Machine learning assisted design of high entropy alloys with desired property

We formulate a materials design strategy combining a machine learning (ML) surrogate model with experimental design algorithms to search for high entropy alloys (HEAs) with large hardness in a model Al-Co-Cr-Cu-Fe-Ni system. We fabricated several alloys with hardness 10% higher than the best value i...

Full description

Saved in:
Bibliographic Details
Published in:Acta materialia Vol. 170; no. C; pp. 109 - 117
Main Authors: Wen, Cheng, Zhang, Yan, Wang, Changxin, Xue, Dezhen, Bai, Yang, Antonov, Stoichko, Dai, Lanhong, Lookman, Turab, Su, Yanjing
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 15.05.2019
Elsevier
Subjects:
ISSN:1359-6454, 1873-2453
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We formulate a materials design strategy combining a machine learning (ML) surrogate model with experimental design algorithms to search for high entropy alloys (HEAs) with large hardness in a model Al-Co-Cr-Cu-Fe-Ni system. We fabricated several alloys with hardness 10% higher than the best value in the original training dataset via only seven experiments. We find that a strategy using both the compositions and descriptors based on a knowledge of the properties of HEAs, outperforms that merely based on the compositions alone. This strategy offers a recipe to rapidly optimize multi-component systems, such as bulk metallic glasses and superalloys, towards desired properties. In the present study, we proposed a data-driven approach combining machine learning, experimental design and feedback from experiment to accelerate the search for multi-component alloys with target properties. We demonstrated the efficiency of our approach by rapidly obtaining several alloys with hardness 10% higher than the best value in the original training dataset via only seven experiments. In Iteration Loop I, a machine learning surrogate model is trained to learn the property-composition, relationship, yi=f(ci), with associated uncertainties. The model is applied to the vast unexplored space and a utility function is employed to recommend the most informative candidate for the next experiment, which balances the exploitation and exploration. Feedback from experimental synthesis and characterization allows the subsequent iterative improvement of the surrogate model. Iteration Loop II is essentially same as Iteration Loop I, except that a features pool was introduced to the Iteration Loop I and a surrogate model is trained from composition (ci) and the preselected physical features (pi), yi=f(ci,pi). We found that the approach using both the composition and the descriptors based on domain knowledge can more effectively accelerate material optimization compared to the approach using only the compositions. [Display omitted]
AbstractList We formulate a materials design strategy combining a machine learning (ML) surrogate model with experimental design algorithms to search for high entropy alloys (HEAs) with large hardness in a model Al-Co-Cr-Cu-Fe-Ni system. We fabricated several alloys with hardness 10% higher than the best value in the original training dataset via only seven experiments. We find that a strategy using both the compositions and descriptors based on a knowledge of the properties of HEAs, outperforms that merely based on the compositions alone. This strategy offers a recipe to rapidly optimize multi-component systems, such as bulk metallic glasses and superalloys, towards desired properties. In the present study, we proposed a data-driven approach combining machine learning, experimental design and feedback from experiment to accelerate the search for multi-component alloys with target properties. We demonstrated the efficiency of our approach by rapidly obtaining several alloys with hardness 10% higher than the best value in the original training dataset via only seven experiments. In Iteration Loop I, a machine learning surrogate model is trained to learn the property-composition, relationship, yi=f(ci), with associated uncertainties. The model is applied to the vast unexplored space and a utility function is employed to recommend the most informative candidate for the next experiment, which balances the exploitation and exploration. Feedback from experimental synthesis and characterization allows the subsequent iterative improvement of the surrogate model. Iteration Loop II is essentially same as Iteration Loop I, except that a features pool was introduced to the Iteration Loop I and a surrogate model is trained from composition (ci) and the preselected physical features (pi), yi=f(ci,pi). We found that the approach using both the composition and the descriptors based on domain knowledge can more effectively accelerate material optimization compared to the approach using only the compositions. [Display omitted]
Author Antonov, Stoichko
Wen, Cheng
Dai, Lanhong
Su, Yanjing
Bai, Yang
Wang, Changxin
Zhang, Yan
Xue, Dezhen
Lookman, Turab
Author_xml – sequence: 1
  givenname: Cheng
  surname: Wen
  fullname: Wen, Cheng
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
– sequence: 2
  givenname: Yan
  surname: Zhang
  fullname: Zhang, Yan
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
– sequence: 3
  givenname: Changxin
  surname: Wang
  fullname: Wang, Changxin
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
– sequence: 4
  givenname: Dezhen
  orcidid: 0000-0001-6132-1236
  surname: Xue
  fullname: Xue, Dezhen
  email: xuedezhen@xjtu.edu.cn
  organization: State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
– sequence: 5
  givenname: Yang
  orcidid: 0000-0002-6917-256X
  surname: Bai
  fullname: Bai, Yang
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
– sequence: 6
  givenname: Stoichko
  orcidid: 0000-0001-8886-2040
  surname: Antonov
  fullname: Antonov, Stoichko
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
– sequence: 7
  givenname: Lanhong
  surname: Dai
  fullname: Dai, Lanhong
  organization: Laboratory for Nonlinear Mechanics of Continuous Media (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100080, China
– sequence: 8
  givenname: Turab
  surname: Lookman
  fullname: Lookman, Turab
  organization: Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
– sequence: 9
  givenname: Yanjing
  surname: Su
  fullname: Su, Yanjing
  email: yjsu@ustb.edu.cn
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
BackLink https://www.osti.gov/biblio/1637031$$D View this record in Osti.gov
BookMark eNqFkF1LwzAUhoNMcJv-BCF435o0bdPihcjwCza80euQpidrRpeMJCj792ZuV97sKgfyvIf3PDM0sc4CQreU5JTQ-n6TSxXlVsa8ILTNCcsJJRdoShvOsqKs2CTNrGqzuqzKKzQLYUMILXhJpmi1kmowFvAI0ltj11iGYEKEHvcQzNpip_Fg1gMGG73b7bEcR7cP-MfE4Q_xCd2lH_Bxf40utRwD3JzeOfp6ef5cvGXLj9f3xdMyU6xhMQMpm67jTOsu9dJ931SyAc5rTaEpal7wQnFW92XJS963XUsk1ZJ1GlrF60qzObo77nUhGhGUiaAG5awFFQWtGSeMJujhCCnvQvCgReJkNC4dIs0oKBEHfWIjTvrEQZ8gTCR9KV39S--82Uq_P5t7POYg3f9twB_qgVXQJ1OpXe_MmQ2_SWGQhw
CitedBy_id crossref_primary_10_1007_s11669_023_01024_4
crossref_primary_10_1007_s12540_024_01888_2
crossref_primary_10_1016_j_corsci_2025_113105
crossref_primary_10_1080_12269328_2024_2434466
crossref_primary_10_1016_j_actamat_2025_121550
crossref_primary_10_1007_s12540_025_01906_x
crossref_primary_10_1016_j_apsusc_2025_163408
crossref_primary_10_1016_j_corsci_2024_112093
crossref_primary_10_1016_j_jallcom_2025_181463
crossref_primary_10_1038_s41598_021_90237_z
crossref_primary_10_1088_2632_2153_ad69ff
crossref_primary_10_3390_app13106279
crossref_primary_10_1007_s44210_025_00055_5
crossref_primary_10_1038_s41524_020_00372_w
crossref_primary_10_1557_s43578_022_00659_2
crossref_primary_10_1007_s11661_020_06099_z
crossref_primary_10_1016_j_mtcomm_2022_104010
crossref_primary_10_1063_5_0274486
crossref_primary_10_1038_s41598_022_05784_w
crossref_primary_10_1016_j_commatsci_2021_110480
crossref_primary_10_1016_j_actamat_2020_06_042
crossref_primary_10_1016_j_intermet_2023_108170
crossref_primary_10_1016_j_jmst_2020_12_024
crossref_primary_10_1007_s10853_022_07363_w
crossref_primary_10_1016_j_mtchem_2025_102871
crossref_primary_10_1007_s44210_024_00038_y
crossref_primary_10_1016_j_commatsci_2024_113259
crossref_primary_10_1038_s43246_024_00487_3
crossref_primary_10_1063_5_0012405
crossref_primary_10_1016_j_actamat_2019_11_067
crossref_primary_10_3390_cryst11010046
crossref_primary_10_1016_j_ceramint_2022_06_156
crossref_primary_10_1016_j_jallcom_2025_183894
crossref_primary_10_1039_D1RA03715C
crossref_primary_10_1002_mgea_70000
crossref_primary_10_3390_ma14237213
crossref_primary_10_3390_jmmp7020052
crossref_primary_10_1002_adem_202001044
crossref_primary_10_1016_j_jmst_2021_05_011
crossref_primary_10_1016_j_matdes_2022_111162
crossref_primary_10_1016_j_actamat_2021_117282
crossref_primary_10_1088_2632_2153_ad55a4
crossref_primary_10_1016_j_commatsci_2024_113345
crossref_primary_10_1016_j_jmrt_2025_05_122
crossref_primary_10_3390_cryst11091035
crossref_primary_10_1016_j_ijrmhm_2025_107400
crossref_primary_10_1016_j_scriptamat_2020_03_064
crossref_primary_10_1080_14786435_2025_2467873
crossref_primary_10_1016_j_ccr_2025_216656
crossref_primary_10_1016_j_matdes_2024_112921
crossref_primary_10_1007_s41403_024_00454_x
crossref_primary_10_1016_j_matdes_2024_112801
crossref_primary_10_1371_journal_pone_0330625
crossref_primary_10_1038_s43588_023_00412_7
crossref_primary_10_3390_ma17102235
crossref_primary_10_1007_s12598_024_02827_1
crossref_primary_10_1016_j_actamat_2022_118525
crossref_primary_10_1016_j_jallcom_2024_177823
crossref_primary_10_1016_j_mtcomm_2023_107940
crossref_primary_10_1016_j_mtnano_2023_100403
crossref_primary_10_1007_s40192_024_00354_6
crossref_primary_10_1016_j_jallcom_2023_173144
crossref_primary_10_1016_j_commatsci_2021_110381
crossref_primary_10_1016_j_jmrt_2025_04_328
crossref_primary_10_1007_s44210_024_00036_0
crossref_primary_10_1016_j_matpr_2020_08_145
crossref_primary_10_1007_s40820_025_01842_w
crossref_primary_10_1016_j_commatsci_2023_112089
crossref_primary_10_1016_j_engappai_2024_109807
crossref_primary_10_1002_advs_202406216
crossref_primary_10_1007_s11837_023_06025_9
crossref_primary_10_1016_j_jmrt_2025_07_187
crossref_primary_10_1016_j_mtcomm_2020_101332
crossref_primary_10_1038_s41524_021_00687_2
crossref_primary_10_1080_16843703_2024_2404343
crossref_primary_10_1002_mgea_70020
crossref_primary_10_1080_00295450_2023_2236796
crossref_primary_10_1080_14686996_2025_2449811
crossref_primary_10_3389_fmats_2022_868721
crossref_primary_10_1016_j_jmst_2021_06_072
crossref_primary_10_1016_j_mser_2023_100746
crossref_primary_10_1016_j_corsci_2024_112062
crossref_primary_10_1080_14686996_2023_2196242
crossref_primary_10_1016_j_jallcom_2025_180162
crossref_primary_10_1002_mgea_70022
crossref_primary_10_1007_s11669_024_01131_w
crossref_primary_10_1016_j_solener_2023_111853
crossref_primary_10_1002_adma_202102703
crossref_primary_10_1063_5_0146032
crossref_primary_10_3390_ma16020631
crossref_primary_10_1016_j_jallcom_2024_175751
crossref_primary_10_1016_j_matdes_2022_111186
crossref_primary_10_1016_j_matdes_2023_112454
crossref_primary_10_59717_j_xinn_life_2024_100105
crossref_primary_10_1038_s41524_024_01331_5
crossref_primary_10_1016_j_matdes_2025_114277
crossref_primary_10_1016_j_mtcomm_2024_108381
crossref_primary_10_1016_j_jallcom_2025_183447
crossref_primary_10_1038_s41524_020_00460_x
crossref_primary_10_3390_ma14195764
crossref_primary_10_1016_j_jallcom_2022_166149
crossref_primary_10_1002_mgea_87
crossref_primary_10_1002_advs_201901395
crossref_primary_10_1016_j_jallcom_2024_176517
crossref_primary_10_1016_j_jmst_2022_07_059
crossref_primary_10_1016_j_ceramint_2022_07_145
crossref_primary_10_1016_j_commatsci_2022_111417
crossref_primary_10_1016_j_actamat_2019_10_043
crossref_primary_10_1016_S1003_6326_25_66766_5
crossref_primary_10_1007_s42864_022_00175_0
crossref_primary_10_1016_j_cossms_2023_101057
crossref_primary_10_1016_j_actamat_2022_118101
crossref_primary_10_1016_j_pmatsci_2021_100777
crossref_primary_10_1016_j_actamat_2022_118103
crossref_primary_10_1038_s41524_025_01721_3
crossref_primary_10_1080_24725854_2022_2089785
crossref_primary_10_1038_s41598_021_84544_8
crossref_primary_10_1007_s12598_024_02805_7
crossref_primary_10_1007_s44210_023_00017_9
crossref_primary_10_1002_qre_3025
crossref_primary_10_1007_s11085_022_10129_z
crossref_primary_10_1016_j_mtcomm_2022_103138
crossref_primary_10_1016_j_intermet_2022_107819
crossref_primary_10_1038_s41524_023_01095_4
crossref_primary_10_1016_j_commatsci_2022_111888
crossref_primary_10_1007_s10853_025_11354_y
crossref_primary_10_1007_s40195_023_01566_z
crossref_primary_10_1016_j_commatsci_2024_113024
crossref_primary_10_1016_j_chemolab_2022_104595
crossref_primary_10_1016_j_jmst_2025_07_070
crossref_primary_10_3389_fenrg_2023_1091105
crossref_primary_10_1016_j_jallcom_2022_168549
crossref_primary_10_1002_mgea_67
crossref_primary_10_1039_D0MH01451F
crossref_primary_10_1038_s41598_022_21209_0
crossref_primary_10_1039_D3QI02120C
crossref_primary_10_1016_j_mtcomm_2021_102096
crossref_primary_10_1063_5_0129528
crossref_primary_10_1002_mgea_72
crossref_primary_10_1016_j_commatsci_2022_111754
crossref_primary_10_1016_j_pmatsci_2021_100797
crossref_primary_10_1146_annurev_matsci_110519_094700
crossref_primary_10_1002_adma_202404478
crossref_primary_10_3390_met14020235
crossref_primary_10_1016_j_msea_2020_140576
crossref_primary_10_1016_j_heliyon_2024_e33138
crossref_primary_10_1016_j_msea_2023_145443
crossref_primary_10_1016_j_msea_2022_144156
crossref_primary_10_1016_j_jallcom_2021_160776
crossref_primary_10_1016_j_pmatsci_2025_101495
crossref_primary_10_1016_j_physb_2025_417560
crossref_primary_10_1002_adma_202410923
crossref_primary_10_1016_j_jallcom_2022_168431
crossref_primary_10_1016_j_intermet_2022_107722
crossref_primary_10_1038_s41524_020_00407_2
crossref_primary_10_1016_j_jmst_2021_05_076
crossref_primary_10_1016_j_commatsci_2021_110472
crossref_primary_10_1134_S1019331621030047
crossref_primary_10_1002_sus2_70030
crossref_primary_10_1016_j_apmt_2023_102000
crossref_primary_10_1016_j_actamat_2025_121031
crossref_primary_10_1557_s43578_023_01122_6
crossref_primary_10_1016_j_actamat_2025_121275
crossref_primary_10_1016_j_commatsci_2021_110528
crossref_primary_10_1016_j_jallcom_2025_181859
crossref_primary_10_1016_j_mtcomm_2024_109663
crossref_primary_10_1088_2632_2153_adb53c
crossref_primary_10_1016_j_commatsci_2020_110244
crossref_primary_10_1038_s41524_025_01704_4
crossref_primary_10_1007_s11837_024_06942_3
crossref_primary_10_1016_j_jallcom_2022_164578
crossref_primary_10_1038_s41524_020_0334_5
crossref_primary_10_3390_app14156590
crossref_primary_10_1016_j_actamat_2023_119063
crossref_primary_10_3390_ma16010306
crossref_primary_10_1146_annurev_chembioeng_092220_024340
crossref_primary_10_1016_j_actamat_2024_120237
crossref_primary_10_1016_j_ijrmhm_2023_106386
crossref_primary_10_1016_j_nxmate_2025_100993
crossref_primary_10_1002_adfm_202109367
crossref_primary_10_1016_j_jmrt_2025_07_005
crossref_primary_10_1016_S1003_6326_25_66787_2
crossref_primary_10_1016_j_jallcom_2020_156159
crossref_primary_10_1016_j_matdes_2020_108835
crossref_primary_10_1016_j_carbon_2020_12_044
crossref_primary_10_1002_advs_201900808
crossref_primary_10_1007_s11804_022_00288_5
crossref_primary_10_1142_S2196888822500312
crossref_primary_10_1016_j_corsci_2025_113047
crossref_primary_10_1016_j_ijrmhm_2024_106673
crossref_primary_10_1007_s40830_025_00551_y
crossref_primary_10_1007_s42864_021_00129_y
crossref_primary_10_1016_j_isci_2024_109723
crossref_primary_10_1016_j_jmst_2022_11_054
crossref_primary_10_1002_advs_202307173
crossref_primary_10_1038_s41524_022_00842_3
crossref_primary_10_1016_j_jmapro_2022_04_014
crossref_primary_10_1016_j_ijrmhm_2023_106116
crossref_primary_10_1016_j_msea_2024_147381
crossref_primary_10_1016_j_actamat_2021_117431
crossref_primary_10_3390_met10121569
crossref_primary_10_1016_j_matdes_2023_111994
crossref_primary_10_1016_j_actbio_2021_05_053
crossref_primary_10_1016_j_commatsci_2023_112140
crossref_primary_10_1002_adfm_202507734
crossref_primary_10_1016_j_matdes_2025_114300
crossref_primary_10_1016_j_matdes_2024_113057
crossref_primary_10_1038_s41524_024_01385_5
crossref_primary_10_3390_met14101193
crossref_primary_10_1016_j_jmst_2021_01_054
crossref_primary_10_1016_j_actamat_2024_120017
crossref_primary_10_1016_j_commatsci_2023_112248
crossref_primary_10_1016_j_commatsci_2024_113512
crossref_primary_10_1016_j_jallcom_2025_181898
crossref_primary_10_1016_j_jmst_2022_11_040
crossref_primary_10_1016_j_mtcomm_2024_110431
crossref_primary_10_1016_j_ijrmhm_2023_106246
crossref_primary_10_1016_j_engappai_2024_107902
crossref_primary_10_20517_jmi_2025_20
crossref_primary_10_1016_j_commatsci_2021_110671
crossref_primary_10_1016_j_cossms_2024_101146
crossref_primary_10_3390_e26121119
crossref_primary_10_1016_j_matdes_2025_114434
crossref_primary_10_1002_adma_202102301
crossref_primary_10_1016_j_matdes_2025_113587
crossref_primary_10_1103_PhysRevB_111_144104
crossref_primary_10_1016_j_commatsci_2024_113202
crossref_primary_10_1016_j_scib_2023_05_017
crossref_primary_10_1016_j_matchar_2023_113122
crossref_primary_10_1016_j_electacta_2023_143722
crossref_primary_10_1007_s42864_022_00169_y
crossref_primary_10_1016_j_jmst_2025_08_011
crossref_primary_10_1016_j_commatsci_2025_113969
crossref_primary_10_3390_jmmp7040148
crossref_primary_10_1016_j_commatsci_2021_110723
crossref_primary_10_1007_s40195_025_01913_2
crossref_primary_10_1088_1674_1056_abf12d
crossref_primary_10_1007_s12613_022_2458_8
crossref_primary_10_1016_j_intermet_2024_108489
crossref_primary_10_1002_aenm_202101092
crossref_primary_10_1007_s12613_023_2767_6
crossref_primary_10_1007_s44210_023_00014_y
crossref_primary_10_1063_5_0162158
crossref_primary_10_1051_matecconf_202440606003
crossref_primary_10_1088_2632_2153_ad1627
crossref_primary_10_1016_j_scriptamat_2022_115214
crossref_primary_10_3390_e24030329
crossref_primary_10_1007_s40831_025_01112_4
crossref_primary_10_1016_j_jallcom_2022_164135
crossref_primary_10_1007_s11837_023_06174_x
crossref_primary_10_1016_j_triboint_2024_110173
crossref_primary_10_1016_j_actamat_2020_03_047
crossref_primary_10_1038_s41524_025_01713_3
crossref_primary_10_1016_j_rineng_2024_102780
crossref_primary_10_1016_j_cossms_2025_101221
crossref_primary_10_1016_j_matdes_2021_110177
crossref_primary_10_1016_j_jallcom_2025_181564
crossref_primary_10_1016_j_jallcom_2022_164468
crossref_primary_10_1002_adfm_202504275
crossref_primary_10_1515_htm_2022_1029
crossref_primary_10_1038_s41524_020_00488_z
crossref_primary_10_3390_en17071612
crossref_primary_10_1016_j_matchemphys_2020_123974
crossref_primary_10_1016_j_ceramint_2022_10_105
crossref_primary_10_1038_s41524_024_01243_4
crossref_primary_10_32604_cmes_2022_021639
crossref_primary_10_1016_j_actamat_2021_117118
crossref_primary_10_1002_adma_202305192
crossref_primary_10_1016_j_jallcom_2024_175849
crossref_primary_10_1007_s11837_020_04343_w
crossref_primary_10_3390_app12094252
crossref_primary_10_1039_D1MH01539G
crossref_primary_10_3390_polym12010163
crossref_primary_10_1063_5_0106124
crossref_primary_10_1016_j_jmrt_2022_11_154
crossref_primary_10_1016_j_commatsci_2024_113430
crossref_primary_10_1016_j_intermet_2024_108469
crossref_primary_10_1016_j_commatsci_2023_112064
crossref_primary_10_1039_D5TC02311D
crossref_primary_10_1016_j_msea_2023_144852
crossref_primary_10_1016_j_msea_2023_145945
crossref_primary_10_12688_f1000research_124085_1
crossref_primary_10_1007_s40195_022_01382_x
crossref_primary_10_1016_j_jallcom_2025_180000
crossref_primary_10_1016_j_jallcom_2025_180484
crossref_primary_10_1002_adem_202500875
crossref_primary_10_1007_s40843_024_3204_5
crossref_primary_10_1016_j_autcon_2025_106125
crossref_primary_10_3389_fmats_2020_00290
crossref_primary_10_1038_s41524_023_01090_9
crossref_primary_10_1007_s11661_021_06279_5
crossref_primary_10_1016_j_apcata_2024_119592
crossref_primary_10_1002_adma_202102507
crossref_primary_10_1002_advs_202417414
crossref_primary_10_1016_j_actamat_2022_117767
crossref_primary_10_1016_j_commatsci_2021_110755
crossref_primary_10_1007_s11661_024_07661_9
crossref_primary_10_1016_j_ijmecsci_2022_107531
crossref_primary_10_1002_advs_202302997
crossref_primary_10_1016_j_mtla_2024_102162
crossref_primary_10_1146_annurev_matsci_090319_010954
crossref_primary_10_1016_j_matchar_2024_113886
crossref_primary_10_1016_j_mtcomm_2023_107298
crossref_primary_10_1088_2631_7990_ad1657
crossref_primary_10_1016_j_matdes_2025_114115
crossref_primary_10_1016_j_commatsci_2023_112671
crossref_primary_10_1007_s12598_024_02852_0
crossref_primary_10_1016_j_actamat_2024_120622
crossref_primary_10_1016_j_compositesa_2024_108429
crossref_primary_10_1016_j_mtcomm_2021_102356
crossref_primary_10_1016_j_jmst_2020_07_009
crossref_primary_10_1016_j_jclepro_2024_141410
crossref_primary_10_1088_1402_4896_adbd08
crossref_primary_10_1002_adma_202310455
crossref_primary_10_1007_s42243_024_01179_5
crossref_primary_10_1016_j_actamat_2021_117612
crossref_primary_10_1016_j_mattod_2025_06_033
crossref_primary_10_1088_1742_6596_2355_1_012078
crossref_primary_10_1007_s12613_022_2479_3
crossref_primary_10_1016_j_matchar_2022_111894
crossref_primary_10_1016_j_jnoncrysol_2023_122476
crossref_primary_10_1038_s41524_025_01554_0
crossref_primary_10_1093_bib_bbaf286
crossref_primary_10_1016_j_ijfatigue_2025_109072
crossref_primary_10_1016_j_mtcomm_2025_112055
crossref_primary_10_1016_j_scriptamat_2020_06_002
crossref_primary_10_1016_j_intermet_2020_106802
crossref_primary_10_1016_j_jallcom_2023_169329
crossref_primary_10_1007_s11831_025_10342_4
crossref_primary_10_1038_s41524_024_01480_7
crossref_primary_10_1016_j_mser_2021_100645
crossref_primary_10_1039_D3RA02848H
crossref_primary_10_1038_s41597_020_00768_9
crossref_primary_10_3390_ma18081771
crossref_primary_10_1016_j_mtla_2023_101904
crossref_primary_10_1016_j_pmatsci_2022_101018
crossref_primary_10_1016_j_compstruct_2021_114175
crossref_primary_10_1016_j_jallcom_2024_178325
crossref_primary_10_1016_j_jmst_2024_07_021
crossref_primary_10_3390_hydrogen5030032
crossref_primary_10_1016_j_jmst_2021_09_031
crossref_primary_10_1016_j_matdes_2022_111513
crossref_primary_10_1016_j_matdes_2020_109199
crossref_primary_10_1088_1361_648X_ad6bdb
crossref_primary_10_1016_j_matdes_2024_113339
crossref_primary_10_1016_j_matdes_2024_113338
crossref_primary_10_1111_jace_70209
crossref_primary_10_1038_s41467_023_38423_7
crossref_primary_10_1016_j_mtcomm_2024_109607
crossref_primary_10_1088_1361_651X_ad89b3
crossref_primary_10_1016_j_jmst_2021_09_004
crossref_primary_10_1016_j_msea_2025_147987
crossref_primary_10_1016_j_pnsc_2025_05_001
crossref_primary_10_1007_s10853_022_06961_y
crossref_primary_10_1016_j_jmst_2021_02_017
crossref_primary_10_1002_adts_202100225
crossref_primary_10_1007_s42243_023_01114_0
crossref_primary_10_1039_D1QI00766A
crossref_primary_10_1007_s11669_022_01010_2
crossref_primary_10_1007_s12540_022_01220_w
crossref_primary_10_1016_j_jallcom_2024_176282
crossref_primary_10_1016_j_isci_2023_107751
crossref_primary_10_1016_j_msea_2025_148817
crossref_primary_10_1016_j_pmatsci_2020_100754
crossref_primary_10_3390_met15070733
crossref_primary_10_1021_jacs_4c00209
crossref_primary_10_1002_bkcs_12484
crossref_primary_10_1016_j_jallcom_2021_160295
crossref_primary_10_1002_inf2_12488
crossref_primary_10_32604_cmc_2024_042752
crossref_primary_10_1016_j_mtla_2022_101628
crossref_primary_10_1016_j_rineng_2025_104441
crossref_primary_10_1088_2053_1591_abc4f7
crossref_primary_10_3390_met14040438
crossref_primary_10_1002_adma_202413430
crossref_primary_10_1016_j_ijmecsci_2022_108026
crossref_primary_10_1016_j_mtcomm_2024_109731
crossref_primary_10_1080_21663831_2023_2215826
crossref_primary_10_1088_1674_1056_acbaf4
crossref_primary_10_1016_j_corsci_2022_110805
crossref_primary_10_1016_j_matchar_2025_115406
crossref_primary_10_1016_j_cej_2025_164693
crossref_primary_10_1016_j_jmst_2022_05_051
crossref_primary_10_1108_ACMM_01_2022_2594
crossref_primary_10_1007_s42791_023_00057_7
crossref_primary_10_1016_j_jallcom_2025_181821
crossref_primary_10_1016_j_mtla_2021_101148
crossref_primary_10_1002_adem_202201493
crossref_primary_10_1016_j_jmatprotec_2023_118032
crossref_primary_10_1007_s10853_022_07793_6
crossref_primary_10_1002_mgea_8
crossref_primary_10_1016_j_jmst_2021_09_061
crossref_primary_10_1007_s11661_020_05947_2
crossref_primary_10_1038_s41524_025_01579_5
crossref_primary_10_1016_j_vacuum_2022_111608
crossref_primary_10_1016_j_actamat_2020_09_068
crossref_primary_10_1016_j_jallcom_2022_165984
crossref_primary_10_1016_j_mtcomm_2022_104900
crossref_primary_10_1007_s12633_023_02840_6
crossref_primary_10_1016_j_electacta_2025_146685
crossref_primary_10_3390_cryst15050404
crossref_primary_10_1016_j_matdes_2024_113260
crossref_primary_10_3390_ma17143521
crossref_primary_10_1016_j_rineng_2024_102387
crossref_primary_10_1007_s10479_021_04516_z
crossref_primary_10_1016_j_intermet_2024_108198
crossref_primary_10_1016_j_matchemphys_2025_131068
crossref_primary_10_3390_ma17010092
crossref_primary_10_1016_j_mtla_2024_102332
crossref_primary_10_1016_j_commatsci_2024_112976
crossref_primary_10_1016_j_commatsci_2023_112578
crossref_primary_10_1007_s42247_021_00249_8
crossref_primary_10_1016_j_actamat_2025_121173
crossref_primary_10_1002_aenm_202102355
crossref_primary_10_1016_j_commatsci_2020_109521
crossref_primary_10_1016_j_commatsci_2021_110905
crossref_primary_10_1016_j_jmst_2020_07_035
crossref_primary_10_1016_j_mtcomm_2024_108833
crossref_primary_10_1016_j_mtcomm_2023_107102
crossref_primary_10_3390_jcs8040120
crossref_primary_10_1016_j_jnoncrysol_2023_122378
crossref_primary_10_1016_j_actamat_2023_119177
crossref_primary_10_1016_j_commatsci_2023_112460
crossref_primary_10_1016_j_matdes_2025_113892
crossref_primary_10_1016_j_msea_2022_142891
crossref_primary_10_3390_met14040401
crossref_primary_10_3390_met14040400
crossref_primary_10_1016_j_electacta_2025_146426
crossref_primary_10_1016_j_matdes_2020_109260
crossref_primary_10_3389_fmats_2021_816309
crossref_primary_10_1098_rsta_2023_0242
crossref_primary_10_1088_1361_651X_adbb83
crossref_primary_10_3389_fmech_2022_956129
crossref_primary_10_1007_s43452_021_00226_2
crossref_primary_10_1007_s11664_025_11852_4
crossref_primary_10_1007_s44210_024_00041_3
crossref_primary_10_1080_13621718_2022_2164830
crossref_primary_10_1016_j_jallcom_2025_180638
crossref_primary_10_1016_j_msea_2024_147475
crossref_primary_10_1016_j_commatsci_2022_111185
crossref_primary_10_1016_j_ijrmhm_2025_107347
crossref_primary_10_1063_5_0030367
crossref_primary_10_1016_j_commatsci_2021_111181
crossref_primary_10_1038_s41524_022_00926_0
crossref_primary_10_3390_ma16237354
crossref_primary_10_1007_s11665_025_11781_7
crossref_primary_10_1016_j_isci_2024_111580
crossref_primary_10_1177_02670836241272086
crossref_primary_10_1007_s11182_025_03409_z
crossref_primary_10_1038_s41524_023_01010_x
crossref_primary_10_1002_mgea_49
crossref_primary_10_1016_j_matdes_2021_109777
crossref_primary_10_1016_j_matdes_2021_109532
crossref_primary_10_1557_s43578_022_00557_7
crossref_primary_10_1557_s43578_023_01107_5
crossref_primary_10_1016_j_actamat_2021_116917
crossref_primary_10_1016_j_mtcomm_2023_107525
crossref_primary_10_1007_s11666_022_01462_5
crossref_primary_10_3390_met13020205
crossref_primary_10_1016_j_scriptamat_2024_116180
crossref_primary_10_5006_4451
crossref_primary_10_1016_j_jnoncrysol_2022_122116
crossref_primary_10_1111_ffe_13895
crossref_primary_10_1016_j_matdes_2024_112785
crossref_primary_10_1016_j_jallcom_2024_177403
crossref_primary_10_1021_acs_inorgchem_5c01713
crossref_primary_10_1016_j_actamat_2023_119631
crossref_primary_10_1016_j_surfcoat_2025_132238
crossref_primary_10_1007_s12540_025_01899_7
crossref_primary_10_1007_s41403_023_00442_7
crossref_primary_10_1016_j_jmrt_2025_05_178
crossref_primary_10_1016_j_matt_2024_01_005
crossref_primary_10_1002_smll_202102972
crossref_primary_10_1039_D1MH01912K
crossref_primary_10_1016_j_ijrmhm_2022_105798
crossref_primary_10_1088_2053_1591_acb19e
crossref_primary_10_1142_S2810922825300016
crossref_primary_10_1016_j_matdes_2020_109248
crossref_primary_10_1016_j_eml_2022_101635
crossref_primary_10_1016_j_engappai_2024_108783
crossref_primary_10_1016_j_intermet_2021_107361
crossref_primary_10_1038_s41524_020_0308_7
crossref_primary_10_1038_s41598_024_57094_y
crossref_primary_10_1016_j_matlet_2021_131061
crossref_primary_10_1016_j_corsci_2023_111457
crossref_primary_10_1038_s41578_021_00340_w
crossref_primary_10_3390_ma15144997
crossref_primary_10_1016_j_mtcomm_2025_112464
crossref_primary_10_1016_j_mtcomm_2025_112462
crossref_primary_10_1016_j_corsci_2023_111222
crossref_primary_10_1016_j_jiec_2024_11_050
crossref_primary_10_1016_j_jallcom_2020_156959
crossref_primary_10_1016_j_jallcom_2022_167374
crossref_primary_10_3103_S0005105523010077
crossref_primary_10_1038_s41598_020_78690_8
crossref_primary_10_1016_j_jmst_2024_02_058
crossref_primary_10_1016_j_jmrt_2025_04_163
crossref_primary_10_1016_j_jmst_2021_12_052
crossref_primary_10_1016_j_mtcomm_2023_106697
crossref_primary_10_1007_s10853_022_07295_5
crossref_primary_10_1016_j_commatsci_2025_114121
crossref_primary_10_1038_s41529_025_00603_9
crossref_primary_10_3390_app142311025
crossref_primary_10_1002_adem_202100612
crossref_primary_10_1007_s11661_020_06132_1
crossref_primary_10_1038_s41524_022_00794_8
crossref_primary_10_1039_D5DD00084J
crossref_primary_10_1007_s10853_025_10729_5
crossref_primary_10_1016_j_actamat_2025_120953
crossref_primary_10_1016_j_jechem_2023_02_028
crossref_primary_10_1016_j_jmapro_2025_03_041
crossref_primary_10_1016_j_actamat_2024_119703
crossref_primary_10_1155_2022_2891463
crossref_primary_10_1002_mgea_38
crossref_primary_10_1515_rams_2023_0188
crossref_primary_10_3390_ma14216356
crossref_primary_10_1038_s41524_024_01358_8
crossref_primary_10_1016_j_asoc_2025_113776
crossref_primary_10_1016_j_actamat_2020_09_081
crossref_primary_10_1016_j_mtcomm_2021_102960
crossref_primary_10_1016_j_jmrt_2025_05_072
crossref_primary_10_1080_21663831_2024_2424933
crossref_primary_10_1016_j_commatsci_2022_111783
crossref_primary_10_1016_j_matdes_2023_112174
crossref_primary_10_1038_s41524_024_01335_1
crossref_primary_10_1557_s43578_024_01370_0
crossref_primary_10_1038_s41598_025_87784_0
crossref_primary_10_1038_s41597_022_01492_2
crossref_primary_10_1016_j_mtcomm_2024_109070
crossref_primary_10_1007_s11665_022_06995_y
crossref_primary_10_1016_j_calphad_2024_102710
crossref_primary_10_1016_j_commatsci_2023_112515
crossref_primary_10_1016_j_jallcom_2023_171735
crossref_primary_10_1038_s41597_024_03448_0
crossref_primary_10_1007_s40195_025_01876_4
crossref_primary_10_1016_j_commatsci_2024_112917
crossref_primary_10_1016_j_rechem_2025_102730
crossref_primary_10_1016_j_jallcom_2025_182197
crossref_primary_10_1016_j_jmst_2025_04_006
crossref_primary_10_1039_D1EE00505G
crossref_primary_10_1007_s11085_021_10076_1
crossref_primary_10_1016_j_commatsci_2022_111254
crossref_primary_10_1002_adem_202302064
crossref_primary_10_1002_mgea_17
crossref_primary_10_1016_j_actamat_2024_119841
crossref_primary_10_1016_j_commatsci_2025_114246
crossref_primary_10_1016_j_heliyon_2024_e39660
crossref_primary_10_1016_j_mtcomm_2020_101871
crossref_primary_10_1088_1361_651X_ac8171
crossref_primary_10_1016_j_matdes_2020_109326
crossref_primary_10_1088_1361_651X_ac1774
crossref_primary_10_1016_j_scriptamat_2019_12_041
crossref_primary_10_1016_j_pmatsci_2024_101332
crossref_primary_10_1016_j_jallcom_2020_153766
crossref_primary_10_1016_j_jallcom_2023_171755
crossref_primary_10_1016_j_commatsci_2021_111025
crossref_primary_10_1016_j_jmst_2023_01_032
crossref_primary_10_1007_s12613_025_3114_x
crossref_primary_10_1016_j_commatsci_2021_111021
crossref_primary_10_1038_s41578_020_00255_y
crossref_primary_10_1007_s10853_025_10719_7
crossref_primary_10_1016_S1003_6326_23_66247_8
crossref_primary_10_1063_5_0259061
crossref_primary_10_1016_j_commatsci_2023_112612
crossref_primary_10_1016_j_addma_2020_101538
crossref_primary_10_1038_s41524_024_01349_9
crossref_primary_10_1007_s11831_024_10100_y
crossref_primary_10_1007_s12598_023_02333_w
crossref_primary_10_1007_s10853_025_11154_4
crossref_primary_10_1007_s40964_025_01276_1
crossref_primary_10_1007_s11837_023_05778_7
crossref_primary_10_1016_j_mtchem_2022_100983
crossref_primary_10_1016_j_commatsci_2021_111034
crossref_primary_10_1016_j_mtcomm_2023_105681
crossref_primary_10_1016_j_scriptamat_2024_116485
crossref_primary_10_1007_s12598_025_03531_4
crossref_primary_10_1063_5_0124590
crossref_primary_10_1039_D5DD00080G
crossref_primary_10_1016_j_apmt_2023_101977
crossref_primary_10_1016_j_calphad_2022_102450
crossref_primary_10_1016_j_scriptamat_2024_116240
crossref_primary_10_1038_s41524_023_01150_0
crossref_primary_10_1038_s41529_021_00163_8
crossref_primary_10_1016_j_jmst_2022_08_046
crossref_primary_10_1007_s11837_019_03704_4
crossref_primary_10_1016_j_chemolab_2022_104621
crossref_primary_10_1016_j_matdes_2019_108378
crossref_primary_10_1007_s10409_024_24155_x
crossref_primary_10_1039_D5NR01562F
crossref_primary_10_3390_cryst15050468
crossref_primary_10_1016_j_jmst_2025_04_036
crossref_primary_10_3390_coatings14040402
crossref_primary_10_1016_j_pmatsci_2024_101359
crossref_primary_10_1016_j_commatsci_2022_111229
crossref_primary_10_1088_2053_1591_ab8492
crossref_primary_10_1016_j_pmatsci_2025_101534
crossref_primary_10_1016_j_matdes_2024_112797
crossref_primary_10_1002_adem_202501170
crossref_primary_10_1016_j_mtcomm_2022_103195
crossref_primary_10_1007_s40192_024_00348_4
Cites_doi 10.1016/j.mattod.2015.11.026
10.1016/j.jallcom.2013.01.007
10.1016/j.jmst.2017.07.013
10.1016/j.jallcom.2010.03.111
10.1016/j.scriptamat.2017.10.027
10.1016/j.intermet.2016.12.007
10.1038/s41524-017-0024-0
10.1016/j.actamat.2018.07.042
10.1016/j.matdes.2016.11.049
10.1016/j.commatsci.2016.10.028
10.1016/j.cossms.2016.10.002
10.1016/j.actamat.2016.08.081
10.1103/PhysRevLett.116.105501
10.1016/j.wear.2005.12.008
10.1038/nature17439
10.1016/j.jallcom.2009.08.090
10.1016/j.jallcom.2018.01.224
10.1016/j.triboint.2015.06.013
10.1103/PhysRevB.89.094104
10.1038/s41524-017-0056-5
10.1162/neco.1992.4.1.1
10.1016/j.scriptamat.2017.07.024
10.1021/acs.jpclett.7b01046
10.1016/j.actamat.2016.07.040
10.1016/j.actamat.2014.11.014
10.1038/ncomms11241
10.1038/ncomms7529
10.1016/j.matdes.2013.10.050
10.1179/1743284715Y.0000000018
10.1016/j.msea.2003.10.257
10.1103/PhysRevLett.114.108001
10.1023/A:1008306431147
10.1016/j.intermet.2016.09.003
10.1016/j.msea.2011.10.110
10.1016/j.matlet.2006.03.140
10.1126/science.1254581
10.1590/1516-1439.058815
10.1080/21663831.2014.912690
10.1016/j.actamat.2016.12.009
10.1016/j.matlet.2014.05.134
10.1016/j.actamat.2015.08.050
10.1016/j.intermet.2018.07.009
10.1016/j.actbio.2009.07.039
10.1016/j.commatsci.2018.04.003
10.1002/adma.201702884
10.1016/j.corsci.2010.06.025
10.1016/j.actamat.2017.08.045
10.1016/j.msea.2011.11.044
10.1002/adem.200300567
ContentType Journal Article
Copyright 2019 Acta Materialia Inc.
Copyright_xml – notice: 2019 Acta Materialia Inc.
DBID AAYXX
CITATION
OTOTI
DOI 10.1016/j.actamat.2019.03.010
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2453
EndPage 117
ExternalDocumentID 1637031
10_1016_j_actamat_2019_03_010
S1359645419301430
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
TN5
XPP
ZMT
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FGOYB
R2-
SEW
T9H
ZY4
~HD
AALMO
ABPIF
ABPTK
OTOTI
ID FETCH-LOGICAL-c383t-eaa8bb73ffb135fdd85a8e776f1e8267272c736d44747d9b90a1fa3bfe9c765f3
ISICitedReferencesCount 702
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000466252400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1359-6454
IngestDate Thu May 18 22:34:36 EDT 2023
Sat Nov 29 07:02:46 EST 2025
Tue Nov 18 21:03:47 EST 2025
Fri Feb 23 02:23:14 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Materials genome initiative
Multi-principal element alloys
Active learning
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c383t-eaa8bb73ffb135fdd85a8e776f1e8267272c736d44747d9b90a1fa3bfe9c765f3
Notes USDOE
ORCID 0000-0001-8886-2040
0000-0001-6132-1236
0000-0002-6917-256X
0000000161321236
000000026917256X
0000000188862040
OpenAccessLink http://dspace.imech.ac.cn/handle/311007/79185
PageCount 9
ParticipantIDs osti_scitechconnect_1637031
crossref_citationtrail_10_1016_j_actamat_2019_03_010
crossref_primary_10_1016_j_actamat_2019_03_010
elsevier_sciencedirect_doi_10_1016_j_actamat_2019_03_010
PublicationCentury 2000
PublicationDate 2019-05-15
PublicationDateYYYYMMDD 2019-05-15
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Acta materialia
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Sharma, Deshmukh, Liaw, Balasubramanian (bib24) 2017; 141
Ma, Grabowski, Körmann, Neugebauer, Raabe (bib16) 2015; 100
Xue, Balachandran, Hogden, Theiler, Xue, Lookman (bib35) 2016; 7
Sun, Zhang, Lu, Ding, Wang, Vitos (bib26) 2017; 140
Li, Li, Zhao, Jiang (bib44) 2010; 504S
Ramprasad, Batra, Pilania, Mannodikanakkithodi, Kim (bib27) 2017; 3
Tsai, Yeh (bib38) 2014; 2
Ke (bib40) 2005
Sun, Bai, Li, Wang (bib29) 2017; 8
Yeh (bib9) 2011; vol. 27
Wu, Cai, Wang, Si, Zhu, Wang, Hui (bib12) 2014; 130
Ye, Wang, Lu, Liu, Yang (bib14) 2016; 19
Islam, Huang, Zhuang (bib33) 2018; 150
Abdelaziz, Paradis, Samuel, Doty, Samuel (bib3) 2017; 2
Ma, Zhang (bib45) 2012; 532
Saal, Berglund, Sebastian, Liaw, Olson (bib19) 2017; 146
Geman, Bienenstock, Doursat (bib56) 1992; 4
Yu, Wang, Li, Kou, Duan, Li, Liu (bib13) 2015; 92
Praveen, Murty, Kottada (bib41) 2012; 534
Tian, Varga, Vitos (bib25) 2017; 83
Schinhammer, Hänzi, Löffler, Uggowitzer (bib4) 2010; 6
Miracle, Senkov (bib15) 2017; 122
Hu, Cai, Rong (bib54) 2010
Inoue, Kong, Zhu, Liu, Al (bib2) 2015; 18
Meredig, Agrawal, Kirklin, Saal, Doak, Thompson, Zhang, Choudhary, Wolverton (bib28) 2014; 89
Cubuk, Schoenholz, Rieser, Malone, Rottler, Durian, Kaxiras, Liu (bib30) 2015; 114
Raccuglia, Elbert, Adler, Falk, Wenny, Mollo, Zeller, Friedler, Schrier, Norquist (bib31) 2016; 533
Guo (bib50) 2015; 31
Zhu, Ma, Wang, Shek (bib43) 2016; 79
Wang, Fang, Li, Liu (bib52) 2018; 34
Huang, Zhang, Zhang, Wang, Yang, Zeng (bib1) 2017; 127
Toda-Caraballo (bib51) 2015; 85
Kao, Chen, Chen, Yeh (bib46) 2009; 488
Varvenne, Luque, Curtin (bib53) 2016; 118
Tapia, Yim, Kim, Lee (bib22) 2018; 101
Tung, Yeh, Shun, Chen, Huang, Chen (bib39) 2007; 61
Jiang, Uberuaga (bib18) 2016; 116
Lederer, Toher, Vecchio, Curtarolo (bib20) 2018; 159
Zhang, Zhang, Chen, Cao (bib17) 2012; 64
Lookman, Balachandran, Xue, Hogden, Theiler (bib34) 2017; 21
Xue, Xue, Yuan, Zhou, Balachandran, Ding, Sun, Lookman (bib36) 2017; 125
Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang (bib7) 2004; 6
Hayama, Andrade, Cremasco, Contieri, Afonso, Caram (bib6) 2014; 55
Yuan, Liu, Balachandran, Xue, Zhou, Ding, Sun, Xue, Lookman (bib37) 2018; 30
Sanchez, Vicario, Albizuri, Guraya, Garcia (bib21) 2018; 424
Chou, Wang, Yeh, Shih (bib11) 2010; 52
Wang, Shang, Wang, Han, Darling, Wu, Xie, Senkov, Li, Hui, Dahmen, Liaw, Kecskes, Liu (bib55) 2017; 3
Senkov, Miller, Miracle, Woodward (bib23) 2015; 6
Gludovatz, Hohenwarter, Catoor, Chang, George, Ritchie (bib10) 2014; 345
Jones, Schonlau, Welch (bib49) 1998; 13
Wu, Lin, Yeh, Chen, Huang, Chen (bib42) 2006; 261
Guo, Ng, Liu (bib48) 2013; 557
Cantor, Chang, Knight, Vincent (bib8) 2004; 375
Zhuang, Liu, Xing, Wang, He (bib47) 2012; 25
Tancret, Toda-Caraballo, Menou, Díaz-Del-Castillo (bib32) 2017; 115
Long, Mao, Liu, Zhang, Han (bib5) 2018; 743
Yeh (10.1016/j.actamat.2019.03.010_bib7) 2004; 6
Yeh (10.1016/j.actamat.2019.03.010_bib9) 2011; vol. 27
Xue (10.1016/j.actamat.2019.03.010_bib36) 2017; 125
Abdelaziz (10.1016/j.actamat.2019.03.010_bib3) 2017; 2
Tancret (10.1016/j.actamat.2019.03.010_bib32) 2017; 115
Jones (10.1016/j.actamat.2019.03.010_bib49) 1998; 13
Schinhammer (10.1016/j.actamat.2019.03.010_bib4) 2010; 6
Lookman (10.1016/j.actamat.2019.03.010_bib34) 2017; 21
Sharma (10.1016/j.actamat.2019.03.010_bib24) 2017; 141
Wu (10.1016/j.actamat.2019.03.010_bib42) 2006; 261
Long (10.1016/j.actamat.2019.03.010_bib5) 2018; 743
Tsai (10.1016/j.actamat.2019.03.010_bib38) 2014; 2
Tung (10.1016/j.actamat.2019.03.010_bib39) 2007; 61
Jiang (10.1016/j.actamat.2019.03.010_bib18) 2016; 116
Ramprasad (10.1016/j.actamat.2019.03.010_bib27) 2017; 3
Lederer (10.1016/j.actamat.2019.03.010_bib20) 2018; 159
Raccuglia (10.1016/j.actamat.2019.03.010_bib31) 2016; 533
Ye (10.1016/j.actamat.2019.03.010_bib14) 2016; 19
Huang (10.1016/j.actamat.2019.03.010_bib1) 2017; 127
Saal (10.1016/j.actamat.2019.03.010_bib19) 2017; 146
Wu (10.1016/j.actamat.2019.03.010_bib12) 2014; 130
Ma (10.1016/j.actamat.2019.03.010_bib45) 2012; 532
Wang (10.1016/j.actamat.2019.03.010_bib55) 2017; 3
Geman (10.1016/j.actamat.2019.03.010_bib56) 1992; 4
Xue (10.1016/j.actamat.2019.03.010_bib35) 2016; 7
Yu (10.1016/j.actamat.2019.03.010_bib13) 2015; 92
Ma (10.1016/j.actamat.2019.03.010_bib16) 2015; 100
Wang (10.1016/j.actamat.2019.03.010_bib52) 2018; 34
Praveen (10.1016/j.actamat.2019.03.010_bib41) 2012; 534
Yuan (10.1016/j.actamat.2019.03.010_bib37) 2018; 30
Hu (10.1016/j.actamat.2019.03.010_bib54) 2010
Kao (10.1016/j.actamat.2019.03.010_bib46) 2009; 488
Zhu (10.1016/j.actamat.2019.03.010_bib43) 2016; 79
Zhang (10.1016/j.actamat.2019.03.010_bib17) 2012; 64
Varvenne (10.1016/j.actamat.2019.03.010_bib53) 2016; 118
Hayama (10.1016/j.actamat.2019.03.010_bib6) 2014; 55
Li (10.1016/j.actamat.2019.03.010_bib44) 2010; 504S
Guo (10.1016/j.actamat.2019.03.010_bib50) 2015; 31
Sanchez (10.1016/j.actamat.2019.03.010_bib21) 2018; 424
Chou (10.1016/j.actamat.2019.03.010_bib11) 2010; 52
Miracle (10.1016/j.actamat.2019.03.010_bib15) 2017; 122
Tapia (10.1016/j.actamat.2019.03.010_bib22) 2018; 101
Senkov (10.1016/j.actamat.2019.03.010_bib23) 2015; 6
Toda-Caraballo (10.1016/j.actamat.2019.03.010_bib51) 2015; 85
Meredig (10.1016/j.actamat.2019.03.010_bib28) 2014; 89
Islam (10.1016/j.actamat.2019.03.010_bib33) 2018; 150
Gludovatz (10.1016/j.actamat.2019.03.010_bib10) 2014; 345
Zhuang (10.1016/j.actamat.2019.03.010_bib47) 2012; 25
Tian (10.1016/j.actamat.2019.03.010_bib25) 2017; 83
Ke (10.1016/j.actamat.2019.03.010_bib40) 2005
Sun (10.1016/j.actamat.2019.03.010_bib26) 2017; 140
Sun (10.1016/j.actamat.2019.03.010_bib29) 2017; 8
Guo (10.1016/j.actamat.2019.03.010_bib48) 2013; 557
Inoue (10.1016/j.actamat.2019.03.010_bib2) 2015; 18
Cantor (10.1016/j.actamat.2019.03.010_bib8) 2004; 375
Cubuk (10.1016/j.actamat.2019.03.010_bib30) 2015; 114
References_xml – volume: 100
  start-page: 90
  year: 2015
  end-page: 97
  ident: bib16
  article-title: Ab initio, thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one
  publication-title: Acta Mater.
– volume: 488
  start-page: 57
  year: 2009
  end-page: 64
  ident: bib46
  article-title: Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi(0≤x≤2) high-entropy alloys
  publication-title: J. Alloy. Comp.
– volume: 743
  start-page: 203
  year: 2018
  end-page: 220
  ident: bib5
  article-title: Microstructural and compositional design of Ni-based single crystalline superalloys-A review
  publication-title: J. Alloy. Comp.
– volume: 125
  start-page: 532
  year: 2017
  end-page: 541
  ident: bib36
  article-title: An informatics approach to transformation temperatures of NiTi-based shape memory alloys
  publication-title: Acta Mater.
– volume: 61
  start-page: 1
  year: 2007
  end-page: 5
  ident: bib39
  article-title: On the elemental effect of AlCoCrCuFeNi high-entropy alloy system
  publication-title: Mater. Lett.
– volume: 34
  start-page: 349
  year: 2018
  end-page: 354
  ident: bib52
  article-title: Effect of lattice distortion on solid solution strengthening of BCC high-entropy alloys
  publication-title: J. Mater. Sci. Technol.
– volume: 89
  start-page: 1
  year: 2014
  end-page: 7
  ident: bib28
  article-title: Combinatorial screening for new materials in unconstrained composition space with machine learning
  publication-title: Phys. Rev. B
– volume: 21
  start-page: 121
  year: 2017
  end-page: 128
  ident: bib34
  article-title: Statistical inference and adaptive design for materials discovery
  publication-title: Curr. Opin. Solid State Mater. Sci.
– volume: 19
  start-page: 349
  year: 2016
  end-page: 362
  ident: bib14
  article-title: High-entropy alloy: challenges and prospects
  publication-title: Mater. Today
– volume: 18
  start-page: 1414
  year: 2015
  end-page: 1425
  ident: bib2
  article-title: Marzouki, development and applications of highly functional Al-based materials by use of metastable phases
  publication-title: Mater. Res.
– volume: 83
  start-page: 9
  year: 2017
  end-page: 16
  ident: bib25
  article-title: Predicting single phase CrMoWX high entropy alloys from empirical relations in combination with first-principles calculations
  publication-title: Intermetallics
– volume: 557
  start-page: 77
  year: 2013
  end-page: 81
  ident: bib48
  article-title: Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys
  publication-title: J. Alloy. Comp.
– volume: 92
  start-page: 203
  year: 2015
  end-page: 210
  ident: bib13
  article-title: Tribological behavior of AlCoCrCuFeNi and AlCoCrFeNiTi0.5 high entropy alloys under hydrogen peroxide solution against different counterparts
  publication-title: Tribol. Int.
– volume: 345
  start-page: 1153
  year: 2014
  end-page: 1158
  ident: bib10
  article-title: A fracture-resistant high-entropy alloy for cryogenic applications
  publication-title: Science
– volume: 114
  start-page: 108001
  year: 2015
  ident: bib30
  article-title: Identifying structural flow defects in disordered solids using machine-learning methods
  publication-title: Phys. Rev. Lett.
– volume: 150
  start-page: 230
  year: 2018
  end-page: 235
  ident: bib33
  article-title: Machine learning for phase selection in multi-principal element alloys
  publication-title: Comput. Mater. Sci.
– volume: 140
  start-page: 366
  year: 2017
  end-page: 374
  ident: bib26
  article-title: Phase selection rule for Al-doped CrMnFeCoNi high-entropy alloys from first-principles
  publication-title: Acta Mater.
– volume: 375
  start-page: 213
  year: 2004
  end-page: 218
  ident: bib8
  article-title: Microstructural development in equiatomic multi-component alloys
  publication-title: Mater. Sci. Eng., A
– volume: 130
  start-page: 277
  year: 2014
  end-page: 280
  ident: bib12
  article-title: A refractory Hf25Nb25Ti25Zr25, high-entropy alloy with excellent structural stability and tensile properties
  publication-title: Mater. Lett.
– volume: 118
  start-page: 164
  year: 2016
  end-page: 176
  ident: bib53
  article-title: Theory of strengthening in fcc high entropy alloys
  publication-title: Acta Mater.
– volume: 79
  start-page: 1
  year: 2016
  end-page: 11
  ident: bib43
  article-title: Compositional dependence of phase formation and mechanical properties in three CoCrFeNi-(Mn/Al/Cu) high entropy alloys
  publication-title: Intermetallics
– volume: 85
  start-page: 14
  year: 2015
  end-page: 23
  ident: bib51
  article-title: Modelling solid solution hardening in high entropy alloys
  publication-title: Acta Mater.
– volume: 6
  start-page: 299
  year: 2004
  end-page: 303
  ident: bib7
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
– volume: 2
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib3
  article-title: Effect of aluminum addition on the microstructure, tensile properties, and fractography of cast Mg-based alloys
  publication-title: Ann. Mater. Sci. Eng.
– volume: 532
  start-page: 480
  year: 2012
  end-page: 486
  ident: bib45
  article-title: Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy
  publication-title: Mater. Sci. Eng., A
– volume: 55
  start-page: 1006
  year: 2014
  end-page: 1013
  ident: bib6
  article-title: Effects of composition and heat treatment on the mechanical behavior of Ti-Cu alloys
  publication-title: Mater. Des.
– volume: 127
  start-page: 60
  year: 2017
  end-page: 66
  ident: bib1
  article-title: Mechanical properties of zirconium-based random alloys: alloying elements and composition dependencies
  publication-title: Comput. Mater. Sci.
– volume: 146
  start-page: 5
  year: 2017
  end-page: 8
  ident: bib19
  article-title: Equilibrium high entropy alloy phase stability from experiments and thermodynamic modeling
  publication-title: Scripta Mater.
– volume: 4
  start-page: 1
  year: 1992
  end-page: 58
  ident: bib56
  article-title: Neural networks and the bias/variance dilemma
  publication-title: Neural Comput.
– volume: 52
  start-page: 3481
  year: 2010
  end-page: 3491
  ident: bib11
  article-title: Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions
  publication-title: Corros. Sci.
– volume: 504S
  start-page: S515
  year: 2010
  end-page: S518
  ident: bib44
  article-title: Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys
  publication-title: J. Alloy. Comp.
– volume: 6
  start-page: 1705
  year: 2010
  ident: bib4
  article-title: Design strategy for biodegradable Fe-based alloys for medical applications
  publication-title: Acta Biomater.
– volume: 261
  start-page: 513
  year: 2006
  end-page: 519
  ident: bib42
  article-title: Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content
  publication-title: Wear
– volume: 115
  start-page: 486
  year: 2017
  end-page: 497
  ident: bib32
  article-title: Designing high entropy alloys employing thermodynamics and Gaussian process statistical analysis
  publication-title: Mater. Des.
– start-page: 177
  year: 2010
  end-page: 178
  ident: bib54
  article-title: Material Science Foundation
– volume: 116
  start-page: 105501
  year: 2016
  ident: bib18
  article-title: Efficient ab initio modeling of random multicomponent alloys
  publication-title: Phys. Rev. Lett.
– volume: 533
  start-page: 73
  year: 2016
  end-page: 76
  ident: bib31
  article-title: Machine-learning-assisted materials discovery using failed experiments
  publication-title: Nature
– volume: 141
  start-page: 54
  year: 2017
  end-page: 57
  ident: bib24
  article-title: Crystallization kinetics in AlxCrCoFeNi (0≤ x≤40) high-entropy alloys
  publication-title: Scripta Mater.
– volume: vol. 27
  start-page: 1
  year: 2011
  end-page: 18
  ident: bib9
  publication-title: The Development of High-Entropy Alloys
– volume: 3
  start-page: 2
  year: 2017
  end-page: 10
  ident: bib55
  article-title: Atomic and electronic basis for the serrations of refractory high-entropy alloys
  publication-title: NPJ Comput. Mater.
– volume: 64
  start-page: 839
  year: 2012
  end-page: 845
  ident: bib17
  article-title: Computational thermodynamics aided high-entropy alloy design
  publication-title: JOM (J. Occup. Med.)
– start-page: 22
  year: 2005
  end-page: 98
  ident: bib40
  article-title: Simple Solid Solution in AlxCoyCrzCu0.5FevNiw High-Entropy Alloys
– volume: 122
  start-page: 448
  year: 2017
  end-page: 511
  ident: bib15
  article-title: A critical review of high entropy alloys and related concepts
  publication-title: Acta Mater.
– volume: 2
  start-page: 107
  year: 2014
  end-page: 123
  ident: bib38
  article-title: High-entropy alloys: a critical review
  publication-title: Mater. Res. Lett.
– volume: 6
  start-page: 6529
  year: 2015
  ident: bib23
  article-title: Accelerated exploration of multiprincipal element alloys with solid solution phases
  publication-title: Nat. Commun.
– volume: 30
  start-page: 1702884
  year: 2018
  ident: bib37
  article-title: Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learning
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1
  year: 2017
  end-page: 13
  ident: bib27
  article-title: Machine learning in materials informatics: recent applications and prospects
  publication-title: NPJ Comput. Mater.
– volume: 424
  start-page: 1
  year: 2018
  end-page: 9
  ident: bib21
  article-title: Phase prediction, microstructure and highhardness of novel light-weight high entropy alloys
  publication-title: J. Mater. Res. Technol.
– volume: 8
  start-page: 3434
  year: 2017
  end-page: 3439
  ident: bib29
  article-title: Machine learning approach for the prediction and understanding of glass forming ability
  publication-title: J. Phys. Chem. Lett.
– volume: 7
  start-page: 11241
  year: 2016
  ident: bib35
  article-title: Accelerated search for materials with targeted properties by adaptive design
  publication-title: Nat. Commun.
– volume: 534
  start-page: 83
  year: 2012
  end-page: 89
  ident: bib41
  article-title: Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys
  publication-title: Mater. Sci. Eng., A
– volume: 31
  start-page: 1223
  year: 2015
  end-page: 1230
  ident: bib50
  article-title: Phase selection rules for cast high entropy alloys: an overview
  publication-title: Mater. Sci. Technol.
– volume: 159
  start-page: 364
  year: 2018
  end-page: 383
  ident: bib20
  article-title: The search for high entropy alloys: a high-throughput ab-initio approach
  publication-title: Acta Mater.
– volume: 13
  start-page: 455
  year: 1998
  end-page: 492
  ident: bib49
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Glob. Optim.
– volume: 25
  start-page: 124
  year: 2012
  end-page: 130
  ident: bib47
  article-title: Effect of Co element on microstructure and mechanical properties of FeCoxNiCuAl alloys
  publication-title: Acta. Metall. Sin. (Engl. Lett.)
– volume: 101
  start-page: 56
  year: 2018
  end-page: 63
  ident: bib22
  article-title: An approach for screening single phase high-entropy alloys using an inhouse thermodynamic database
  publication-title: Intermetallics
– volume: 19
  start-page: 349
  year: 2016
  ident: 10.1016/j.actamat.2019.03.010_bib14
  article-title: High-entropy alloy: challenges and prospects
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2015.11.026
– volume: 557
  start-page: 77
  year: 2013
  ident: 10.1016/j.actamat.2019.03.010_bib48
  article-title: Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2013.01.007
– volume: 34
  start-page: 349
  year: 2018
  ident: 10.1016/j.actamat.2019.03.010_bib52
  article-title: Effect of lattice distortion on solid solution strengthening of BCC high-entropy alloys
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2017.07.013
– volume: 504S
  start-page: S515
  year: 2010
  ident: 10.1016/j.actamat.2019.03.010_bib44
  article-title: Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2010.03.111
– volume: 146
  start-page: 5
  year: 2017
  ident: 10.1016/j.actamat.2019.03.010_bib19
  article-title: Equilibrium high entropy alloy phase stability from experiments and thermodynamic modeling
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2017.10.027
– volume: 83
  start-page: 9
  year: 2017
  ident: 10.1016/j.actamat.2019.03.010_bib25
  article-title: Predicting single phase CrMoWX high entropy alloys from empirical relations in combination with first-principles calculations
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2016.12.007
– volume: 3
  start-page: 2
  year: 2017
  ident: 10.1016/j.actamat.2019.03.010_bib55
  article-title: Atomic and electronic basis for the serrations of refractory high-entropy alloys
  publication-title: NPJ Comput. Mater.
  doi: 10.1038/s41524-017-0024-0
– volume: 159
  start-page: 364
  year: 2018
  ident: 10.1016/j.actamat.2019.03.010_bib20
  article-title: The search for high entropy alloys: a high-throughput ab-initio approach
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.07.042
– volume: 115
  start-page: 486
  year: 2017
  ident: 10.1016/j.actamat.2019.03.010_bib32
  article-title: Designing high entropy alloys employing thermodynamics and Gaussian process statistical analysis
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.11.049
– volume: 127
  start-page: 60
  year: 2017
  ident: 10.1016/j.actamat.2019.03.010_bib1
  article-title: Mechanical properties of zirconium-based random alloys: alloying elements and composition dependencies
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2016.10.028
– volume: 21
  start-page: 121
  year: 2017
  ident: 10.1016/j.actamat.2019.03.010_bib34
  article-title: Statistical inference and adaptive design for materials discovery
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/j.cossms.2016.10.002
– volume: 122
  start-page: 448
  year: 2017
  ident: 10.1016/j.actamat.2019.03.010_bib15
  article-title: A critical review of high entropy alloys and related concepts
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.08.081
– start-page: 177
  year: 2010
  ident: 10.1016/j.actamat.2019.03.010_bib54
– volume: 116
  start-page: 105501
  year: 2016
  ident: 10.1016/j.actamat.2019.03.010_bib18
  article-title: Efficient ab initio modeling of random multicomponent alloys
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.105501
– volume: 261
  start-page: 513
  year: 2006
  ident: 10.1016/j.actamat.2019.03.010_bib42
  article-title: Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content
  publication-title: Wear
  doi: 10.1016/j.wear.2005.12.008
– start-page: 22
  year: 2005
  ident: 10.1016/j.actamat.2019.03.010_bib40
– volume: 533
  start-page: 73
  year: 2016
  ident: 10.1016/j.actamat.2019.03.010_bib31
  article-title: Machine-learning-assisted materials discovery using failed experiments
  publication-title: Nature
  doi: 10.1038/nature17439
– volume: 488
  start-page: 57
  year: 2009
  ident: 10.1016/j.actamat.2019.03.010_bib46
  article-title: Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi(0≤x≤2) high-entropy alloys
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2009.08.090
– volume: 743
  start-page: 203
  year: 2018
  ident: 10.1016/j.actamat.2019.03.010_bib5
  article-title: Microstructural and compositional design of Ni-based single crystalline superalloys-A review
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2018.01.224
– volume: 92
  start-page: 203
  year: 2015
  ident: 10.1016/j.actamat.2019.03.010_bib13
  article-title: Tribological behavior of AlCoCrCuFeNi and AlCoCrFeNiTi0.5 high entropy alloys under hydrogen peroxide solution against different counterparts
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2015.06.013
– volume: 89
  start-page: 1
  year: 2014
  ident: 10.1016/j.actamat.2019.03.010_bib28
  article-title: Combinatorial screening for new materials in unconstrained composition space with machine learning
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.094104
– volume: 3
  start-page: 1
  year: 2017
  ident: 10.1016/j.actamat.2019.03.010_bib27
  article-title: Machine learning in materials informatics: recent applications and prospects
  publication-title: NPJ Comput. Mater.
  doi: 10.1038/s41524-017-0056-5
– volume: 4
  start-page: 1
  year: 1992
  ident: 10.1016/j.actamat.2019.03.010_bib56
  article-title: Neural networks and the bias/variance dilemma
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.1.1
– volume: 141
  start-page: 54
  year: 2017
  ident: 10.1016/j.actamat.2019.03.010_bib24
  article-title: Crystallization kinetics in AlxCrCoFeNi (0≤ x≤40) high-entropy alloys
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2017.07.024
– volume: 8
  start-page: 3434
  year: 2017
  ident: 10.1016/j.actamat.2019.03.010_bib29
  article-title: Machine learning approach for the prediction and understanding of glass forming ability
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b01046
– volume: 424
  start-page: 1
  year: 2018
  ident: 10.1016/j.actamat.2019.03.010_bib21
  article-title: Phase prediction, microstructure and highhardness of novel light-weight high entropy alloys
  publication-title: J. Mater. Res. Technol.
– volume: 118
  start-page: 164
  year: 2016
  ident: 10.1016/j.actamat.2019.03.010_bib53
  article-title: Theory of strengthening in fcc high entropy alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.07.040
– volume: 85
  start-page: 14
  year: 2015
  ident: 10.1016/j.actamat.2019.03.010_bib51
  article-title: Modelling solid solution hardening in high entropy alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.11.014
– volume: 7
  start-page: 11241
  year: 2016
  ident: 10.1016/j.actamat.2019.03.010_bib35
  article-title: Accelerated search for materials with targeted properties by adaptive design
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11241
– volume: 6
  start-page: 6529
  year: 2015
  ident: 10.1016/j.actamat.2019.03.010_bib23
  article-title: Accelerated exploration of multiprincipal element alloys with solid solution phases
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7529
– volume: 55
  start-page: 1006
  year: 2014
  ident: 10.1016/j.actamat.2019.03.010_bib6
  article-title: Effects of composition and heat treatment on the mechanical behavior of Ti-Cu alloys
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2013.10.050
– volume: 31
  start-page: 1223
  year: 2015
  ident: 10.1016/j.actamat.2019.03.010_bib50
  article-title: Phase selection rules for cast high entropy alloys: an overview
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/1743284715Y.0000000018
– volume: 375
  start-page: 213
  year: 2004
  ident: 10.1016/j.actamat.2019.03.010_bib8
  article-title: Microstructural development in equiatomic multi-component alloys
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2003.10.257
– volume: 114
  start-page: 108001
  year: 2015
  ident: 10.1016/j.actamat.2019.03.010_bib30
  article-title: Identifying structural flow defects in disordered solids using machine-learning methods
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.108001
– volume: 13
  start-page: 455
  year: 1998
  ident: 10.1016/j.actamat.2019.03.010_bib49
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008306431147
– volume: 79
  start-page: 1
  year: 2016
  ident: 10.1016/j.actamat.2019.03.010_bib43
  article-title: Compositional dependence of phase formation and mechanical properties in three CoCrFeNi-(Mn/Al/Cu) high entropy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2016.09.003
– volume: 25
  start-page: 124
  year: 2012
  ident: 10.1016/j.actamat.2019.03.010_bib47
  article-title: Effect of Co element on microstructure and mechanical properties of FeCoxNiCuAl alloys
  publication-title: Acta. Metall. Sin. (Engl. Lett.)
– volume: vol. 27
  start-page: 1
  year: 2011
  ident: 10.1016/j.actamat.2019.03.010_bib9
– volume: 532
  start-page: 480
  year: 2012
  ident: 10.1016/j.actamat.2019.03.010_bib45
  article-title: Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2011.10.110
– volume: 61
  start-page: 1
  year: 2007
  ident: 10.1016/j.actamat.2019.03.010_bib39
  article-title: On the elemental effect of AlCoCrCuFeNi high-entropy alloy system
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2006.03.140
– volume: 345
  start-page: 1153
  year: 2014
  ident: 10.1016/j.actamat.2019.03.010_bib10
  article-title: A fracture-resistant high-entropy alloy for cryogenic applications
  publication-title: Science
  doi: 10.1126/science.1254581
– volume: 18
  start-page: 1414
  year: 2015
  ident: 10.1016/j.actamat.2019.03.010_bib2
  article-title: Marzouki, development and applications of highly functional Al-based materials by use of metastable phases
  publication-title: Mater. Res.
  doi: 10.1590/1516-1439.058815
– volume: 2
  start-page: 107
  year: 2014
  ident: 10.1016/j.actamat.2019.03.010_bib38
  article-title: High-entropy alloys: a critical review
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2014.912690
– volume: 64
  start-page: 839
  year: 2012
  ident: 10.1016/j.actamat.2019.03.010_bib17
  article-title: Computational thermodynamics aided high-entropy alloy design
  publication-title: JOM (J. Occup. Med.)
– volume: 125
  start-page: 532
  year: 2017
  ident: 10.1016/j.actamat.2019.03.010_bib36
  article-title: An informatics approach to transformation temperatures of NiTi-based shape memory alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.12.009
– volume: 130
  start-page: 277
  year: 2014
  ident: 10.1016/j.actamat.2019.03.010_bib12
  article-title: A refractory Hf25Nb25Ti25Zr25, high-entropy alloy with excellent structural stability and tensile properties
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2014.05.134
– volume: 100
  start-page: 90
  year: 2015
  ident: 10.1016/j.actamat.2019.03.010_bib16
  article-title: Ab initio, thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.08.050
– volume: 101
  start-page: 56
  year: 2018
  ident: 10.1016/j.actamat.2019.03.010_bib22
  article-title: An approach for screening single phase high-entropy alloys using an inhouse thermodynamic database
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2018.07.009
– volume: 6
  start-page: 1705
  year: 2010
  ident: 10.1016/j.actamat.2019.03.010_bib4
  article-title: Design strategy for biodegradable Fe-based alloys for medical applications
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2009.07.039
– volume: 150
  start-page: 230
  year: 2018
  ident: 10.1016/j.actamat.2019.03.010_bib33
  article-title: Machine learning for phase selection in multi-principal element alloys
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2018.04.003
– volume: 30
  start-page: 1702884
  year: 2018
  ident: 10.1016/j.actamat.2019.03.010_bib37
  article-title: Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learning
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702884
– volume: 52
  start-page: 3481
  year: 2010
  ident: 10.1016/j.actamat.2019.03.010_bib11
  article-title: Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2010.06.025
– volume: 2
  start-page: 1
  year: 2017
  ident: 10.1016/j.actamat.2019.03.010_bib3
  article-title: Effect of aluminum addition on the microstructure, tensile properties, and fractography of cast Mg-based alloys
  publication-title: Ann. Mater. Sci. Eng.
– volume: 140
  start-page: 366
  year: 2017
  ident: 10.1016/j.actamat.2019.03.010_bib26
  article-title: Phase selection rule for Al-doped CrMnFeCoNi high-entropy alloys from first-principles
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.08.045
– volume: 534
  start-page: 83
  year: 2012
  ident: 10.1016/j.actamat.2019.03.010_bib41
  article-title: Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2011.11.044
– volume: 6
  start-page: 299
  year: 2004
  ident: 10.1016/j.actamat.2019.03.010_bib7
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200300567
SSID ssj0012740
Score 2.7145033
Snippet We formulate a materials design strategy combining a machine learning (ML) surrogate model with experimental design algorithms to search for high entropy...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 109
SubjectTerms Active learning
Machine learning
Materials genome initiative
Multi-principal element alloys
Title Machine learning assisted design of high entropy alloys with desired property
URI https://dx.doi.org/10.1016/j.actamat.2019.03.010
https://www.osti.gov/biblio/1637031
Volume 170
WOSCitedRecordID wos000466252400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2453
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012740
  issn: 1359-6454
  databaseCode: AIEXJ
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZKxwM8IH6KMUB-4C0yJHUS248VGgLEJiQGlKfIcezRaUqjkk0dfz13sZN0AjRA4iWqrDi1fV8ud-f7zoQ8k8IllZGKSRdrliZVypTmM1YprPcphCo7evSnd-LwUC4W6v1k0vRcmPNTUddys1HNfxU1tIGwkTr7F-IeHgoN8BuEDlcQO1z_SPAHXXqk7c-DOI7APEZZVlHVZWt05iG45BHGdVfNRYRb7xeB5Ya3YEZ6gzH6dXtpz3duWh2BgdtNYjmqcxv27W34CG6Hob-M4Pscmjo-w2Y5tC_OrFd8378GWloIQiDvKWOehukjYz07ZkxFQmXKM8WwYpj_1vg2KTibpb5A8KCB_dkhQYcmsdr6HCee2vmTpvdBhxNAXath6pik58vVhizZy0W0P-BYcChgr2JFw_ga2ZmJTMkp2Zm_2V-8HXaewEv3zPIw9pH19eKXf_Y7e2a6AhW9Zaoc3Sa3go9B5x4bd8jE1nfJza3Kk_fIQUAJ7VFCe5RQjxK6chRRQgNKqEcJRZTQgBLao-Q--fhq_-jlaxZO1mCGS94yq7UsS8GdK2GirqpkpqUVIneJBX8TN-eN4HmVpuBtVqpUsU6c5qWzyog8c_wBmdar2j4kNMtKW2KYA1rhVc-1rHJppTNlPjMql7sk7denMKHsPJ5-clr0-YUnRVjWApe1iHkBy7pLng_dGl935aoOsl_8IhiP3igsADFXdd1DYWE3LJxsMMMM-oGngoc7PPr3B--RG-PL8phM2_WZfUKum_N2-W39NCDvB-5ZoMs
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+assisted+design+of+high+entropy+alloys+with+desired+property&rft.jtitle=Acta+materialia&rft.au=Wen%2C+Cheng&rft.au=Zhang%2C+Yan&rft.au=Wang%2C+Changxin&rft.au=Xue%2C+Dezhen&rft.date=2019-05-15&rft.pub=Elsevier+Ltd&rft.issn=1359-6454&rft.eissn=1873-2453&rft.volume=170&rft.spage=109&rft.epage=117&rft_id=info:doi/10.1016%2Fj.actamat.2019.03.010&rft.externalDocID=S1359645419301430
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon