A Cartesian Grid Embedded Boundary Method for the Heat Equation on Irregular Domains
We present an algorithm for solving the heat equation on irregular time-dependent domains. It is based on the Cartesian grid embedded boundary algorithm of Johansen and Colella (1998, J. Comput. Phys.147, 60) for discretizing Poisson's equation, combined with a second-order accurate discretizat...
Uložené v:
| Vydané v: | Journal of computational physics Ročník 173; číslo 2; s. 620 - 635 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.11.2001
|
| Predmet: | |
| ISSN: | 0021-9991, 1090-2716 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We present an algorithm for solving the heat equation on irregular time-dependent domains. It is based on the Cartesian grid embedded boundary algorithm of Johansen and Colella (1998, J. Comput. Phys.147, 60) for discretizing Poisson's equation, combined with a second-order accurate discretization of the time derivative. This leads to a method that is second-order accurate in space and time. For the case in which the boundary is moving, we convert the moving-boundary problem to a sequence of fixed-boundary problems, combined with an extrapolation procedure to initialize values that are uncovered as the boundary moves. We find that, in the moving boundary case, the use of Crank–Nicolson time discretization is unstable, requiring us to use the L0-stable implicit Runge–Kutta method of Twizell, Gumel, and Arigu (1996, Adv. Comput. Math.6, 333). |
|---|---|
| Bibliografia: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0021-9991 1090-2716 |
| DOI: | 10.1006/jcph.2001.6900 |