Efficient and Scalable Algorithms for Inferring Likely Invariants in Distributed Systems

Distributed systems generate a large amount of monitoring data such as log files to track their operational status. However, it is hard to correlate such monitoring data effectively across distributed systems and along observation time for system management. In previous work, we proposed a concept n...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on knowledge and data engineering Ročník 19; číslo 11; s. 1508 - 1523
Hlavní autoři: Guofei Jiang, Haifeng Chen, Yoshihira, K.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.11.2007
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1041-4347, 1558-2191
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Distributed systems generate a large amount of monitoring data such as log files to track their operational status. However, it is hard to correlate such monitoring data effectively across distributed systems and along observation time for system management. In previous work, we proposed a concept named flow intensity to measure the intensity with which internal monitoring data reacts to the volume of user requests. We calculated flow intensity measurements from monitoring data and proposed an algorithm to automatically search constant relationships between flow intensities measured at various points across distributed systems. If such relationships hold all the time, we regard them as invariants of the underlying systems. Invariants can be used to characterize complex systems and support various system management tasks. However, the computational complexity of the previous invariant search algorithm is high so that it may not scale well in large systems with thousands of measurements. In this paper, we propose two efficient but approximate algorithms for inferring invariants in large-scale systems. The computational complexity of new randomized algorithms is significantly reduced, and experimental results from a real system are also included to demonstrate the accuracy and efficiency of our new algorithms.
AbstractList Distributed systems generate a large amount of monitoring data such as log files to track their operational status. However, it is hard to correlate such monitoring data effectively across distributed systems and along observation time for system management. In previous work, we proposed a concept named flow intensity to measure the intensity with which internal monitoring data reacts to the volume of user requests. We calculated flow intensity measurements from monitoring data and proposed an algorithm to automatically search constant relationships between flow intensities measured at various points across distributed systems. If such relationships hold all the time, we regard them as invariants of the underlying systems. Invariants can be used to characterize complex systems and support various system management tasks. However, the computational complexity of the previous invariant search algorithm is high so that it may not scale well in large systems with thousands of measurements. In this paper, we propose two efficient but approximate algorithms for inferring invariants in large-scale systems. The computational complexity of new randomized algorithms is significantly reduced, and experimental results from a real system are also included to demonstrate the accuracy and efficiency of our new algorithms.
The computational complexity of new randomized algorithms is significantly reduced, and experimental results from a real system are also included to demonstrate the accuracy and efficiency of our new algorithms.
Author Yoshihira, K.
Haifeng Chen
Guofei Jiang
Author_xml – sequence: 1
  surname: Guofei Jiang
  fullname: Guofei Jiang
  organization: NEC Lab. America Inc., Princeton
– sequence: 2
  surname: Haifeng Chen
  fullname: Haifeng Chen
  organization: NEC Lab. America Inc., Princeton
– sequence: 3
  givenname: K.
  surname: Yoshihira
  fullname: Yoshihira, K.
  organization: NEC Lab. America Inc., Princeton
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19139488$$DView record in Pascal Francis
BookMark eNp9kc1LXDEUxUOxULXuC908CtXVm-br5SVL0fGDDnRRhe7CfZkbG_smzyYZYf57M4y4EHR1L5ffOXDPOSB7cYpIyBdGZ4xR8-Pm5_l8xintZ8xQJfUHss-6TrecGbZXdypZK4XsP5GDnO8ppbrXbJ_8mXsfXMBYGojL5reDEYYRm9Pxbkqh_F3lxk-puY4eUwrxrlmEfzhu6uERUoBYchNicx5ySWFYF6wWm1xwlT-Tjx7GjEfP85DcXsxvzq7axa_L67PTReuEFqV1XCjHvFh6LkznhGFLbjxfMqA9Skm9UnJgvUHRAR1A9WoYOj2AAOSD6kEckpOd70Oa_q8xF7sK2eE4QsRpna3WVJlOGFPJ43dJITstuZEV_PYKvJ_WKdYvrGE1z473okLfnyHINTSfILqQ7UMKK0gbW1MXRmpdObXjXJpyTuitCwVKmGJJEEbLqN32Z7f92W1_dtdfFdJXwhfvtyVfd5KAiC-4FMJwpsQT9bCm6w
CODEN ITKEEH
CitedBy_id crossref_primary_10_1109_TSC_2020_2993251
crossref_primary_10_1145_3046946
crossref_primary_10_1016_j_jss_2013_03_060
crossref_primary_10_1007_s11432_013_4906_6
crossref_primary_10_1109_TSMC_2015_2430834
crossref_primary_10_1007_s10586_010_0120_0
crossref_primary_10_1109_TETC_2015_2497143
crossref_primary_10_1007_s10586_008_0063_x
crossref_primary_10_1109_TSC_2017_2679715
crossref_primary_10_1109_TDSC_2021_3083671
crossref_primary_10_1109_TIM_2021_3139696
crossref_primary_10_1109_TSE_2016_2623623
crossref_primary_10_1145_2094091_2094101
crossref_primary_10_1145_2601436
Cites_doi 10.1145/1029894.1029901
10.1145/233008.233034
10.1201/9780203756126
10.1017/CBO9780511814075
10.1109/ADL.1998.670376
10.1109/32.908957
10.1016/S0967-0661(97)00053-1
10.1109/DSN.2006.70
10.1109/2.901170
10.1145/502512.502584
10.1145/1095809.1095821
10.1145/581376.581377
10.1109/TDSC.2006.52
10.1109/TKDE.2005.103
10.1109/ICAC.2006.1662399
10.1145/846183.846188
10.1007/3-540-44934-5_9
10.1145/352871.352878
ContentType Journal Article
Copyright 2007 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
Copyright_xml – notice: 2007 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TKDE.2007.190648
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1558-2191
EndPage 1523
ExternalDocumentID 2544498811
19139488
10_1109_TKDE_2007_190648
4339216
Genre orig-research
GroupedDBID -~X
.DC
0R~
1OL
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TAF
TN5
UHB
VH1
AAYXX
CITATION
AAYOK
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c383t-c236c1f3df2395c391d29f2d1a07e440f664b179e35a0ba676bb58ba3ae2b67a3
IEDL.DBID RIE
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000249563900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Sat Sep 27 18:58:12 EDT 2025
Thu Oct 02 06:17:45 EDT 2025
Sun Nov 30 04:22:22 EST 2025
Wed Apr 02 07:15:28 EDT 2025
Sat Nov 29 08:09:48 EST 2025
Tue Nov 18 22:35:36 EST 2025
Wed Aug 27 02:52:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Invariant
data management
Decision support system
Complex system
Time series
Distributed system
Randomized algorithm
Computational complexity
Search algorithm
monitoring data
Surveillance
Storage management
Time management
Distributed systems
randomized algorithms
Algorithm complexity
Log file
Monitoring
Large scale system
invariants
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-c236c1f3df2395c391d29f2d1a07e440f664b179e35a0ba676bb58ba3ae2b67a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
PQID 912195273
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_880695399
pascalfrancis_primary_19139488
proquest_journals_912195273
crossref_citationtrail_10_1109_TKDE_2007_190648
proquest_miscellaneous_34584294
ieee_primary_4339216
crossref_primary_10_1109_TKDE_2007_190648
PublicationCentury 2000
PublicationDate 2007-11-01
PublicationDateYYYYMMDD 2007-11-01
PublicationDate_xml – month: 11
  year: 2007
  text: 2007-11-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2007
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
O’Madadhain (ref19) 2003
ref12
ref15
ref14
ref30
ref10
ref2
Patterson (ref21) 2002
ref1
ref17
ref18
Cormen (ref6) 1990
Brogan (ref4) 1990
ref26
Smith (ref24) 2003
ref25
Wolsey (ref27) 1999
ref22
Baeza-Yates (ref3) 1999
Oppenheimer (ref20)
ref28
Hoxmeier (ref11)
ref29
ref8
ref9
ref5
DeGroot (ref7) 2001
Ljung (ref16) 1998
References_xml – ident: ref22
  doi: 10.1145/1029894.1029901
– ident: ref2
  doi: 10.1145/233008.233034
– start-page: 140
  volume-title: Proc. Sixth Americas Conf. Information Systems (AMCIS ’00)
  ident: ref11
  article-title: System Response Time and User Satisfaction: An Experimental Study of Browser-Based Applications
– volume-title: Math. of the Discrete Fourier Transform (DFT)
  year: 2003
  ident: ref24
– ident: ref9
  doi: 10.1201/9780203756126
– ident: ref18
  doi: 10.1017/CBO9780511814075
– ident: ref29
  doi: 10.1109/ADL.1998.670376
– ident: ref8
  doi: 10.1109/32.908957
– volume-title: Modern Control Theory
  year: 1990
  ident: ref4
– ident: ref12
  doi: 10.1016/S0967-0661(97)00053-1
– start-page: 1
  volume-title: Proc. Fourth Usenix Symp. Internet Technologies and Systems (USITS ’03)
  ident: ref20
  article-title: Why Do Internet Services Fail, and What Can Be Done about It
– ident: ref30
  doi: 10.1109/DSN.2006.70
– ident: ref1
  doi: 10.1109/2.901170
– volume-title: Introduction to Algorithms
  year: 1990
  ident: ref6
– volume-title: Technical Report UCI-ICS 03-17, UC Irvine, Dept. of Information and Computer Science
  year: 2003
  ident: ref19
  article-title: The Jung (Java Universal Network/Graph) Framework
– ident: ref28
  doi: 10.1145/502512.502584
– volume-title: Modern Information Retrieval
  year: 1999
  ident: ref3
– ident: ref5
  doi: 10.1145/1095809.1095821
– ident: ref10
  doi: 10.1145/581376.581377
– ident: ref14
  doi: 10.1109/TDSC.2006.52
– volume-title: System Identification—Theory for The User
  year: 1998
  ident: ref16
– ident: ref15
  doi: 10.1109/TKDE.2005.103
– volume-title: Technical Report UCB//CSD-02-1175
  year: 2002
  ident: ref21
  article-title: Recovery-Oriented Computing (ROC): Motivation, Definition, Techniques, and Case Studies
– volume-title: Probability and Statistics
  year: 2001
  ident: ref7
– ident: ref13
  doi: 10.1109/ICAC.2006.1662399
– ident: ref26
  doi: 10.1145/846183.846188
– ident: ref25
  doi: 10.1007/3-540-44934-5_9
– ident: ref17
  doi: 10.1145/352871.352878
– volume-title: Integer and Combinatorial Optimization
  year: 1999
  ident: ref27
SSID ssj0008781
Score 2.084546
Snippet Distributed systems generate a large amount of monitoring data such as log files to track their operational status. However, it is hard to correlate such...
The computational complexity of new randomized algorithms is significantly reduced, and experimental results from a real system are also included to...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1508
SubjectTerms Algorithms
Algorithms for data and knowledge management
Analysis of Algorithms and Problem Complexity
Applied sciences
Approximation
Complexity
Computation
Computational complexity
Computer networks
Computer science; control theory; systems
Computerized monitoring
Costs
Data mining
Data processing. List processing. Character string processing
Distributed Systems
Exact sciences and technology
Fault detection
Fluid flow measurement
Hardware
Information systems. Data bases
Invariants
Large-scale systems
Management information systems
Memory organisation. Data processing
Monitoring
Software
Studies
System Management
Systems management
Time series analysis
Volume measurement
Title Efficient and Scalable Algorithms for Inferring Likely Invariants in Distributed Systems
URI https://ieeexplore.ieee.org/document/4339216
https://www.proquest.com/docview/912195273
https://www.proquest.com/docview/34584294
https://www.proquest.com/docview/880695399
Volume 19
WOSCitedRecordID wos000249563900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwEB21FQc4UNqCCC2tD1yQCHXixI6PVbsVCFRxKNLeorFjw4oliza7lfh7PE42FEErcYuSsRV5PGOPx_MewKus4YWruE21QJ4WMvcp0kZOWiOxKhuFzkeyCXV1VU2n-tMWvBlrYZxz8fKZe0uPMZffLOyajsqIC07nmdyGbaVkX6s1et1KRULSEF2EmEgUapOS5Pr0-sPFpAcrDKufJKafW0tQ5FShG5HYhUHxPZvFX445rjaXu__3n0_g8bCrZGf9NNiDLdfuw-6GsYENBrwPj27BDx7AdBLxI0JfDNsmSOGcCqnY2fzLYjlbff3esbClZe-pJpBasI-zb27-M7y4CRE2XaBhs5ZdEPQusWa50EWPf_4UPl9Ors_fpQPTQmpDhLpKbS6kzbxofC50aYXOmlz7vMmQK1cU3EtZmGC6TpTIDUoljSkrgwJdbqRC8Qx22kXrngMrlfLWeN24UheGVyi9dcIogWHjVnJM4HQz-LUdYMiJDWNex3CE65rUReyYqu7VlcDrscWPHoLjHtkDUscoN2gigeM_9Pu7H0JFDT4sgcONwuvBiLtaZ8GdE0BdAifj12B9lFLB1i3WXS0ozZzrIgF2h0Twj1IT_O-Lf__aITyMx8WxvPEIdlbLtXsJD-zNatYtj-Mc_wX58Pq5
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED6NMQl42NgGIgw2P-wFiTAnTuz4cdo6bVqpeChS3yLbsUdFSVHTTuLf43PSMMQ2ibcoOVuRz3f2-XzfB3CcVDSzBTWxZIrGGU9drHAjx43mqsgroawLZBNiNComE_llAz72tTDW2nD5zH7Cx5DLr-ZmhUdlyAUn04Q_gafInNVVa_V-txCBktTHFz4qYplYJyWpPBlfnw9auEK__nHk-rmzCAVWFbwTqRo_LK7ls_jHNYf15mLn__70JWx3-0py2k6EXdiw9R7srDkbSGfCe_DiDgDhPkwGAUHC90VUXXkpNcNSKnI6u5kvpstvPxriN7XkCqsCsQUZTr_b2S__4tbH2HiFhkxrco7gu8ibZX0XLQL6K_h6MRifXcYd10JsfIy6jE3KuEkcq1zKZG6YTKpUurRKFBU2y6jjPNPeeC3LFdWKC651XmjFlE01F4q9hs16Xts3QHIhnNFOVjaXmaaF4s5YpgVTfuuWUxXByXrwS9MBkSMfxqwMAQmVJaoL-TFF2aorgg99i58tCMcjsvuojl6u00QEh3_p908_iIvqvVgEB2uFl50ZN6VMvENHiLoIjvqv3v4wqaJqO181JcNEcyqzCMgDEt5DcokAwG_v_7UjeHY5_jwsh1ej6wN4Hg6PQ7HjO9hcLlb2PWyZ2-W0WRyG-f4bKNP-Ag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+and+Scalable+Algorithms+for+Inferring+Likely+Invariants+in+Distributed+Systems&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Jiang%2C+Guofei&rft.au=Chen%2C+Haifeng&rft.au=Yoshihira%2C+K&rft.date=2007-11-01&rft.issn=1041-4347&rft.volume=19&rft.issue=11&rft.spage=1508&rft.epage=1523&rft_id=info:doi/10.1109%2FTKDE.2007.190648&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon