_s40580_024_00415_8
crossref_primary_10_1002_adfm_202100069
crossref_primary_10_1038_s41928_022_00836_5
crossref_primary_10_1002_adma_202208600
crossref_primary_10_1038_s41598_020_65237_0
crossref_primary_10_1002_aelm_201900467
crossref_primary_10_1039_D5TC02043C
crossref_primary_10_1039_D5TC00406C
crossref_primary_10_1038_s41467_020_17849_3
crossref_primary_10_1038_s41598_020_72684_2
crossref_primary_10_1063_5_0107556
crossref_primary_10_1063_1_5138193
crossref_primary_10_1016_j_nanoen_2020_105648
crossref_primary_10_1002_aelm_202100219
crossref_primary_10_1007_s12274_023_6070_7
crossref_primary_10_1007_s13233_023_00188_9
crossref_primary_10_1016_j_carbon_2020_04_096
crossref_primary_10_1016_j_nanoen_2020_104790
crossref_primary_10_1063_5_0169127
crossref_primary_10_3390_ijms232415901
crossref_primary_10_1038_s41378_023_00566_4
crossref_primary_10_1002_adma_202410783
crossref_primary_10_3390_nano12173063
crossref_primary_10_1007_s12274_021_3381_4
crossref_primary_10_1126_science_aaw5581
crossref_primary_10_1002_adma_202416649
crossref_primary_10_1002_admt_201800589
crossref_primary_10_1109_TED_2022_3211478
crossref_primary_10_1016_j_orgel_2020_105749
crossref_primary_10_1016_j_apmt_2021_101223
crossref_primary_10_1021_acsomega_5c01052
crossref_primary_10_1002_aelm_202001243
crossref_primary_10_1002_adfm_202423225
crossref_primary_10_1088_2634_4386_acf1c6
crossref_primary_10_1002_smtd_202201719
crossref_primary_10_1002_admt_202401617
crossref_primary_10_1038_s41565_020_0724_3
crossref_primary_10_1002_adom_202303248
crossref_primary_10_1002_adfm_202313802
crossref_primary_10_1002_aisy_202300123
crossref_primary_10_1109_TED_2019_2951582
crossref_primary_10_1002_adfm_202005443
crossref_primary_10_1007_s11467_023_1305_3
crossref_primary_10_1088_2058_8585_ac4bb2
crossref_primary_10_1007_s40820_022_00945_y
crossref_primary_10_1063_5_0059697
crossref_primary_10_1088_1361_6641_ac25c8
crossref_primary_10_3390_nano12152596
crossref_primary_10_1016_j_apmt_2025_102628
crossref_primary_10_1002_aisy_202000180
crossref_primary_10_1016_j_matdes_2021_110022
crossref_primary_10_1002_admt_202200466
crossref_primary_10_1063_5_0200811
crossref_primary_10_1016_j_orgel_2019_105409
crossref_primary_10_1002_aelm_202300540
crossref_primary_10_1002_smll_202502601
crossref_primary_10_31613_ceramist_2025_00038
crossref_primary_10_1002_smll_202505436
crossref_primary_10_1002_aisy_202500416
crossref_primary_10_1063_5_0124219
crossref_primary_10_1038_s41598_020_68793_7
crossref_primary_10_1038_s41467_022_34178_9
crossref_primary_10_1063_5_0003696
crossref_primary_10_3390_nano14020203
crossref_primary_10_1007_s40843_025_3405_y
crossref_primary_10_1109_JETCAS_2023_3330832
crossref_primary_10_1002_aisy_202000196
crossref_primary_10_1088_1361_6463_abad63
crossref_primary_10_1016_j_cap_2021_08_014
crossref_primary_10_1002_aelm_202001104
crossref_primary_10_1002_adfm_202201048
crossref_primary_10_1002_aelm_202300652
Cites_doi 10.1038/nature14441
10.1109/TED.2015.2439635
10.1016/0022-4596(88)90225-3
10.1113/jphysiol.1990.sp018310
10.1038/s41563-017-0001-5
10.1002/adma.201800195
10.1038/ncomms5232
10.1039/C6CP06004H
10.1002/adma.201103379
10.1109/5.726791
10.1021/acsnano.5b00336
10.1039/C4NR07545E
10.1038/ncomms4158
10.1002/adma.201203116
10.1038/354515a0
10.1002/adma.201503575
10.1002/adma.201203680
10.1063/1.4807424
10.1002/adma.201604310
10.1038/nmat4856
10.1126/science.1254642
10.1038/nmat4756
10.1109/JPROC.2015.2444094
10.1016/0022-4596(86)90120-9
10.1038/nmat3054
10.1002/adfm.201704455
10.1038/ncomms15199
10.1109/LED.2015.2418342
10.1002/adfm.201503698
10.1109/5.58356
10.1038/s41586-018-0180-5
10.1088/0957-4484/24/38/382001
10.1021/nl203649p
10.1002/adfm.201103148
10.1039/C6CP00823B
10.1038/nature03190
10.1126/sciadv.1501326
10.1523/JNEUROSCI.16-18-05661.1996
10.1038/ncomms3676
10.1146/annurev.physiol.64.092501.114547
10.1021/acsami.6b13746
10.1038/nnano.2012.240
10.1038/s41928-017-0006-8
10.1021/ja909110s
10.1016/j.bbr.2008.09.025
10.1523/JNEUROSCI.18-24-10464.1998
10.1145/359576.359579
10.1016/j.electacta.2007.04.016
10.1088/0957-4484/27/36/365204
10.1002/adma.201503674
10.1002/adma.201000282
10.1109/TNN.2005.860850
10.1002/adma.201700906
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
CorporateAuthor Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)
Sandia National Lab. (SNL-CA), Livermore, CA (United States)
CorporateAuthor_xml – name: Sandia National Lab. (SNL-CA), Livermore, CA (United States)
– name: Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
OIOZB
OTOTI
DOI 10.1002/adfm.201804170
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 1472248
10_1002_adfm_201804170
ADFM201804170
Genre article
GrantInformation_xml – fundername: U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences
  funderid: DESC0001160
– fundername: National Key Research Program of China
  funderid: 2016YFA0300701
– fundername: Nanostructures for Electrical Energy Storage
– fundername: State Key Laboratory of Materials Processing and Die & Mould Technology
  funderid: P2018‐004
– fundername: Energy Frontier Research Center
– fundername: Chinese Academy of Sciences
  funderid: XDB07030200
– fundername: National Nature Science Foundation of China
  funderid: 61874138; 51671213; 11534015; 51725104
– fundername: U.S. Department of Energy's National Nuclear Security Administration
  funderid: DE‐NA‐0003525
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAMMB
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
O8X
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OIOZB
OTOTI
ID FETCH-LOGICAL-c3840-16f7e13dd8e05fb9f9e8846590d73fe6a746a981bb885c65496fb8f9c955c03a3
IEDL.DBID DRFUL
ISICitedReferencesCount 429
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000448257800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1616-301X
IngestDate Mon Jul 03 03:55:00 EDT 2023
Sun Nov 09 06:56:52 EST 2025
Sat Nov 29 07:23:56 EST 2025
Tue Nov 18 21:45:42 EST 2025
Wed Jan 22 16:44:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3840-16f7e13dd8e05fb9f9e8846590d73fe6a746a981bb885c65496fb8f9c955c03a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
AC04-94AL85000; 61874138; 51671213; 11534015; 51725104; 2016YFA0300701; XDB07030200; P2018‐004; SC0001160; NA0003525; NA‐0003525
Chinese Academy of Sciences (CAS)
Univ. of Maryland, College Park, MD (United States). Nanostructures for Electrical Energy Storage (NEES)
USDOE Office of Science (SC), Basic Energy Sciences (BES)
National Nature Science Foundation of China (NSFC)
SAND-2018-9254J
National Key Research Program of China
USDOE National Nuclear Security Administration (NNSA)
ORCID 0000-0003-3573-8390
0000000335738390
OpenAccessLink https://www.osti.gov/servlets/purl/1472248
PQID 2119941015
PQPubID 2045204
PageCount 10
ParticipantIDs osti_scitechconnect_1472248
proquest_journals_2119941015
crossref_primary_10_1002_adfm_201804170
crossref_citationtrail_10_1002_adfm_201804170
wiley_primary_10_1002_adfm_201804170_ADFM201804170
PublicationCentury 2000
PublicationDate October 17, 2018
PublicationDateYYYYMMDD 2018-10-17
PublicationDate_xml – month: 10
  year: 2018
  text: October 17, 2018
  day: 17
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Advanced functional materials
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2017; 8
2015; 36
2013; 25
2013; 4
1991; 354
2013; 24
2015; 103
1988; 76
2009; 199
1897
2011; 10
2013; 8
2012; 12
1998; 86
2017; 9
2010; 22
1998; 18
2014; 5
2000
1978; 21
2018; 1
2018; 30
2011; 23
2012; 22
2018; 28
1991; 78
2015; 521
2005; 433
2006; 17
2013; 102
2017; 29
2016; 18
2015; 9
1996; 16
2015; 7
2017; 53
2018; 17
2015; 27
2016; 2
1986; 64
2002; 64
2015; 62
2017; 16
2018; 558
2010; 132
2017
2017; 19
2016
2015
2014
2013
2016; 28
2016; 27
2016; 26
1990; 430
2014; 345
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
(e_1_2_7_60_1) 2000
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
Bache K. (e_1_2_7_56_1) 2016
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Foster M. (e_1_2_7_50_1) 1897
Park S. (e_1_2_7_20_1) 2013
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
Wang I. T. (e_1_2_7_21_1) 2014
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
Chen P. Y. (e_1_2_7_23_1) 2015
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Jacobs‐Gedrim R. B. (e_1_2_7_58_1) 2017
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 4
  start-page: 2676
  year: 2013
  publication-title: Nat. Commun.
– volume: 345
  start-page: 668
  year: 2014
  publication-title: Science
– volume: 558
  start-page: 60
  year: 2018
  publication-title: Nature
– volume: 21
  start-page: 613
  year: 1978
  publication-title: Commun. ACM
– volume: 29
  start-page: 1604310
  year: 2017
  publication-title: Adv. Mater.
– volume: 27
  start-page: 365204
  year: 2016
  publication-title: Nanotechnology
– volume: 5
  start-page: 3158
  year: 2014
  publication-title: Nat. Commun.
– volume: 18
  start-page: 10464
  year: 1998
  publication-title: J. Neurosci.
– volume: 433
  start-page: 47
  year: 2005
  publication-title: Nature
– volume: 12
  start-page: 1784
  year: 2012
  publication-title: Nano Lett.
– volume: 354
  start-page: 515
  year: 1991
  publication-title: Nature
– start-page: 854
  year: 2013
– volume: 27
  start-page: 7176
  year: 2015
  publication-title: Adv. Mater.
– volume: 8
  start-page: 13
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 10
  start-page: 591
  year: 2011
  publication-title: Nat. Mater.
– volume: 1
  start-page: 22
  year: 2018
  publication-title: Nat. Electron.
– start-page: 194
  year: 2015
– volume: 28
  start-page: 1704455
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 5661
  year: 1996
  publication-title: J. Neurosci.
– volume: 2
  start-page: e1501326
  year: 2016
  publication-title: Sci. Adv.
– volume: 76
  start-page: 319
  year: 1988
  publication-title: J. Solid State Chem.
– volume: 430
  start-page: 605
  year: 1990
  publication-title: J. Physiol.
– volume: 17
  start-page: 335
  year: 2018
  publication-title: Nat. Mater.
– start-page: 1
  year: 2017
– volume: 22
  start-page: 2448
  year: 2010
  publication-title: Adv. Mater.
– volume: 30
  start-page: 1800195
  year: 2018
  publication-title: Adv. Mater.
– volume: 103
  start-page: 1379
  year: 2015
  publication-title: Proc. IEEE
– volume: 36
  start-page: 457
  year: 2015
  publication-title: IEEE Electron Device Lett.
– volume: 78
  start-page: 1629
  year: 1991
  publication-title: Proc. IEEE
– volume: 8
  start-page: 15199
  year: 2017
  publication-title: Nat. Commun.
– volume: 23
  start-page: 5633
  year: 2011
  publication-title: Adv. Mater.
– volume: 17
  start-page: 211
  year: 2006
  publication-title: IEEE Trans. Neural Networks
– volume: 199
  start-page: 108
  year: 2009
  publication-title: Behav. Brain Res.
– year: 1897
– volume: 19
  start-page: 4190
  year: 2017
  publication-title: Phys. Chem. Chem. Phys.
– year: 2000
– volume: 16
  start-page: 414
  year: 2017
  publication-title: Nat. Mater.
– volume: 25
  start-page: 1774
  year: 2013
  publication-title: Adv. Mater.
– volume: 22
  start-page: 2759
  year: 2012
  publication-title: Adv. Funct. Mater.
– year: 2016
– volume: 26
  start-page: 91
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 62
  start-page: 3498
  year: 2015
  publication-title: IEEE Trans. Electron Devices
– volume: 5
  start-page: 4232
  year: 2014
  publication-title: Nat. Commun.
– volume: 64
  start-page: 47
  year: 1986
  publication-title: J. Solid State Chem.
– volume: 24
  start-page: 382001
  year: 2013
  publication-title: Nanotechnology
– volume: 9
  start-page: 1609
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 377
  year: 2016
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1700906
  year: 2017
  publication-title: Adv. Mater.
– volume: 9
  start-page: 3226
  year: 2015
  publication-title: ACS Nano
– volume: 521
  start-page: 61
  year: 2015
  publication-title: Nature
– volume: 16
  start-page: 101
  year: 2017
  publication-title: Nat. Mater.
– volume: 53
  start-page: 1503
  year: 2017
  publication-title: Electrochim. Acta
– volume: 102
  start-page: 213502
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 25
  start-page: 1693
  year: 2013
  publication-title: Adv. Mater.
– volume: 18
  start-page: 12466
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 7
  start-page: 6023
  year: 2015
  publication-title: Nanoscale
– start-page: 665
  year: 2014
– volume: 132
  start-page: 6672
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 64
  start-page: 355
  year: 2002
  publication-title: Annu. Rev. Physiol.
– volume: 86
  start-page: 2278
  year: 1998
  publication-title: Proc. IEEE
– ident: e_1_2_7_17_1
  doi: 10.1038/nature14441
– ident: e_1_2_7_22_1
  doi: 10.1109/TED.2015.2439635
– ident: e_1_2_7_47_1
  doi: 10.1016/0022-4596(88)90225-3
– ident: e_1_2_7_51_1
  doi: 10.1113/jphysiol.1990.sp018310
– ident: e_1_2_7_55_1
  doi: 10.1038/s41563-017-0001-5
– ident: e_1_2_7_41_1
  doi: 10.1002/adma.201800195
– ident: e_1_2_7_26_1
  doi: 10.1038/ncomms5232
– ident: e_1_2_7_16_1
  doi: 10.1039/C6CP06004H
– ident: e_1_2_7_28_1
  doi: 10.1002/adma.201103379
– start-page: 665
  volume-title: in Proc. IEEE Int. Electron Devices Meeting
  year: 2014
  ident: e_1_2_7_21_1
– ident: e_1_2_7_57_1
  doi: 10.1109/5.726791
– volume-title: A Textbook of Physiology, Part 3: The Central Nervous System
  year: 1897
  ident: e_1_2_7_50_1
– ident: e_1_2_7_44_1
  doi: 10.1021/acsnano.5b00336
– ident: e_1_2_7_27_1
  doi: 10.1039/C4NR07545E
– ident: e_1_2_7_32_1
  doi: 10.1038/ncomms4158
– ident: e_1_2_7_33_1
  doi: 10.1002/adma.201203116
– ident: e_1_2_7_4_1
  doi: 10.1038/354515a0
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.201503575
– ident: e_1_2_7_13_1
  doi: 10.1002/adma.201203680
– ident: e_1_2_7_30_1
  doi: 10.1063/1.4807424
– ident: e_1_2_7_38_1
  doi: 10.1002/adma.201604310
– ident: e_1_2_7_39_1
  doi: 10.1038/nmat4856
– ident: e_1_2_7_3_1
  doi: 10.1126/science.1254642
– ident: e_1_2_7_14_1
  doi: 10.1038/nmat4756
– ident: e_1_2_7_5_1
  doi: 10.1109/JPROC.2015.2444094
– ident: e_1_2_7_48_1
  doi: 10.1016/0022-4596(86)90120-9
– ident: e_1_2_7_18_1
  doi: 10.1038/nmat3054
– ident: e_1_2_7_12_1
  doi: 10.1002/adfm.201704455
– ident: e_1_2_7_19_1
  doi: 10.1038/ncomms15199
– ident: e_1_2_7_24_1
  doi: 10.1109/LED.2015.2418342
– ident: e_1_2_7_42_1
  doi: 10.1002/adfm.201503698
– ident: e_1_2_7_2_1
  doi: 10.1109/5.58356
– ident: e_1_2_7_59_1
  doi: 10.1038/s41586-018-0180-5
– ident: e_1_2_7_7_1
  doi: 10.1088/0957-4484/24/38/382001
– ident: e_1_2_7_43_1
  doi: 10.1021/nl203649p
– ident: e_1_2_7_11_1
  doi: 10.1002/adfm.201103148
– ident: e_1_2_7_45_1
  doi: 10.1039/C6CP00823B
– ident: e_1_2_7_29_1
  doi: 10.1038/nature03190
– ident: e_1_2_7_40_1
  doi: 10.1126/sciadv.1501326
– ident: e_1_2_7_53_1
  doi: 10.1523/JNEUROSCI.16-18-05661.1996
– ident: e_1_2_7_31_1
  doi: 10.1038/ncomms3676
– volume-title: International Technology Roadmap for Semiconductors 2013 Edition
  year: 2000
  ident: e_1_2_7_60_1
– ident: e_1_2_7_54_1
  doi: 10.1146/annurev.physiol.64.092501.114547
– ident: e_1_2_7_35_1
  doi: 10.1021/acsami.6b13746
– volume-title: UCI Machine Learning Repository
  year: 2016
  ident: e_1_2_7_56_1
– ident: e_1_2_7_9_1
  doi: 10.1038/nnano.2012.240
– ident: e_1_2_7_8_1
  doi: 10.1038/s41928-017-0006-8
– ident: e_1_2_7_49_1
  doi: 10.1021/ja909110s
– start-page: 194
  volume-title: IEEE/ACM Int. Conf. on Computer‐Aided Design (ICCAD)
  year: 2015
  ident: e_1_2_7_23_1
– start-page: 1
  volume-title: IEEE Int. Conf. on Rebooting Computing (ICRC)
  year: 2017
  ident: e_1_2_7_58_1
– ident: e_1_2_7_52_1
  doi: 10.1016/j.bbr.2008.09.025
– ident: e_1_2_7_10_1
  doi: 10.1523/JNEUROSCI.18-24-10464.1998
– ident: e_1_2_7_1_1
  doi: 10.1145/359576.359579
– start-page: 854
  volume-title: in Proc. IEEE Int. Electron Devices Meeting
  year: 2013
  ident: e_1_2_7_20_1
– ident: e_1_2_7_46_1
  doi: 10.1016/j.electacta.2007.04.016
– ident: e_1_2_7_25_1
  doi: 10.1088/0957-4484/27/36/365204
– ident: e_1_2_7_36_1
  doi: 10.1002/adma.201503674
– ident: e_1_2_7_34_1
  doi: 10.1002/adma.201000282
– ident: e_1_2_7_6_1
  doi: 10.1109/TNN.2005.860850
– ident: e_1_2_7_37_1
  doi: 10.1002/adma.201700906
SSID ssj0017734
Score 2.685288
Snippet Electronic synaptic devices are important building blocks for neuromorphic computational systems that can go beyond the constraints of von Neumann...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Computer simulation
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
electrochemical transistor
Electronic devices
Handwriting
Handwriting recognition
ion intercalation
Materials science
MATHEMATICS AND COMPUTING
molybdenum oxide
Molybdenum oxides
Molybdenum trioxide
Neuromorphic computing
Resistance
Scale (corrosion)
Semiconductor devices
Switching theory
Synapses
synaptic plasticity
synaptic transistor
Transistors
Weight
Title All‐Solid‐State Synaptic Transistor with Ultralow Conductance for Neuromorphic Computing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201804170
https://www.proquest.com/docview/2119941015
https://www.osti.gov/servlets/purl/1472248
Volume 28
WOSCitedRecordID wos000448257800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEB7Kpof20KRNSjabBB0KPZlY_pN0XDZZckhCabplDwEjyRIEHDtkty299RHyjH2Szthed_cQCunJNshjo5nRfKOfbwA-IEbQLnSYqcaJCRKOujAJN4FPLNqXjoxpKs99vRBXV3I-V5_WTvG3_BD9hBt5RjNek4Nrszj5SxqqC08nyTkR6AhM2rciFJ4OYOv083R20a8kCNGuLGec9njx-Yq4MYxONiVsBKZBjQ62ATrXoWsTe6bb___XO_Cmw51s3BrKW3jhqnfweo2NcBduxmX5-9fjdV3eFnQlGMquf1YaRxXLmqDWcIowmrtls5LmSOofbFJXxBlL1sMQAbOG7uOuRv3hW23RCBS_B7Pp2ZfJedAVXwhsLGm9N_PC8bgopAtTb5RXTiJWSVVYiNi7TIsk0wpBr5EytRmmmZk30iur0tSiluP3MKjqyu0DS3XGrZRKW40x08Q6NL6IE5TBRSGicAjBqudz2zGTU4GMMm85laOcei3ve20IH_v29y0nx5MtR6TIHNEEUeJa2jtkl5juCEQucgiHK_3mnecucmK8UwkOVOkQokaT__hGPj6dXvZPB895aQSv6J5CIheHMFg-fHNH8NJ-X94uHo47i_4DOar39w
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEB7KptDmkP7TTdJWh0JPJpb_JB2XpEtKN0tpsmUPBSHJEgRcuySbltzyCH3GPklnbK-bPZRC6cnYyLLRzGi-GUnfALxGjGB87DFSTTMbZRxlYTNuo5A51C-TWNtWnvs0E_O5XC7Vh343IZ2F6fghhoQbWUY7X5OBU0L64DdrqCkDHSXnxKAjMGrfylCXUMm3jj5OF7NhKUGIbmm54LTJiy_XzI1xcrDZw4ZnGjVoYRuo8zZ2bZ3P9MF_-O2HsNMjTzbpVOUR3PH1Y9i-xUf4BD5PqurnzY_Tpjov6UpAlJ1e1wbnFcdat9ayijDK3rJFRVmS5js7bGpijSX9YYiBWUv48aVBCeJbXdkI7P4pLKZvzw6Po778QuRSSSu-RRCep2UpfZwHq4LyEtFKruJSpMEXRmSFUQh7rZS5KzDQLIKVQTmV5w7lnD6DUd3U_jmw3BTcSamMM-g1bWpiG8o0wz64KEUSjyFaD712PTc5lciodMeqnGgaNT2M2hjeDO2_dqwcf2y5R5LUiCeIFNfR7iG3woBHIHaRY9hfC1j3tnupifNOZThV5WNIWlH-5Rt6cjQ9Ge52_-WlV3Dv-Oxkpmfv5u_34D49JwfJxT6MVhdX_gXcdd9W55cXL3v1_gUWX_vn
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEC5kVkQPvhfHXTUHwVOznX4lOQ47NorjsLiOzEEISTqBhbZ72R0Vb_4Ef6O_xKrunnbnIIJ4arpJ0iFVlfoqj68AniNGMD72GKmmmY0yjrKwGbdRyBzql0ms7TLPfViI5VKu1-pkOE1Id2F6fohxwY0so5uvycD9eRWOfrOGmirQVXJODDoCo_a9jDLJTGBv_q5cLcatBCH6reWC0yEvvt4yN8bJ0W4LO55p0qKF7aDOq9i1cz7lnf_Q7btwe0CebNaryj245pv7cOsKH-ED-Dir65_ff5y29VlFTwKi7PRbY3Becaxzax2rCKPVW7aqaZWk_cqO24ZYY0l_GGJg1hF-fGpRglirTxuBzT-EVfny_fGraEi_ELlU0o5vEYTnaVVJH-fBqqC8RLSSq7gSafCFEVlhFMJeK2XuCgw0i2BlUE7luUM5p_swadrGPwKWm4I7KZVxBr2mTU1sQ5Vm2AYXlUjiKUTboddu4CanFBm17lmVE02jpsdRm8KLsfx5z8rxx5IHJEmNeIJIcR2dHnIbDHgEYhc5hcOtgPVgu5eaOO9UhlNVPoWkE-Vf_qFn8_Lt-Pb4Xyo9gxsn81IvXi_fHMBN-kz-kYtDmGwuPvsncN192ZxdXjwdtPsXpw_7Yg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=All%E2%80%90Solid%E2%80%90State+Synaptic+Transistor+with+Ultralow+Conductance+for+Neuromorphic+Computing&rft.jtitle=Advanced+functional+materials&rft.au=Yang%2C+Chuan%E2%80%90Sen&rft.au=Shang%2C+Da%E2%80%90Shan&rft.au=Liu%2C+Nan&rft.au=Fuller%2C+Elliot+J.&rft.date=2018-10-17&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=42&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201804170&rft.externalDBID=10.1002%252Fadfm.201804170&rft.externalDocID=ADFM201804170
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon