Cisplatin induces autophagy to enhance hepatitis B virus replication via activation of ROS/JNK and inhibition of the Akt/mTOR pathway
Chronic hepatitis B virus (HBV) infection remains a serious global health concern. Cisplatin is a chemotherapeutic agent commonly used to treat various cancers. However, HBV-infected patients receiving chemotherapy are at risk of HBV reactivation via unknown mechanisms, which we aimed to elucidate i...
Uložené v:
| Vydané v: | Free radical biology & medicine Ročník 131; s. 225 - 236 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier Inc
01.02.2019
|
| Predmet: | |
| ISSN: | 0891-5849, 1873-4596, 1873-4596 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Chronic hepatitis B virus (HBV) infection remains a serious global health concern. Cisplatin is a chemotherapeutic agent commonly used to treat various cancers. However, HBV-infected patients receiving chemotherapy are at risk of HBV reactivation via unknown mechanisms, which we aimed to elucidate in this study. We found that autophagy plays a central role in cisplatin-induced HBV replication. Cisplatin treatment induced autophagy in both HBV-replicating cells and an HBV-transgenic mouse model as evident from marked upregulation of microtubule-associated protein 1 light chain 3 (LC3)-II and the accumulation of red fluorescent protein (RFP)-LC3 puncta. Cisplatin induced complete autophagic flux, which was detected via monitoring of p62 degradation and RFP-GFP-LC3 expression. Inhibition of autophagy by chloroquine, 3-methyladenine, or Atg5 knockdown significantly attenuated cisplatin-induced HBV replication. Additionally, cisplatin-induced autophagy could be significantly attenuated by using the ROS scavenger N-acetyl-l-cysteine. Mechanically, cisplatin promoted HBV replication and autophagy through ROS/JNK and AKT/mTOR signaling. Inhibition of JNK or activation of Akt/mTOR signaling reversed cisplatin-mediated autophagy and HBV replication promotion. In contrast, suppression of Akt/mTOR signaling further promoted cisplatin-induced HBV replication. Finally, pharmacotherapeutic inhibition of autophagy or ROS production impaired HBV production induced by cisplatin in vivo. Together, our results indicate that ROS/JNK and mTOR/AKT-mediated autophagy plays an important role in cisplatin-induced HBV reactivation.
[Display omitted]
•Cisplatin stimulates HBV replication in vitro and in vivo.•Cisplatin induces autophagy to enhance hepatitis B virus replication.•Inhibition of autophagy or ROS/JNK axis rendered cisplatin-induced HBV biosynthesis.•Cisplatin promotes HBV replication and autophagy by ROS/JNK and AKT/mTOR pathway. |
|---|---|
| AbstractList | Chronic hepatitis B virus (HBV) infection remains a serious global health concern. Cisplatin is a chemotherapeutic agent commonly used to treat various cancers. However, HBV-infected patients receiving chemotherapy are at risk of HBV reactivation via unknown mechanisms, which we aimed to elucidate in this study. We found that autophagy plays a central role in cisplatin-induced HBV replication. Cisplatin treatment induced autophagy in both HBV-replicating cells and an HBV-transgenic mouse model as evident from marked upregulation of microtubule-associated protein 1 light chain 3 (LC3)-II and the accumulation of red fluorescent protein (RFP)-LC3 puncta. Cisplatin induced complete autophagic flux, which was detected via monitoring of p62 degradation and RFP-GFP-LC3 expression. Inhibition of autophagy by chloroquine, 3-methyladenine, or Atg5 knockdown significantly attenuated cisplatin-induced HBV replication. Additionally, cisplatin-induced autophagy could be significantly attenuated by using the ROS scavenger N-acetyl-l-cysteine. Mechanically, cisplatin promoted HBV replication and autophagy through ROS/JNK and AKT/mTOR signaling. Inhibition of JNK or activation of Akt/mTOR signaling reversed cisplatin-mediated autophagy and HBV replication promotion. In contrast, suppression of Akt/mTOR signaling further promoted cisplatin-induced HBV replication. Finally, pharmacotherapeutic inhibition of autophagy or ROS production impaired HBV production induced by cisplatin in vivo. Together, our results indicate that ROS/JNK and mTOR/AKT-mediated autophagy plays an important role in cisplatin-induced HBV reactivation. Chronic hepatitis B virus (HBV) infection remains a serious global health concern. Cisplatin is a chemotherapeutic agent commonly used to treat various cancers. However, HBV-infected patients receiving chemotherapy are at risk of HBV reactivation via unknown mechanisms, which we aimed to elucidate in this study. We found that autophagy plays a central role in cisplatin-induced HBV replication. Cisplatin treatment induced autophagy in both HBV-replicating cells and an HBV-transgenic mouse model as evident from marked upregulation of microtubule-associated protein 1 light chain 3 (LC3)-II and the accumulation of red fluorescent protein (RFP)-LC3 puncta. Cisplatin induced complete autophagic flux, which was detected via monitoring of p62 degradation and RFP-GFP-LC3 expression. Inhibition of autophagy by chloroquine, 3-methyladenine, or Atg5 knockdown significantly attenuated cisplatin-induced HBV replication. Additionally, cisplatin-induced autophagy could be significantly attenuated by using the ROS scavenger N-acetyl-l-cysteine. Mechanically, cisplatin promoted HBV replication and autophagy through ROS/JNK and AKT/mTOR signaling. Inhibition of JNK or activation of Akt/mTOR signaling reversed cisplatin-mediated autophagy and HBV replication promotion. In contrast, suppression of Akt/mTOR signaling further promoted cisplatin-induced HBV replication. Finally, pharmacotherapeutic inhibition of autophagy or ROS production impaired HBV production induced by cisplatin in vivo. Together, our results indicate that ROS/JNK and mTOR/AKT-mediated autophagy plays an important role in cisplatin-induced HBV reactivation.Chronic hepatitis B virus (HBV) infection remains a serious global health concern. Cisplatin is a chemotherapeutic agent commonly used to treat various cancers. However, HBV-infected patients receiving chemotherapy are at risk of HBV reactivation via unknown mechanisms, which we aimed to elucidate in this study. We found that autophagy plays a central role in cisplatin-induced HBV replication. Cisplatin treatment induced autophagy in both HBV-replicating cells and an HBV-transgenic mouse model as evident from marked upregulation of microtubule-associated protein 1 light chain 3 (LC3)-II and the accumulation of red fluorescent protein (RFP)-LC3 puncta. Cisplatin induced complete autophagic flux, which was detected via monitoring of p62 degradation and RFP-GFP-LC3 expression. Inhibition of autophagy by chloroquine, 3-methyladenine, or Atg5 knockdown significantly attenuated cisplatin-induced HBV replication. Additionally, cisplatin-induced autophagy could be significantly attenuated by using the ROS scavenger N-acetyl-l-cysteine. Mechanically, cisplatin promoted HBV replication and autophagy through ROS/JNK and AKT/mTOR signaling. Inhibition of JNK or activation of Akt/mTOR signaling reversed cisplatin-mediated autophagy and HBV replication promotion. In contrast, suppression of Akt/mTOR signaling further promoted cisplatin-induced HBV replication. Finally, pharmacotherapeutic inhibition of autophagy or ROS production impaired HBV production induced by cisplatin in vivo. Together, our results indicate that ROS/JNK and mTOR/AKT-mediated autophagy plays an important role in cisplatin-induced HBV reactivation. Chronic hepatitis B virus (HBV) infection remains a serious global health concern. Cisplatin is a chemotherapeutic agent commonly used to treat various cancers. However, HBV-infected patients receiving chemotherapy are at risk of HBV reactivation via unknown mechanisms, which we aimed to elucidate in this study. We found that autophagy plays a central role in cisplatin-induced HBV replication. Cisplatin treatment induced autophagy in both HBV-replicating cells and an HBV-transgenic mouse model as evident from marked upregulation of microtubule-associated protein 1 light chain 3 (LC3)-II and the accumulation of red fluorescent protein (RFP)-LC3 puncta. Cisplatin induced complete autophagic flux, which was detected via monitoring of p62 degradation and RFP-GFP-LC3 expression. Inhibition of autophagy by chloroquine, 3-methyladenine, or Atg5 knockdown significantly attenuated cisplatin-induced HBV replication. Additionally, cisplatin-induced autophagy could be significantly attenuated by using the ROS scavenger N-acetyl-l-cysteine. Mechanically, cisplatin promoted HBV replication and autophagy through ROS/JNK and AKT/mTOR signaling. Inhibition of JNK or activation of Akt/mTOR signaling reversed cisplatin-mediated autophagy and HBV replication promotion. In contrast, suppression of Akt/mTOR signaling further promoted cisplatin-induced HBV replication. Finally, pharmacotherapeutic inhibition of autophagy or ROS production impaired HBV production induced by cisplatin in vivo. Together, our results indicate that ROS/JNK and mTOR/AKT-mediated autophagy plays an important role in cisplatin-induced HBV reactivation. [Display omitted] •Cisplatin stimulates HBV replication in vitro and in vivo.•Cisplatin induces autophagy to enhance hepatitis B virus replication.•Inhibition of autophagy or ROS/JNK axis rendered cisplatin-induced HBV biosynthesis.•Cisplatin promotes HBV replication and autophagy by ROS/JNK and AKT/mTOR pathway. |
| Author | Li, Xiaosong Zhang, Wenlu Tang, Ni Liang, Li Cai, Xuefei Chen, Xuemei Hu, Jie Hu, Jieli Hu, Yuan Wang, Kai Huang, Ailong Chen, Ke |
| Author_xml | – sequence: 1 givenname: Xuemei surname: Chen fullname: Chen, Xuemei organization: Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China – sequence: 2 givenname: Yuan surname: Hu fullname: Hu, Yuan organization: Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China – sequence: 3 givenname: Wenlu surname: Zhang fullname: Zhang, Wenlu organization: Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China – sequence: 4 givenname: Ke surname: Chen fullname: Chen, Ke organization: Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China – sequence: 5 givenname: Jie surname: Hu fullname: Hu, Jie organization: Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China – sequence: 6 givenname: Xiaosong surname: Li fullname: Li, Xiaosong organization: The First Affiliated Hospital, Chongqing Medical University, Chongqing, China – sequence: 7 givenname: Li surname: Liang fullname: Liang, Li organization: Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China – sequence: 8 givenname: Xuefei surname: Cai fullname: Cai, Xuefei organization: Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China – sequence: 9 givenname: Jieli surname: Hu fullname: Hu, Jieli organization: Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China – sequence: 10 givenname: Kai orcidid: 0000-0002-0137-1247 surname: Wang fullname: Wang, Kai email: wangkai@cqmu.edu.cn organization: Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China – sequence: 11 givenname: Ailong surname: Huang fullname: Huang, Ailong email: ahuang@cqu.edu.cn organization: Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China – sequence: 12 givenname: Ni surname: Tang fullname: Tang, Ni email: nitang@cqmu.edu.cn organization: Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30550853$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUFv0zAYhi00xLrBX0CWuHBJasd14ohTqQYMplUa42w59hfiksaZ7RT1B_C_cdcNiZ12sv35-Z7D-56hk8ENgNA7SnJKaDnf5K0H8Mo01m3B5AWhIqdFToh4gWZUVCxb8Lo8QTMiappxsahP0VkIG0LIgjPxCp0ywjkRnM3Qn5UNY6-iHbAdzKQhYDVFN3bq5x5Hh2Ho1KABdzAmKNqAP-Kd9VPAHsbe6jR0Q5oorHS0u-PTtfhm_X3-9fobVoNJ4s429vEndoCXv-J8e7u-wUna_Vb71-hlq_oAbx7Oc_Tj08Xt6kt2tf58uVpeZZoJFrO2BqqKSi2Y5rwxNVdGlLVhDVGqbUpdpRlpWqPV4VoYwWoOlGpTMcNo1bJz9P7oHb27myBEubVBQ9-rAdwUZEF5VfK6KnhC3z6gU5NSlqO3W-X38jG6BHw4Atq7EDy0_xBK5KEouZH_FSUPRUlayFRU2l4-2dY23qcXvbL9Mx0XRwekyHYWvAzaQmrLWA86SuPsszx_AeStvHQ |
| CitedBy_id | crossref_primary_10_1002_jcp_29232 crossref_primary_10_3390_ijms25021138 crossref_primary_10_1016_j_phymed_2024_155348 crossref_primary_10_1002_cbf_3488 crossref_primary_10_1007_s12250_021_00450_3 crossref_primary_10_1016_j_molstruc_2022_132648 crossref_primary_10_1080_15548627_2021_1934271 crossref_primary_10_3389_fvets_2024_1383927 crossref_primary_10_1002_jmv_29659 crossref_primary_10_1186_s13046_020_01621_y crossref_primary_10_1016_j_freeradbiomed_2024_01_011 crossref_primary_10_1111_jcmm_16699 crossref_primary_10_3389_fphar_2020_565090 crossref_primary_10_1099_jgv_0_001744 crossref_primary_10_1007_s13105_021_00844_7 crossref_primary_10_1016_j_envint_2020_105949 crossref_primary_10_1128_MCB_00475_19 crossref_primary_10_1177_23247096221090842 crossref_primary_10_3390_cells9092101 crossref_primary_10_1016_j_lfs_2020_118848 crossref_primary_10_1155_2020_5649174 crossref_primary_10_1007_s00044_020_02503_w crossref_primary_10_1016_j_jenvman_2019_05_031 crossref_primary_10_1016_j_omtn_2021_03_011 |
| Cites_doi | 10.1016/j.ccr.2006.08.015 10.1038/s41579-018-0003-6 10.1093/cid/ciw043 10.1093/annonc/mdh430 10.1080/15548627.2016.1191857 10.1038/317489a0 10.4161/auto.4451 10.1038/cddis.2015.409 10.1016/S0140-6736(77)91995-X 10.1038/srep05029 10.1128/JVI.02627-10 10.1053/j.gastro.2017.02.009 10.1080/15548627.2018.1458805 10.1016/j.ceb.2009.11.014 10.1053/j.gastro.2017.11.011 10.4161/auto.5528 10.1080/15548627.2016.1278094 10.1038/s41598-018-21847-3 10.1016/j.chom.2010.01.007 10.1016/j.freeradbiomed.2017.02.015 10.1002/hep.22581 10.1073/pnas.0911373107 10.1016/j.immuni.2012.03.003 10.1158/1535-7163.MCT-11-0047 10.3892/or.2016.4782 10.1038/s41580-018-0003-4 10.1007/s10571-015-0166-x 10.1016/j.cell.2010.01.028 10.1038/nrm2239 10.18632/aging.101534 10.1038/srep27071 10.1016/j.bbrc.2018.03.089 10.1016/j.freeradbiomed.2010.03.020 10.3390/nu10081043 10.1016/j.lfs.2017.07.024 10.1128/JVI.00316-11 10.3748/wjg.v22.i1.176 10.1371/journal.pone.0087161 10.5582/bst.2016.01049 10.1074/jbc.M114.558288 10.1128/JVI.00001-17 10.1002/hep.23163 10.1016/S0140-6736(75)90897-1 10.1242/jcs.094573 10.1038/cddis.2017.303 10.1016/j.antiviral.2017.11.006 10.1128/JVI.75.3.1104-1116.2001 10.1371/journal.pone.0197109 10.1053/jhep.2003.50220 10.3390/v1020185 10.3851/IMP1840 10.4161/auto.27286 10.1038/ncb0910-823 10.1006/scbi.2000.0321 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.freeradbiomed.2018.12.008 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Biology |
| EISSN | 1873-4596 |
| EndPage | 236 |
| ExternalDocumentID | 30550853 10_1016_j_freeradbiomed_2018_12_008 S089158491831699X |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABBQC ABFNM ABFRF ABGSF ABJNI ABLJU ABLVK ABMAC ABMZM ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BKOJK BLXMC BNPGV C45 CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LCYCR LX3 LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAE SCC SDF SDG SDP SES SPCBC SSH SSU SSZ T5K TEORI ~G- .GJ .HR 29H 53G 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACIEU ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AGRDE AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HEA HLW HMK HMO HVGLF HX~ HZ~ R2- SBG SEW WUQ XPP ZGI ~HD CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c383t-f9e1a27a43c55bd95ad869d3b0aafb6c7bd90bfdcac7bd2d8395e11cd73d317f3 |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455199300022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0891-5849 1873-4596 |
| IngestDate | Wed Oct 01 15:04:17 EDT 2025 Thu Apr 03 07:08:07 EDT 2025 Sat Nov 29 07:16:33 EST 2025 Tue Nov 18 22:18:26 EST 2025 Fri Feb 23 02:23:05 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Hepatitis B virus replication ALT MDA Autophagy CQ Cisplatin NAC LC3II pgRNA ROS 3-MA Hepatitis B virus reactivation HBV RFP SQSTM1 ROS/JNK signaling pathway |
| Language | English |
| License | Copyright © 2018 Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c383t-f9e1a27a43c55bd95ad869d3b0aafb6c7bd90bfdcac7bd2d8395e11cd73d317f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-0137-1247 |
| PMID | 30550853 |
| PQID | 2157659725 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2157659725 pubmed_primary_30550853 crossref_primary_10_1016_j_freeradbiomed_2018_12_008 crossref_citationtrail_10_1016_j_freeradbiomed_2018_12_008 elsevier_sciencedirect_doi_10_1016_j_freeradbiomed_2018_12_008 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-02-01 2019-02-00 20190201 |
| PublicationDateYYYYMMDD | 2019-02-01 |
| PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Free radical biology & medicine |
| PublicationTitleAlternate | Free Radic Biol Med |
| PublicationYear | 2019 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Loomba, Liang, Hepatitis (bib7) 2017; 152 Klein, Jackson (bib42) 2011; 85 Nagington (bib6) 1977; 1 Choi, Bowman, Jung (bib41) 2018; 16 Galbraith, Eddleston, Williams, Zuckerman (bib5) 1975; 2 Liu, Chuang, Sheen, Wang, Chen, Tseng, Chang, Massetto, Yang, Yun, Knox, Osinusi, Camus, Jiang, Brainard, McHutchison, Hu, Hsu, Lo, Chu, Chen, Peng, Chien, Chen (bib37) 2018; 154 Dikic, Elazar (bib3) 2018; 19 Peng, Qiu, Xu, Zhang, Yu, Ding, Deng, Lin (bib13) 2017; 185 Wang, Yeh, Lin, Wang, Chen, Chen (bib17) 2009; 50 Mizushima, Yoshimori, Levine (bib31) 2010; 140 Jang, Kwon, You, Kim, Woo, Bae, Choi, Yoon, Chung (bib9) 2011; 16 Zhou, Jin, Ding, Zhang, Sun, Huang, Xie, Xu, Cai (bib47) 2016; 10 Ma, Zhang, Huang, Li, Hu (bib34) 2016; 36 Wu, Lan, Liu (bib44) 2016; 22 Schadler, Hildt (bib4) 2009; 1 Saito, Nah, Oka, Mukai, Monden, Maejima, Ikeda, Sciarretta, Liu, Li, Baljinnyam, Fraidenraich, Fritzky, Zhai, Ichinose, Isobe, Hsu, Kundu, Sadoshima (bib12) 2018 Datan, Roy, Germain, Zali, McLean, Golshan, Harbajan, Lockshin, Zakeri (bib53) 2016; 7 Li, Tan, Miao, Lei, Zhang (bib50) 2015; 35 Chen, Hu, Cai, Huang, Zhou, Tu, Hu, Tavis, Tang, Huang, Hu (bib19) 2018; 149 Qian, Liu, Hu, Gan, Hou, Chen, Huang (bib20) 2017; 8 Yuan, Huang, Fox, Laturnus, Carlson, Zhang, Yin, Gao, Wu (bib16) 2012; 125 Mizushima, Levine (bib28) 2010; 12 Jung, Pyo, Choi (bib54) 2018; 498 Yeo, Lam, Zee, Chan, Mo, Ho, Wong, Leung, Chan, Ma, Mok, Johnson (bib10) 2004; 15 Hernandez-Garcia, Wood, Castro-Obregon, Covarrubias (bib49) 2010; 49 Tiollais, Pourcel, Dejean (bib2) 1985; 317 Gonzalez, Perrillo, Hepatitis, Virus (bib8) 2016; 62 Liu, Fang, Hu, Huang, Li, Chang, Huang, Xu, Yang, Chen, Liu (bib46) 2014; 10 Wang, Zhang, Sun, Wang, Yin, Wang, Zuo, Sun, Zhou, Lin, Xu, Hua, Li, Cai (bib32) 2017; 106 Lee, Gowda Saralamma, Kim, Ha, Raha, Lee, Kim, Lee, Heo, Kim (bib35) 2018; 10 Wang, Zhang, Peng, Zhou, Zhong, Chen, Qiu, Jin, Gong, Kong (bib55) 2016; 6 Zhu, Hu, Wu, Hu (bib22) 2014; 4 Brechot, Gozuacik, Murakami, Paterlini-Brechot (bib1) 2000; 10 Xie, Yuan, Zhou, Wang, Chen, Lei, Lan, Pu, Gao, Zhang, Shen, Li, Xiao, Tang, Xiang, He, Feng, Nice, Wei, Zhang, Yang, Huang (bib21) 2016; 12 Gao, Zhao, Wu, Wu, Tian, Zhang (bib36) 2018; 10 Cheng, Hsiung, Su, Chen, Chang, Tsao, Kao, Uen, Hsu, Tien, Chao, Chen, Whang-Peng (bib11) 2003; 37 Schumacker (bib33) 2006; 10 Moore (bib51) 2008; 4 Nakamoto, Moy, Xu, Bambina, Yasunaga, Shelly, Gold, Cherry (bib39) 2012; 36 Tang, Da, Mao, Li, Li, Xu, Li, Wang, Tiollais, Li, Zhao (bib43) 2009; 49 Zhou, Farah, Sinha, Wu, Singh, Bay, Yang, Yen (bib27) 2014; 9 Maiuri, Zalckvar, Kimchi, Kroemer (bib29) 2007; 8 Orvedahl, MacPherson, Sumpter, Talloczy, Zou, Levine (bib38) 2010; 7 Li, Pan, Zhu, Xu, Chen, Li, Liang, Hu, Xia, Chen, Chen, Hu, Wang, Tang, Huang (bib18) 2018; 8 Yang, Klionsky (bib24) 2010; 22 Sir, Tian, Chen, Ann, Yen, Ou (bib23) 2010; 107 Wang, Wu (bib14) 2014; 289 Elizalde, Perez, Sevic, Grasso, Ropolo, Barbini, Campos, Vaccaro, Flichman (bib45) 2018; 13 Ren, Nassal (bib15) 2001; 75 Velazquez, Corona, Klein, Jackson (bib40) 2018; 14 Zhong, Shu, Dai, Gao, Xiong (bib52) 2017; 91 Kimura, Noda, Yoshimori (bib25) 2014; 3 Morishita, Kaizuka, Hama, Mizushima (bib26) 2017; 13 Yang, Chee, Huang, Sinicrope (bib30) 2011; 10 Li, Liu, Wang, Liu, Wang, Liu, Ding, Yuan (bib48) 2011; 85 Yuan (10.1016/j.freeradbiomed.2018.12.008_bib16) 2012; 125 Liu (10.1016/j.freeradbiomed.2018.12.008_bib46) 2014; 10 Wang (10.1016/j.freeradbiomed.2018.12.008_bib55) 2016; 6 Ma (10.1016/j.freeradbiomed.2018.12.008_bib34) 2016; 36 Wang (10.1016/j.freeradbiomed.2018.12.008_bib17) 2009; 50 Velazquez (10.1016/j.freeradbiomed.2018.12.008_bib40) 2018; 14 Zhou (10.1016/j.freeradbiomed.2018.12.008_bib47) 2016; 10 Maiuri (10.1016/j.freeradbiomed.2018.12.008_bib29) 2007; 8 Mizushima (10.1016/j.freeradbiomed.2018.12.008_bib28) 2010; 12 Schumacker (10.1016/j.freeradbiomed.2018.12.008_bib33) 2006; 10 Moore (10.1016/j.freeradbiomed.2018.12.008_bib51) 2008; 4 Galbraith (10.1016/j.freeradbiomed.2018.12.008_bib5) 1975; 2 Sir (10.1016/j.freeradbiomed.2018.12.008_bib23) 2010; 107 Yang (10.1016/j.freeradbiomed.2018.12.008_bib24) 2010; 22 Klein (10.1016/j.freeradbiomed.2018.12.008_bib42) 2011; 85 Nakamoto (10.1016/j.freeradbiomed.2018.12.008_bib39) 2012; 36 Morishita (10.1016/j.freeradbiomed.2018.12.008_bib26) 2017; 13 Kimura (10.1016/j.freeradbiomed.2018.12.008_bib25) 2014; 3 Choi (10.1016/j.freeradbiomed.2018.12.008_bib41) 2018; 16 Zhong (10.1016/j.freeradbiomed.2018.12.008_bib52) 2017; 91 Wang (10.1016/j.freeradbiomed.2018.12.008_bib14) 2014; 289 Gao (10.1016/j.freeradbiomed.2018.12.008_bib36) 2018; 10 Zhu (10.1016/j.freeradbiomed.2018.12.008_bib22) 2014; 4 Saito (10.1016/j.freeradbiomed.2018.12.008_bib12) 2018 Xie (10.1016/j.freeradbiomed.2018.12.008_bib21) 2016; 12 Wu (10.1016/j.freeradbiomed.2018.12.008_bib44) 2016; 22 Yang (10.1016/j.freeradbiomed.2018.12.008_bib30) 2011; 10 Jung (10.1016/j.freeradbiomed.2018.12.008_bib54) 2018; 498 Gonzalez (10.1016/j.freeradbiomed.2018.12.008_bib8) 2016; 62 Ren (10.1016/j.freeradbiomed.2018.12.008_bib15) 2001; 75 Tiollais (10.1016/j.freeradbiomed.2018.12.008_bib2) 1985; 317 Dikic (10.1016/j.freeradbiomed.2018.12.008_bib3) 2018; 19 Cheng (10.1016/j.freeradbiomed.2018.12.008_bib11) 2003; 37 Li (10.1016/j.freeradbiomed.2018.12.008_bib48) 2011; 85 Brechot (10.1016/j.freeradbiomed.2018.12.008_bib1) 2000; 10 Yeo (10.1016/j.freeradbiomed.2018.12.008_bib10) 2004; 15 Nagington (10.1016/j.freeradbiomed.2018.12.008_bib6) 1977; 1 Wang (10.1016/j.freeradbiomed.2018.12.008_bib32) 2017; 106 Peng (10.1016/j.freeradbiomed.2018.12.008_bib13) 2017; 185 Qian (10.1016/j.freeradbiomed.2018.12.008_bib20) 2017; 8 Tang (10.1016/j.freeradbiomed.2018.12.008_bib43) 2009; 49 Zhou (10.1016/j.freeradbiomed.2018.12.008_bib27) 2014; 9 Lee (10.1016/j.freeradbiomed.2018.12.008_bib35) 2018; 10 Schadler (10.1016/j.freeradbiomed.2018.12.008_bib4) 2009; 1 Li (10.1016/j.freeradbiomed.2018.12.008_bib50) 2015; 35 Li (10.1016/j.freeradbiomed.2018.12.008_bib18) 2018; 8 Loomba (10.1016/j.freeradbiomed.2018.12.008_bib7) 2017; 152 Elizalde (10.1016/j.freeradbiomed.2018.12.008_bib45) 2018; 13 Chen (10.1016/j.freeradbiomed.2018.12.008_bib19) 2018; 149 Mizushima (10.1016/j.freeradbiomed.2018.12.008_bib31) 2010; 140 Jang (10.1016/j.freeradbiomed.2018.12.008_bib9) 2011; 16 Hernandez-Garcia (10.1016/j.freeradbiomed.2018.12.008_bib49) 2010; 49 Liu (10.1016/j.freeradbiomed.2018.12.008_bib37) 2018; 154 Datan (10.1016/j.freeradbiomed.2018.12.008_bib53) 2016; 7 Orvedahl (10.1016/j.freeradbiomed.2018.12.008_bib38) 2010; 7 |
| References_xml | – volume: 50 start-page: 1392 year: 2009 end-page: 1402 ident: bib17 article-title: Identification of androgen response elements in the enhancer I of hepatitis B virus: a mechanism for sex disparity in chronic hepatitis B publication-title: Hepatology – volume: 8 start-page: 741 year: 2007 end-page: 752 ident: bib29 article-title: Self-eating and self-killing: crosstalk between autophagy and apoptosis publication-title: Nat. Rev. Mol. Cell Biol. – volume: 6 start-page: 27071 year: 2016 ident: bib55 article-title: Stellettin B induces G1 arrest, apoptosis and autophagy in human non-small cell lung cancer A549 cells via blocking PI3K/Akt/mTOR pathway publication-title: Sci. Rep. – volume: 75 start-page: 1104 year: 2001 end-page: 1116 ident: bib15 article-title: Hepatitis B virus (HBV) virion and covalently closed circular DNA formation in primary tupaia hepatocytes and human hepatoma cell lines upon HBV genome transduction with replication-defective adenovirus vectors publication-title: J. Virol. – volume: 22 start-page: 176 year: 2016 end-page: 187 ident: bib44 article-title: Autophagy and microRNA in hepatitis B virus-related hepatocellular carcinoma publication-title: World J. Gastroenterol. – year: 2018 ident: bib12 article-title: An alternative mitophagy pathway mediated by Rab9 protects the heart against ischemia publication-title: J. Clin. Investig. – volume: 10 start-page: 1533 year: 2011 end-page: 1541 ident: bib30 article-title: The role of autophagy in cancer: therapeutic implications publication-title: Mol. Cancer Ther. – volume: 7 start-page: e2127 year: 2016 ident: bib53 article-title: Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation publication-title: Cell Death Dis. – volume: 9 start-page: e87161 year: 2014 ident: bib27 article-title: Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, stimulates hepatic autophagy and lipid clearance publication-title: PLoS One – volume: 8 start-page: e2909 year: 2017 ident: bib20 article-title: Ochratoxin A-induced autophagy in vitro and in vivo promotes porcine circovirus type 2 replication publication-title: Cell Death Dis. – volume: 498 start-page: 960 year: 2018 end-page: 966 ident: bib54 article-title: Influenza A virus-induced autophagy contributes to enhancement of virus infectivity by SOD1 downregulation in alveolar epithelial cells publication-title: Biochem. Biophys. Res. Commun. – volume: 62 start-page: S306 year: 2016 end-page: S313 ident: bib8 article-title: Reactivation in the setting of cancer chemotherapy and other immunosuppressive drug therapy publication-title: Clin. Infect. Dis.: Off. Publ. Infect. Dis. Soc. Am. – volume: 3 start-page: 452 year: 2014 end-page: 460 ident: bib25 article-title: Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3 publication-title: Autophagy – volume: 10 start-page: E1043 year: 2018 ident: bib35 article-title: Pectolinarigenin induced cell cycle arrest, autophagy, and apoptosis in gastric cancer cell via PI3K/AKT/mTOR signaling pathway publication-title: Nutrients – volume: 13 start-page: 757 year: 2017 end-page: 758 ident: bib26 article-title: A new probe to measure autophagic flux in vitro and in vivo publication-title: Autophagy – volume: 16 start-page: 341 year: 2018 end-page: 354 ident: bib41 article-title: Autophagy during viral infection – a double-edged sword publication-title: Nat. Rev. Microbiol. – volume: 7 start-page: 115 year: 2010 end-page: 127 ident: bib38 article-title: Autophagy protects against Sindbis virus infection of the central nervous system publication-title: Cell Host Microbe – volume: 4 start-page: 254 year: 2008 end-page: 256 ident: bib51 article-title: Autophagy as a second level protective process in conferring resistance to environmentally-induced oxidative stress publication-title: Autophagy – volume: 4 start-page: 5029 year: 2014 ident: bib22 article-title: No evident dose-response relationship between cellular ROS level and its cytotoxicity – a paradoxical issue in ROS-based cancer therapy publication-title: Sci. Rep. – volume: 12 start-page: 823 year: 2010 end-page: 830 ident: bib28 article-title: Autophagy in mammalian development and differentiation publication-title: Nat. Cell Biol. – volume: 10 start-page: 244 year: 2016 end-page: 250 ident: bib47 article-title: Hepatitis B virus dampens autophagy maturation via negative regulation of Rab7 expression publication-title: Biosci. Trends – volume: 154 start-page: 989 year: 2018 end-page: 997 ident: bib37 article-title: Efficacy of ledipasvir and sofosbuvir treatment of HCV infection in patients coinfected with HBV publication-title: Gastroenterology – volume: 1 start-page: 185 year: 2009 end-page: 209 ident: bib4 article-title: HBV life cycle: entry and morphogenesis publication-title: Viruses – volume: 140 start-page: 313 year: 2010 end-page: 326 ident: bib31 article-title: Methods in mammalian autophagy research publication-title: Cell – volume: 15 start-page: 1661 year: 2004 end-page: 1666 ident: bib10 article-title: Hepatitis B reactivation in patients with hepatocellular carcinoma undergoing systemic chemotherapy publication-title: Ann. Oncol.: Off. J. Eur. Soc. Med. Oncol. – volume: 14 start-page: 1201 year: 2018 end-page: 1213 ident: bib40 article-title: Poliovirus induces autophagic signaling independent of the ULK1 complex publication-title: Autophagy – volume: 317 start-page: 489 year: 1985 end-page: 495 ident: bib2 article-title: The hepatitis B virus publication-title: Nature – volume: 10 start-page: 175 year: 2006 end-page: 176 ident: bib33 article-title: Reactive oxygen species in cancer cells: live by the sword, die by the sword publication-title: Cancer Cell – volume: 152 start-page: 1297 year: 2017 end-page: 1309 ident: bib7 article-title: B reactivation associated With immune suppressive and biological modifier therapies: current concepts, management strategies, and future directions publication-title: Gastroenterology – volume: 149 start-page: 16 year: 2018 end-page: 25 ident: bib19 article-title: APOBEC3B edits HBV DNA and inhibits HBV replication during reverse transcription publication-title: Antivir. Res. – volume: 19 start-page: 349 year: 2018 end-page: 364 ident: bib3 article-title: Mechanism and medical implications of mammalian autophagy publication-title: Nat. Rev. Mol. Cell Biol. – volume: 49 start-page: 130 year: 2010 end-page: 143 ident: bib49 article-title: Reactive oxygen species: a radical role in development? publication-title: Free Radic. Biol. Med. – volume: 185 start-page: 63 year: 2017 end-page: 72 ident: bib13 article-title: M4IDP, a zoledronic acid derivative, induces G1 arrest, apoptosis and autophagy in HCT116 colon carcinoma cells via blocking PI3K/Akt/mTOR pathway publication-title: Life Sci. – volume: 106 start-page: 24 year: 2017 end-page: 37 ident: bib32 article-title: Arsenic sulfide induces apoptosis and autophagy through the activation of ROS/JNK and suppression of Akt/mTOR signaling pathways in osteosarcoma publication-title: Free Radic. Biol. Med. – volume: 35 start-page: 615 year: 2015 end-page: 621 ident: bib50 article-title: ROS and autophagy: interactions and molecular regulatory mechanisms publication-title: Cell. Mol. Neurobiol. – volume: 91 year: 2017 ident: bib52 article-title: Reactive oxygen species-mediated c-Jun NH2-terminal kinase activation contributes to hepatitis B virus X protein-induced autophagy via regulation of the Beclin-1/Bcl-2 interaction publication-title: J. Virol. – volume: 1 start-page: 558 year: 1977 end-page: 560 ident: bib6 article-title: Reactivation of hepatitis b after transplantation operations publication-title: Lancet – volume: 37 start-page: 1320 year: 2003 end-page: 1328 ident: bib11 article-title: Steroid-free chemotherapy decreases risk of hepatitis B virus (HBV) reactivation in HBV-carriers with lymphoma publication-title: Hepatology – volume: 10 start-page: 416 year: 2014 end-page: 430 ident: bib46 article-title: Hepatitis B virus X protein inhibits autophagic degradation by impairing lysosomal maturation publication-title: Autophagy – volume: 10 start-page: 211 year: 2000 end-page: 231 ident: bib1 article-title: Molecular bases for the development of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) publication-title: Semin. Cancer Biol. – volume: 85 start-page: 6319 year: 2011 end-page: 6333 ident: bib48 article-title: Subversion of cellular autophagy machinery by hepatitis B virus for viral envelopment publication-title: J. Virol. – volume: 49 start-page: 60 year: 2009 end-page: 71 ident: bib43 article-title: Hepatitis B virus X protein sensitizes cells to starvation-induced autophagy via up-regulation of beclin 1 expression publication-title: Hepatology – volume: 2 start-page: 528 year: 1975 end-page: 530 ident: bib5 article-title: Fulminant hepatic failure in leukaemia and choriocarcinoma related to withdrawal of cytotoxic drug therapy publication-title: Lancet – volume: 85 start-page: 9651 year: 2011 end-page: 9654 ident: bib42 article-title: Human rhinovirus 2 induces the autophagic pathway and replicates more efficiently in autophagic cells publication-title: J. Virol. – volume: 13 start-page: e0197109 year: 2018 ident: bib45 article-title: HBV subgenotypes F1b and F4 replication induces an incomplete autophagic process in hepatocytes: role of BCP and preCore mutations publication-title: PLoS One – volume: 36 start-page: 658 year: 2012 end-page: 667 ident: bib39 article-title: Virus recognition by Toll-7 activates antiviral autophagy in Drosophila publication-title: Immunity – volume: 36 start-page: 90 year: 2016 end-page: 98 ident: bib34 article-title: Cinobufagin induces autophagy-mediated cell death in human osteosarcoma U2OS cells through the ROS/JNK/p38 signaling pathway publication-title: Oncol. Rep. – volume: 125 start-page: 507 year: 2012 end-page: 515 ident: bib16 article-title: Autophagy plays an essential role in the clearance of Pseudomonas aeruginosa by alveolar macrophages publication-title: J. Cell Sci. – volume: 8 start-page: 3496 year: 2018 ident: bib18 article-title: Cisplatin enhances hepatitis B virus replication and PGC-1alpha expression through endoplasmic reticulum stress publication-title: Sci. Rep. – volume: 107 start-page: 4383 year: 2010 end-page: 4388 ident: bib23 article-title: The early autophagic pathway is activated by hepatitis B virus and required for viral DNA replication publication-title: Proc. Natl. Acad. Sci. USA – volume: 12 start-page: 1507 year: 2016 end-page: 1520 ident: bib21 article-title: PRKAA/AMPK restricts HBV replication through promotion of autophagic degradation publication-title: Autophagy – volume: 10 start-page: 2113 year: 2018 end-page: 2121 ident: bib36 article-title: MiR-146b inhibits autophagy in prostate cancer by targeting the PTEN/Akt/mTOR signaling pathway publication-title: Aging – volume: 16 start-page: 969 year: 2011 end-page: 977 ident: bib9 article-title: Risk of HBV reactivation according to viral status and treatment intensity in patients with hepatocellular carcinoma publication-title: Antivir. Ther. – volume: 22 start-page: 124 year: 2010 end-page: 131 ident: bib24 article-title: Mammalian autophagy: core molecular machinery and signaling regulation publication-title: Curr. Opin. Cell Biol. – volume: 289 start-page: 17163 year: 2014 end-page: 17173 ident: bib14 article-title: Role of autophagy in cisplatin resistance in ovarian cancer cells publication-title: J. Biol. Chem. – volume: 10 start-page: 175 issue: 3 year: 2006 ident: 10.1016/j.freeradbiomed.2018.12.008_bib33 article-title: Reactive oxygen species in cancer cells: live by the sword, die by the sword publication-title: Cancer Cell doi: 10.1016/j.ccr.2006.08.015 – volume: 16 start-page: 341 issue: 6 year: 2018 ident: 10.1016/j.freeradbiomed.2018.12.008_bib41 article-title: Autophagy during viral infection – a double-edged sword publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-018-0003-6 – volume: 62 start-page: S306 issue: Suppl. 4 year: 2016 ident: 10.1016/j.freeradbiomed.2018.12.008_bib8 article-title: Reactivation in the setting of cancer chemotherapy and other immunosuppressive drug therapy publication-title: Clin. Infect. Dis.: Off. Publ. Infect. Dis. Soc. Am. doi: 10.1093/cid/ciw043 – volume: 15 start-page: 1661 issue: 11 year: 2004 ident: 10.1016/j.freeradbiomed.2018.12.008_bib10 article-title: Hepatitis B reactivation in patients with hepatocellular carcinoma undergoing systemic chemotherapy publication-title: Ann. Oncol.: Off. J. Eur. Soc. Med. Oncol. doi: 10.1093/annonc/mdh430 – volume: 12 start-page: 1507 issue: 9 year: 2016 ident: 10.1016/j.freeradbiomed.2018.12.008_bib21 article-title: PRKAA/AMPK restricts HBV replication through promotion of autophagic degradation publication-title: Autophagy doi: 10.1080/15548627.2016.1191857 – volume: 317 start-page: 489 issue: 6037 year: 1985 ident: 10.1016/j.freeradbiomed.2018.12.008_bib2 article-title: The hepatitis B virus publication-title: Nature doi: 10.1038/317489a0 – volume: 3 start-page: 452 issue: 5 year: 2014 ident: 10.1016/j.freeradbiomed.2018.12.008_bib25 article-title: Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3 publication-title: Autophagy doi: 10.4161/auto.4451 – volume: 7 start-page: e2127 year: 2016 ident: 10.1016/j.freeradbiomed.2018.12.008_bib53 article-title: Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation publication-title: Cell Death Dis. doi: 10.1038/cddis.2015.409 – volume: 1 start-page: 558 issue: 8011 year: 1977 ident: 10.1016/j.freeradbiomed.2018.12.008_bib6 article-title: Reactivation of hepatitis b after transplantation operations publication-title: Lancet doi: 10.1016/S0140-6736(77)91995-X – volume: 4 start-page: 5029 year: 2014 ident: 10.1016/j.freeradbiomed.2018.12.008_bib22 article-title: No evident dose-response relationship between cellular ROS level and its cytotoxicity – a paradoxical issue in ROS-based cancer therapy publication-title: Sci. Rep. doi: 10.1038/srep05029 – volume: 85 start-page: 6319 issue: 13 year: 2011 ident: 10.1016/j.freeradbiomed.2018.12.008_bib48 article-title: Subversion of cellular autophagy machinery by hepatitis B virus for viral envelopment publication-title: J. Virol. doi: 10.1128/JVI.02627-10 – volume: 152 start-page: 1297 issue: 6 year: 2017 ident: 10.1016/j.freeradbiomed.2018.12.008_bib7 article-title: B reactivation associated With immune suppressive and biological modifier therapies: current concepts, management strategies, and future directions publication-title: Gastroenterology doi: 10.1053/j.gastro.2017.02.009 – volume: 14 start-page: 1201 issue: 7 year: 2018 ident: 10.1016/j.freeradbiomed.2018.12.008_bib40 article-title: Poliovirus induces autophagic signaling independent of the ULK1 complex publication-title: Autophagy doi: 10.1080/15548627.2018.1458805 – volume: 22 start-page: 124 issue: 2 year: 2010 ident: 10.1016/j.freeradbiomed.2018.12.008_bib24 article-title: Mammalian autophagy: core molecular machinery and signaling regulation publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2009.11.014 – volume: 154 start-page: 989 issue: 4 year: 2018 ident: 10.1016/j.freeradbiomed.2018.12.008_bib37 article-title: Efficacy of ledipasvir and sofosbuvir treatment of HCV infection in patients coinfected with HBV publication-title: Gastroenterology doi: 10.1053/j.gastro.2017.11.011 – volume: 4 start-page: 254 issue: 2 year: 2008 ident: 10.1016/j.freeradbiomed.2018.12.008_bib51 article-title: Autophagy as a second level protective process in conferring resistance to environmentally-induced oxidative stress publication-title: Autophagy doi: 10.4161/auto.5528 – volume: 13 start-page: 757 issue: 4 year: 2017 ident: 10.1016/j.freeradbiomed.2018.12.008_bib26 article-title: A new probe to measure autophagic flux in vitro and in vivo publication-title: Autophagy doi: 10.1080/15548627.2016.1278094 – volume: 8 start-page: 3496 issue: 1 year: 2018 ident: 10.1016/j.freeradbiomed.2018.12.008_bib18 article-title: Cisplatin enhances hepatitis B virus replication and PGC-1alpha expression through endoplasmic reticulum stress publication-title: Sci. Rep. doi: 10.1038/s41598-018-21847-3 – volume: 7 start-page: 115 issue: 2 year: 2010 ident: 10.1016/j.freeradbiomed.2018.12.008_bib38 article-title: Autophagy protects against Sindbis virus infection of the central nervous system publication-title: Cell Host Microbe doi: 10.1016/j.chom.2010.01.007 – volume: 106 start-page: 24 year: 2017 ident: 10.1016/j.freeradbiomed.2018.12.008_bib32 article-title: Arsenic sulfide induces apoptosis and autophagy through the activation of ROS/JNK and suppression of Akt/mTOR signaling pathways in osteosarcoma publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2017.02.015 – volume: 49 start-page: 60 issue: 1 year: 2009 ident: 10.1016/j.freeradbiomed.2018.12.008_bib43 article-title: Hepatitis B virus X protein sensitizes cells to starvation-induced autophagy via up-regulation of beclin 1 expression publication-title: Hepatology doi: 10.1002/hep.22581 – volume: 107 start-page: 4383 issue: 9 year: 2010 ident: 10.1016/j.freeradbiomed.2018.12.008_bib23 article-title: The early autophagic pathway is activated by hepatitis B virus and required for viral DNA replication publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0911373107 – volume: 36 start-page: 658 issue: 4 year: 2012 ident: 10.1016/j.freeradbiomed.2018.12.008_bib39 article-title: Virus recognition by Toll-7 activates antiviral autophagy in Drosophila publication-title: Immunity doi: 10.1016/j.immuni.2012.03.003 – volume: 10 start-page: 1533 issue: 9 year: 2011 ident: 10.1016/j.freeradbiomed.2018.12.008_bib30 article-title: The role of autophagy in cancer: therapeutic implications publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-11-0047 – volume: 36 start-page: 90 issue: 1 year: 2016 ident: 10.1016/j.freeradbiomed.2018.12.008_bib34 article-title: Cinobufagin induces autophagy-mediated cell death in human osteosarcoma U2OS cells through the ROS/JNK/p38 signaling pathway publication-title: Oncol. Rep. doi: 10.3892/or.2016.4782 – volume: 19 start-page: 349 issue: 6 year: 2018 ident: 10.1016/j.freeradbiomed.2018.12.008_bib3 article-title: Mechanism and medical implications of mammalian autophagy publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-018-0003-4 – volume: 35 start-page: 615 issue: 5 year: 2015 ident: 10.1016/j.freeradbiomed.2018.12.008_bib50 article-title: ROS and autophagy: interactions and molecular regulatory mechanisms publication-title: Cell. Mol. Neurobiol. doi: 10.1007/s10571-015-0166-x – volume: 140 start-page: 313 issue: 3 year: 2010 ident: 10.1016/j.freeradbiomed.2018.12.008_bib31 article-title: Methods in mammalian autophagy research publication-title: Cell doi: 10.1016/j.cell.2010.01.028 – volume: 8 start-page: 741 issue: 9 year: 2007 ident: 10.1016/j.freeradbiomed.2018.12.008_bib29 article-title: Self-eating and self-killing: crosstalk between autophagy and apoptosis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2239 – volume: 10 start-page: 2113 issue: 8 year: 2018 ident: 10.1016/j.freeradbiomed.2018.12.008_bib36 article-title: MiR-146b inhibits autophagy in prostate cancer by targeting the PTEN/Akt/mTOR signaling pathway publication-title: Aging doi: 10.18632/aging.101534 – volume: 6 start-page: 27071 year: 2016 ident: 10.1016/j.freeradbiomed.2018.12.008_bib55 article-title: Stellettin B induces G1 arrest, apoptosis and autophagy in human non-small cell lung cancer A549 cells via blocking PI3K/Akt/mTOR pathway publication-title: Sci. Rep. doi: 10.1038/srep27071 – volume: 498 start-page: 960 issue: 4 year: 2018 ident: 10.1016/j.freeradbiomed.2018.12.008_bib54 article-title: Influenza A virus-induced autophagy contributes to enhancement of virus infectivity by SOD1 downregulation in alveolar epithelial cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2018.03.089 – volume: 49 start-page: 130 issue: 2 year: 2010 ident: 10.1016/j.freeradbiomed.2018.12.008_bib49 article-title: Reactive oxygen species: a radical role in development? publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2010.03.020 – volume: 10 start-page: E1043 issue: 8 year: 2018 ident: 10.1016/j.freeradbiomed.2018.12.008_bib35 article-title: Pectolinarigenin induced cell cycle arrest, autophagy, and apoptosis in gastric cancer cell via PI3K/AKT/mTOR signaling pathway publication-title: Nutrients doi: 10.3390/nu10081043 – volume: 185 start-page: 63 year: 2017 ident: 10.1016/j.freeradbiomed.2018.12.008_bib13 article-title: M4IDP, a zoledronic acid derivative, induces G1 arrest, apoptosis and autophagy in HCT116 colon carcinoma cells via blocking PI3K/Akt/mTOR pathway publication-title: Life Sci. doi: 10.1016/j.lfs.2017.07.024 – volume: 85 start-page: 9651 issue: 18 year: 2011 ident: 10.1016/j.freeradbiomed.2018.12.008_bib42 article-title: Human rhinovirus 2 induces the autophagic pathway and replicates more efficiently in autophagic cells publication-title: J. Virol. doi: 10.1128/JVI.00316-11 – volume: 22 start-page: 176 issue: 1 year: 2016 ident: 10.1016/j.freeradbiomed.2018.12.008_bib44 article-title: Autophagy and microRNA in hepatitis B virus-related hepatocellular carcinoma publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v22.i1.176 – volume: 9 start-page: e87161 issue: 1 year: 2014 ident: 10.1016/j.freeradbiomed.2018.12.008_bib27 article-title: Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, stimulates hepatic autophagy and lipid clearance publication-title: PLoS One doi: 10.1371/journal.pone.0087161 – volume: 10 start-page: 244 issue: 4 year: 2016 ident: 10.1016/j.freeradbiomed.2018.12.008_bib47 article-title: Hepatitis B virus dampens autophagy maturation via negative regulation of Rab7 expression publication-title: Biosci. Trends doi: 10.5582/bst.2016.01049 – volume: 289 start-page: 17163 issue: 24 year: 2014 ident: 10.1016/j.freeradbiomed.2018.12.008_bib14 article-title: Role of autophagy in cisplatin resistance in ovarian cancer cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.558288 – volume: 91 issue: 15 year: 2017 ident: 10.1016/j.freeradbiomed.2018.12.008_bib52 article-title: Reactive oxygen species-mediated c-Jun NH2-terminal kinase activation contributes to hepatitis B virus X protein-induced autophagy via regulation of the Beclin-1/Bcl-2 interaction publication-title: J. Virol. doi: 10.1128/JVI.00001-17 – volume: 50 start-page: 1392 issue: 5 year: 2009 ident: 10.1016/j.freeradbiomed.2018.12.008_bib17 article-title: Identification of androgen response elements in the enhancer I of hepatitis B virus: a mechanism for sex disparity in chronic hepatitis B publication-title: Hepatology doi: 10.1002/hep.23163 – volume: 2 start-page: 528 issue: 7934 year: 1975 ident: 10.1016/j.freeradbiomed.2018.12.008_bib5 article-title: Fulminant hepatic failure in leukaemia and choriocarcinoma related to withdrawal of cytotoxic drug therapy publication-title: Lancet doi: 10.1016/S0140-6736(75)90897-1 – volume: 125 start-page: 507 issue: Pt 2 year: 2012 ident: 10.1016/j.freeradbiomed.2018.12.008_bib16 article-title: Autophagy plays an essential role in the clearance of Pseudomonas aeruginosa by alveolar macrophages publication-title: J. Cell Sci. doi: 10.1242/jcs.094573 – volume: 8 start-page: e2909 issue: 6 year: 2017 ident: 10.1016/j.freeradbiomed.2018.12.008_bib20 article-title: Ochratoxin A-induced autophagy in vitro and in vivo promotes porcine circovirus type 2 replication publication-title: Cell Death Dis. doi: 10.1038/cddis.2017.303 – volume: 149 start-page: 16 year: 2018 ident: 10.1016/j.freeradbiomed.2018.12.008_bib19 article-title: APOBEC3B edits HBV DNA and inhibits HBV replication during reverse transcription publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2017.11.006 – year: 2018 ident: 10.1016/j.freeradbiomed.2018.12.008_bib12 article-title: An alternative mitophagy pathway mediated by Rab9 protects the heart against ischemia publication-title: J. Clin. Investig. – volume: 75 start-page: 1104 issue: 3 year: 2001 ident: 10.1016/j.freeradbiomed.2018.12.008_bib15 article-title: Hepatitis B virus (HBV) virion and covalently closed circular DNA formation in primary tupaia hepatocytes and human hepatoma cell lines upon HBV genome transduction with replication-defective adenovirus vectors publication-title: J. Virol. doi: 10.1128/JVI.75.3.1104-1116.2001 – volume: 13 start-page: e0197109 issue: 5 year: 2018 ident: 10.1016/j.freeradbiomed.2018.12.008_bib45 article-title: HBV subgenotypes F1b and F4 replication induces an incomplete autophagic process in hepatocytes: role of BCP and preCore mutations publication-title: PLoS One doi: 10.1371/journal.pone.0197109 – volume: 37 start-page: 1320 issue: 6 year: 2003 ident: 10.1016/j.freeradbiomed.2018.12.008_bib11 article-title: Steroid-free chemotherapy decreases risk of hepatitis B virus (HBV) reactivation in HBV-carriers with lymphoma publication-title: Hepatology doi: 10.1053/jhep.2003.50220 – volume: 1 start-page: 185 issue: 2 year: 2009 ident: 10.1016/j.freeradbiomed.2018.12.008_bib4 article-title: HBV life cycle: entry and morphogenesis publication-title: Viruses doi: 10.3390/v1020185 – volume: 16 start-page: 969 issue: 7 year: 2011 ident: 10.1016/j.freeradbiomed.2018.12.008_bib9 article-title: Risk of HBV reactivation according to viral status and treatment intensity in patients with hepatocellular carcinoma publication-title: Antivir. Ther. doi: 10.3851/IMP1840 – volume: 10 start-page: 416 issue: 3 year: 2014 ident: 10.1016/j.freeradbiomed.2018.12.008_bib46 article-title: Hepatitis B virus X protein inhibits autophagic degradation by impairing lysosomal maturation publication-title: Autophagy doi: 10.4161/auto.27286 – volume: 12 start-page: 823 issue: 9 year: 2010 ident: 10.1016/j.freeradbiomed.2018.12.008_bib28 article-title: Autophagy in mammalian development and differentiation publication-title: Nat. Cell Biol. doi: 10.1038/ncb0910-823 – volume: 10 start-page: 211 issue: 3 year: 2000 ident: 10.1016/j.freeradbiomed.2018.12.008_bib1 article-title: Molecular bases for the development of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) publication-title: Semin. Cancer Biol. doi: 10.1006/scbi.2000.0321 |
| SSID | ssj0004538 |
| Score | 2.4565334 |
| Snippet | Chronic hepatitis B virus (HBV) infection remains a serious global health concern. Cisplatin is a chemotherapeutic agent commonly used to treat various... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 225 |
| SubjectTerms | Acetylcysteine - pharmacology Adenine - analogs & derivatives Adenine - pharmacology Animals Antineoplastic Agents - pharmacology Autophagy Autophagy - drug effects Autophagy - genetics Autophagy-Related Protein 5 - antagonists & inhibitors Autophagy-Related Protein 5 - genetics Autophagy-Related Protein 5 - metabolism Chloroquine - pharmacology Cisplatin Cisplatin - pharmacology Gene Expression Regulation Genes, Reporter Hep G2 Cells Hepatitis B virus - drug effects Hepatitis B virus - genetics Hepatitis B virus - growth & development Hepatitis B virus - metabolism Hepatitis B virus reactivation Hepatitis B virus replication Hepatitis B, Chronic - genetics Hepatitis B, Chronic - metabolism Hepatitis B, Chronic - virology Humans Luminescent Proteins - genetics Luminescent Proteins - metabolism Male Mice Mice, Inbred C57BL Mice, Transgenic Microtubule-Associated Proteins - genetics Microtubule-Associated Proteins - metabolism Proto-Oncogene Proteins c-akt - genetics Proto-Oncogene Proteins c-akt - metabolism Red Fluorescent Protein RNA, Small Interfering - genetics RNA, Small Interfering - metabolism ROS/JNK signaling pathway Sequestosome-1 Protein - genetics Sequestosome-1 Protein - metabolism Signal Transduction TOR Serine-Threonine Kinases - genetics TOR Serine-Threonine Kinases - metabolism Virus Activation - drug effects Virus Replication - drug effects |
| Title | Cisplatin induces autophagy to enhance hepatitis B virus replication via activation of ROS/JNK and inhibition of the Akt/mTOR pathway |
| URI | https://dx.doi.org/10.1016/j.freeradbiomed.2018.12.008 https://www.ncbi.nlm.nih.gov/pubmed/30550853 https://www.proquest.com/docview/2157659725 |
| Volume | 131 |
| WOSCitedRecordID | wos000455199300022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004538 issn: 0891-5849 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1bb9MwFICtrgPEC4KNS7lMRjBeprDmVic8IHWlFbCpRaMTfbOc2KEZbVrapmw_gJ_Df-TYcZJuUKk88BJFTh25PV_tY58bQi8tk8OqFhKDwycMh7mO4UfMNhhxQgvWJ0YaXBWbIN2uNxj4nyqVX3kszHJEksS7uPCn_1XU0AbClqGz_yDu4qXQAPcgdLiC2OG6keBb8XwqHdykCyNPpcMVS2X2APZVKZoiGaoogaGQvtSLeH5wdLCMZ6kyH-QneNDCVJqNZaFRnvY-y3LO3WOdr2kYB3H-TIWnfIPpvDPu905lrtbhD3bFXtyZCXEwY5lRKE_8JKm7bttv6WiRQSrGIi6hU0tFWqJcHHR_Eckovd77WKyeZsgAqsIzJJuAPWIbjuvr9Nh_actnbb146Hk3i57-Yz3IjibOX0fwLaVvgkppIB36PHUIXPfKZTA3_Xd7tHN2ckL77UF_3-5MvxuyRJk05e_b7zJcttC2RVzfq6Lt5of24ONKenpVOr0Y8C30onQoXDuGdSrRui2PUn36d9EdvWfBzYy1e6gikh2020zYYjK-xK-w8iJWIt1BN7Pippe76GcBItYg4gJEvJhgDSIuQMRHWIGIV0CEFoZLEPEkwgDiIWCIAUNcYiifAIYYMDyUEGIN4X101mn3W-8NXfTDCG3PXhiRL0xmEebYoesG3HcZ9xo-t4M6Y1EAswq01YOIh0zeWhwUfFeYZsiJzUEXjuwHqJpMEvEIYYeb0q2gzmCL7bDA9CLhOo3AEbbr8cAJauhN_rvTUGfEl4VZRjR3fTynV4RGpdCoaVEQWg05Redplhhms25vcwFTreNmuisFZDd7wfMcCworgTTvsURM0jkF5Z00XJ9Ybg09zHgpRibz-sHmyn68Qe8n6Hb5z3yKqotZKp6hG-ESSJjtoS0y8PY0-L8BfO_kIw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cisplatin+induces+autophagy+to+enhance+hepatitis+B+virus+replication+via+activation+of+ROS%2FJNK+and+inhibition+of+the+Akt%2FmTOR+pathway&rft.jtitle=Free+radical+biology+%26+medicine&rft.au=Chen%2C+Xuemei&rft.au=Hu%2C+Yuan&rft.au=Zhang%2C+Wenlu&rft.au=Chen%2C+Ke&rft.date=2019-02-01&rft.issn=1873-4596&rft.eissn=1873-4596&rft.volume=131&rft.spage=225&rft_id=info:doi/10.1016%2Fj.freeradbiomed.2018.12.008&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0891-5849&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0891-5849&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0891-5849&client=summon |