Oxygen-regulated expression of the RNA-binding proteins RBM3 and CIRP by a HIF-1-independent mechanism

The transcriptional regulation of several dozen genes in response to low oxygen tension is mediated by hypoxia-inducible factor 1 (HIF-1), a heterodimeric protein composed of two subunits, HIF-1alpha and HIF-1beta. In the HIF-1alpha-deficient human leukemic cell line, Z-33, exposed to mild (8% O(2))...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of cell science Ročník 117; číslo Pt 9; s. 1785
Hlavní autoři: Wellmann, Sven, Bührer, Christoph, Moderegger, Eva, Zelmer, Andrea, Kirschner, Renate, Koehne, Petra, Fujita, Jun, Seeger, Karl
Médium: Journal Article
Jazyk:angličtina
Vydáno: England 01.04.2004
Témata:
ISSN:0021-9533
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The transcriptional regulation of several dozen genes in response to low oxygen tension is mediated by hypoxia-inducible factor 1 (HIF-1), a heterodimeric protein composed of two subunits, HIF-1alpha and HIF-1beta. In the HIF-1alpha-deficient human leukemic cell line, Z-33, exposed to mild (8% O(2)) or severe (1% O(2)) hypoxia, we found significant upregulation of two related heterogenous nuclear ribonucleoproteins, RNA-binding motif protein 3 (RBM3) and cold inducible RNA-binding protein (CIRP), which are highly conserved cold stress proteins with RNA-binding properties. Hypoxia also induced upregulation of RBM3 and CIRP in the murine HIF-1beta-deficient cell line, Hepa-1 c4. In various HIF-1 competent cells, RBM3 and CIRP were induced by moderate hypothermia (32 degrees C) but hypothermia was ineffective in increasing HIF-1alpha or vascular endothelial growth factor (VEGF), a known HIF-1 target. In contrast, iron chelators induced VEGF but not RBM3 or CIRP. The RBM3 and CIRP mRNA increase after hypoxia was inhibited by actinomycin-D, and in vitro nuclear run-on assays demonstrated specific increases in RBM3 and CIRP mRNA after hypoxia, which suggests that regulation takes place at the level of gene transcription. Hypoxia-induced RBM3 or CIRP transcription was inhibited by the respiratory chain inhibitors NaN(3) and cyanide in a dose-dependent fashion. However, cells depleted of mitochondria were still able to upregulate RBM3 and CIRP in response to hypoxia. Thus, RBM3 and CIRP are adaptatively expressed in response to hypoxia by a mechanism that involves neither HIF-1 nor mitochondria.
AbstractList The transcriptional regulation of several dozen genes in response to low oxygen tension is mediated by hypoxia-inducible factor 1 (HIF-1), a heterodimeric protein composed of two subunits, HIF-1alpha and HIF-1beta. In the HIF-1alpha-deficient human leukemic cell line, Z-33, exposed to mild (8% O(2)) or severe (1% O(2)) hypoxia, we found significant upregulation of two related heterogenous nuclear ribonucleoproteins, RNA-binding motif protein 3 (RBM3) and cold inducible RNA-binding protein (CIRP), which are highly conserved cold stress proteins with RNA-binding properties. Hypoxia also induced upregulation of RBM3 and CIRP in the murine HIF-1beta-deficient cell line, Hepa-1 c4. In various HIF-1 competent cells, RBM3 and CIRP were induced by moderate hypothermia (32 degrees C) but hypothermia was ineffective in increasing HIF-1alpha or vascular endothelial growth factor (VEGF), a known HIF-1 target. In contrast, iron chelators induced VEGF but not RBM3 or CIRP. The RBM3 and CIRP mRNA increase after hypoxia was inhibited by actinomycin-D, and in vitro nuclear run-on assays demonstrated specific increases in RBM3 and CIRP mRNA after hypoxia, which suggests that regulation takes place at the level of gene transcription. Hypoxia-induced RBM3 or CIRP transcription was inhibited by the respiratory chain inhibitors NaN(3) and cyanide in a dose-dependent fashion. However, cells depleted of mitochondria were still able to upregulate RBM3 and CIRP in response to hypoxia. Thus, RBM3 and CIRP are adaptatively expressed in response to hypoxia by a mechanism that involves neither HIF-1 nor mitochondria.The transcriptional regulation of several dozen genes in response to low oxygen tension is mediated by hypoxia-inducible factor 1 (HIF-1), a heterodimeric protein composed of two subunits, HIF-1alpha and HIF-1beta. In the HIF-1alpha-deficient human leukemic cell line, Z-33, exposed to mild (8% O(2)) or severe (1% O(2)) hypoxia, we found significant upregulation of two related heterogenous nuclear ribonucleoproteins, RNA-binding motif protein 3 (RBM3) and cold inducible RNA-binding protein (CIRP), which are highly conserved cold stress proteins with RNA-binding properties. Hypoxia also induced upregulation of RBM3 and CIRP in the murine HIF-1beta-deficient cell line, Hepa-1 c4. In various HIF-1 competent cells, RBM3 and CIRP were induced by moderate hypothermia (32 degrees C) but hypothermia was ineffective in increasing HIF-1alpha or vascular endothelial growth factor (VEGF), a known HIF-1 target. In contrast, iron chelators induced VEGF but not RBM3 or CIRP. The RBM3 and CIRP mRNA increase after hypoxia was inhibited by actinomycin-D, and in vitro nuclear run-on assays demonstrated specific increases in RBM3 and CIRP mRNA after hypoxia, which suggests that regulation takes place at the level of gene transcription. Hypoxia-induced RBM3 or CIRP transcription was inhibited by the respiratory chain inhibitors NaN(3) and cyanide in a dose-dependent fashion. However, cells depleted of mitochondria were still able to upregulate RBM3 and CIRP in response to hypoxia. Thus, RBM3 and CIRP are adaptatively expressed in response to hypoxia by a mechanism that involves neither HIF-1 nor mitochondria.
The transcriptional regulation of several dozen genes in response to low oxygen tension is mediated by hypoxia-inducible factor 1 (HIF-1), a heterodimeric protein composed of two subunits, HIF-1alpha and HIF-1beta. In the HIF-1alpha-deficient human leukemic cell line, Z-33, exposed to mild (8% O(2)) or severe (1% O(2)) hypoxia, we found significant upregulation of two related heterogenous nuclear ribonucleoproteins, RNA-binding motif protein 3 (RBM3) and cold inducible RNA-binding protein (CIRP), which are highly conserved cold stress proteins with RNA-binding properties. Hypoxia also induced upregulation of RBM3 and CIRP in the murine HIF-1beta-deficient cell line, Hepa-1 c4. In various HIF-1 competent cells, RBM3 and CIRP were induced by moderate hypothermia (32 degrees C) but hypothermia was ineffective in increasing HIF-1alpha or vascular endothelial growth factor (VEGF), a known HIF-1 target. In contrast, iron chelators induced VEGF but not RBM3 or CIRP. The RBM3 and CIRP mRNA increase after hypoxia was inhibited by actinomycin-D, and in vitro nuclear run-on assays demonstrated specific increases in RBM3 and CIRP mRNA after hypoxia, which suggests that regulation takes place at the level of gene transcription. Hypoxia-induced RBM3 or CIRP transcription was inhibited by the respiratory chain inhibitors NaN(3) and cyanide in a dose-dependent fashion. However, cells depleted of mitochondria were still able to upregulate RBM3 and CIRP in response to hypoxia. Thus, RBM3 and CIRP are adaptatively expressed in response to hypoxia by a mechanism that involves neither HIF-1 nor mitochondria.
Author Koehne, Petra
Bührer, Christoph
Moderegger, Eva
Zelmer, Andrea
Kirschner, Renate
Fujita, Jun
Seeger, Karl
Wellmann, Sven
Author_xml – sequence: 1
  givenname: Sven
  surname: Wellmann
  fullname: Wellmann, Sven
  organization: Department of Pediatric Oncology/Hematology, Charité Campus Virchow-Klinikum, Medical University of Berlin, 13353 Berlin, Germany
– sequence: 2
  givenname: Christoph
  surname: Bührer
  fullname: Bührer, Christoph
– sequence: 3
  givenname: Eva
  surname: Moderegger
  fullname: Moderegger, Eva
– sequence: 4
  givenname: Andrea
  surname: Zelmer
  fullname: Zelmer, Andrea
– sequence: 5
  givenname: Renate
  surname: Kirschner
  fullname: Kirschner, Renate
– sequence: 6
  givenname: Petra
  surname: Koehne
  fullname: Koehne, Petra
– sequence: 7
  givenname: Jun
  surname: Fujita
  fullname: Fujita, Jun
– sequence: 8
  givenname: Karl
  surname: Seeger
  fullname: Seeger, Karl
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15075239$$D View this record in MEDLINE/PubMed
BookMark eNo1kD1PwzAYhD0U0Q8Y-APIE5uL_TpxkrFUlFYqFFUwR3byuk2VOCFOpPbfE4my3C2PTnc3JSNXOyTkQfC5gACeT5mfc8FBjciEcxAsCaUck6n3J855BEl0S8Yi5FEIMpkQuztfDuhYi4e-1B3mFM9Ni94XtaO1pd0R6f5jwUzh8sIdaNPWHRbO0_3Lu6Ta5XS52X9Sc6GarjcrJtgAYoODuI5WmB21K3x1R26sLj3eX31GvlevX8s12-7eNsvFlmUylh0LRKxspLJA2NyCyYZBOjGhRZSA0sgsNiDiwFgZAVc2BOSYqzCX3KrIBBxm5Okvd-j506Pv0qrwGZaldlj3Po1EDEoqGMDHK9ibCvO0aYtKt5f0_xn4BdseY3A
CitedBy_id crossref_primary_10_1042_BST20160364
crossref_primary_10_1074_jbc_M109_013128
crossref_primary_10_1371_journal_pone_0056658
crossref_primary_10_4252_wjsc_v12_i12_1553
crossref_primary_10_1016_j_jpedsurg_2018_12_020
crossref_primary_10_1371_journal_pone_0161458
crossref_primary_10_1002_mc_20582
crossref_primary_10_1055_s_0041_1730450
crossref_primary_10_1371_journal_pbio_0050034
crossref_primary_10_1007_s00441_009_0805_y
crossref_primary_10_1186_1746_6148_9_103
crossref_primary_10_1111_cas_12611
crossref_primary_10_1111_jcmm_16567
crossref_primary_10_1186_s12885_021_09168_7
crossref_primary_10_1002_cne_24716
crossref_primary_10_1097_SHK_0000000000001257
crossref_primary_10_3389_fimmu_2019_02536
crossref_primary_10_3389_fphar_2021_791648
crossref_primary_10_1111_1756_185X_12892
crossref_primary_10_1186_s12957_015_0730_3
crossref_primary_10_1016_j_surg_2017_06_004
crossref_primary_10_1186_s12864_015_1389_4
crossref_primary_10_1002_mc_22404
crossref_primary_10_1097_MIB_0000000000000987
crossref_primary_10_1038_srep02054
crossref_primary_10_1093_nar_gkx1317
crossref_primary_10_1038_srep41363
crossref_primary_10_1016_j_biochi_2023_04_003
crossref_primary_10_1002_pro_4123
crossref_primary_10_1016_j_cub_2017_01_047
crossref_primary_10_1667_RADE_20_00063_1
crossref_primary_10_1016_j_jss_2020_12_041
crossref_primary_10_1016_j_jtcvs_2018_08_100
crossref_primary_10_1002_jso_26375
crossref_primary_10_1016_j_cbpa_2008_07_027
crossref_primary_10_1016_j_freeradbiomed_2025_05_412
crossref_primary_10_1186_1472_6750_12_72
crossref_primary_10_1593_tlo_11106
crossref_primary_10_3389_fphar_2023_1112318
crossref_primary_10_1016_j_abb_2016_05_009
crossref_primary_10_3892_ijmm_2016_2451
crossref_primary_10_5021_ad_2019_31_4_387
crossref_primary_10_1002_bit_20789
crossref_primary_10_1007_s11033_011_1197_0
crossref_primary_10_1038_aja_2012_71
crossref_primary_10_3390_ijms26083524
crossref_primary_10_3390_ijms222312678
crossref_primary_10_1371_journal_pone_0079430
crossref_primary_10_3389_fcell_2019_00288
crossref_primary_10_1016_j_alcohol_2022_09_001
crossref_primary_10_1007_s00018_016_2253_7
crossref_primary_10_1038_s41598_018_25668_2
crossref_primary_10_1261_rna_1179109
crossref_primary_10_1371_journal_pone_0028446
crossref_primary_10_1093_nar_gkaa1254
crossref_primary_10_1016_j_ejca_2013_12_003
crossref_primary_10_1007_s10815_019_01559_x
crossref_primary_10_15252_embj_2022113168
crossref_primary_10_1016_j_surg_2016_01_007
crossref_primary_10_1111_j_1471_4159_2007_04521_x
crossref_primary_10_1016_j_brainres_2010_05_029
crossref_primary_10_1203_PDR_0b013e3181c13326
crossref_primary_10_1186_s13104_025_07265_5
crossref_primary_10_1016_j_surg_2016_04_014
crossref_primary_10_1096_fj_15_274639
crossref_primary_10_1002_jcb_20988
crossref_primary_10_1165_rcmb_2022_0340OC
crossref_primary_10_1097_SHK_0000000000001624
crossref_primary_10_1007_s12031_014_0282_y
crossref_primary_10_1016_j_bbamcr_2009_09_003
crossref_primary_10_3390_biomedicines9040395
crossref_primary_10_3389_fphys_2022_975652
crossref_primary_10_1016_j_bbagen_2014_02_027
crossref_primary_10_1016_j_brainres_2013_01_041
crossref_primary_10_1038_modpathol_2009_124
crossref_primary_10_1007_s12033_013_9649_5
crossref_primary_10_1186_s10020_019_0092_3
crossref_primary_10_1016_j_jtherbio_2021_102983
crossref_primary_10_1089_ther_2018_0038
crossref_primary_10_1177_1559325820970846
crossref_primary_10_1016_j_neurobiolaging_2006_11_008
crossref_primary_10_1371_journal_pone_0180337
crossref_primary_10_1016_j_bbrc_2016_07_028
crossref_primary_10_1371_journal_pone_0207936
crossref_primary_10_1038_s41598_017_02473_x
crossref_primary_10_1186_1479_5876_8_78
crossref_primary_10_1038_srep26571
crossref_primary_10_3389_fcvm_2024_1247472
crossref_primary_10_3390_biomedicines13061337
crossref_primary_10_3390_cells12050817
crossref_primary_10_3389_fphar_2025_1555115
crossref_primary_10_1038_s41390_022_01990_4
crossref_primary_10_1371_journal_pone_0057426
crossref_primary_10_1002_prca_201100020
crossref_primary_10_1155_2021_8906561
crossref_primary_10_1016_j_transproceed_2018_08_010
crossref_primary_10_1097_SHK_0000000000002309
crossref_primary_10_1371_journal_pone_0182512
crossref_primary_10_1007_s00432_019_02850_1
crossref_primary_10_1016_j_bbrc_2008_05_150
crossref_primary_10_1016_j_neuint_2019_03_006
crossref_primary_10_3389_fimmu_2022_945603
crossref_primary_10_1111_his_12726
crossref_primary_10_1016_j_yexcr_2007_09_017
crossref_primary_10_1038_s41598_017_07585_y
crossref_primary_10_1128_MCB_01386_08
crossref_primary_10_1007_s00011_023_01705_3
crossref_primary_10_1016_j_molcel_2024_03_012
crossref_primary_10_1007_s12035_016_9813_6
crossref_primary_10_1016_j_ebiom_2019_06_030
crossref_primary_10_1016_j_exer_2017_07_001
crossref_primary_10_1016_j_tibs_2007_06_005
crossref_primary_10_1016_j_tice_2016_10_004
crossref_primary_10_3390_diagnostics15111426
crossref_primary_10_1038_s41598_017_13139_z
crossref_primary_10_1016_j_scitotenv_2021_151228
crossref_primary_10_1016_j_jpedsurg_2013_02_065
crossref_primary_10_1007_s10616_007_9047_6
crossref_primary_10_1038_s41419_018_1109_5
crossref_primary_10_1097_TA_0000000000001566
crossref_primary_10_1016_j_freeradbiomed_2004_12_020
crossref_primary_10_3389_fphys_2017_00575
crossref_primary_10_1016_j_bej_2011_10_003
crossref_primary_10_1007_s11802_015_2622_0
crossref_primary_10_1080_00450618_2014_906653
crossref_primary_10_1093_icvts_ivx262
crossref_primary_10_1186_s40348_014_0007_x
crossref_primary_10_1016_j_biocel_2016_07_029
crossref_primary_10_1016_j_neuroscience_2005_08_047
crossref_primary_10_1158_0008_5472_CAN_14_0471
crossref_primary_10_1007_s40279_017_0717_z
crossref_primary_10_1038_s41598_017_07294_6
crossref_primary_10_1111_jcmm_17062
crossref_primary_10_1007_s12192_022_01297_7
crossref_primary_10_1161_CIRCRESAHA_116_306287
crossref_primary_10_1111_php_12981
crossref_primary_10_1016_j_bbrc_2015_07_066
crossref_primary_10_1016_j_bbrc_2020_11_105
crossref_primary_10_1002_ijc_30833
crossref_primary_10_1089_ars_2009_3044
crossref_primary_10_1016_j_reprotox_2006_05_007
crossref_primary_10_1016_j_brainres_2008_12_050
crossref_primary_10_1016_j_cstres_2024_07_001
crossref_primary_10_2147_PGPM_S293399
crossref_primary_10_3892_ijmm_2025_5483
crossref_primary_10_1016_j_febslet_2012_07_004
crossref_primary_10_1007_s12035_016_9761_1
crossref_primary_10_1038_srep43000
crossref_primary_10_1371_journal_pone_0226005
crossref_primary_10_1097_MIB_0000000000000968
crossref_primary_10_1093_hmg_ddi229
crossref_primary_10_1016_j_bmc_2017_10_039
crossref_primary_10_1016_j_brainres_2014_11_061
crossref_primary_10_3389_fmolb_2021_685993
crossref_primary_10_1515_cclm_2019_0626
crossref_primary_10_1186_s12885_018_5032_z
crossref_primary_10_1002_JLB_3MIR1118_443R
crossref_primary_10_1080_2162402X_2017_1409321
crossref_primary_10_1038_nm_3368
crossref_primary_10_1186_s10020_023_00655_0
crossref_primary_10_1016_j_nbd_2011_04_010
crossref_primary_10_1007_s12032_014_0120_7
crossref_primary_10_1002_pmic_200600693
crossref_primary_10_1016_j_jtcvs_2019_06_115
crossref_primary_10_1371_journal_pone_0017617
crossref_primary_10_1002_cjp2_238
crossref_primary_10_1002_cbin_10438
crossref_primary_10_1016_j_omtn_2018_11_017
crossref_primary_10_1089_ars_2021_0008
crossref_primary_10_1111_febs_16301
crossref_primary_10_1161_CIRCEP_122_011466
crossref_primary_10_1016_j_arr_2023_101870
crossref_primary_10_1016_j_exer_2024_110190
crossref_primary_10_1016_j_theriogenology_2022_03_010
crossref_primary_10_1242_jeb_019950
crossref_primary_10_1002_jcb_26757
crossref_primary_10_1002_pmic_200800922
crossref_primary_10_1126_scitranslmed_aat8406
crossref_primary_10_1016_j_chest_2021_06_067
crossref_primary_10_1016_j_intimp_2016_07_007
crossref_primary_10_1073_pnas_0409764102
crossref_primary_10_1073_pnas_1121524109
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1242/jcs.01026
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
ExternalDocumentID 15075239
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
18M
2WC
34G
39C
3O-
4.4
4R4
53G
5GY
5RE
5VS
85S
ABDNZ
ABEFU
ABPPZ
ABTAH
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADCOW
ADVGF
AEILP
AENEX
AFFNX
AFRAH
AGGIJ
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
F5P
F9R
GX1
H13
HZ~
IH2
INIJC
KQ8
NPM
O9-
OK1
P2P
R.V
RCB
RHF
RHI
RNS
SJN
TN5
TR2
UPT
W2D
W8F
WH7
WOQ
X7M
YQT
ZXP
ZY4
~02
~KM
7X8
ID FETCH-LOGICAL-c383t-4186f76c41fdf2bc242a9b5fee32e3b3c8b2184bf37206f52e0ed65d30f67b402
IEDL.DBID 7X8
ISICitedReferencesCount 221
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000221227600019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9533
IngestDate Thu Oct 02 10:12:27 EDT 2025
Wed Feb 19 01:37:38 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Pt 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-4186f76c41fdf2bc242a9b5fee32e3b3c8b2184bf37206f52e0ed65d30f67b402
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 15075239
PQID 71826362
PQPubID 23479
ParticipantIDs proquest_miscellaneous_71826362
pubmed_primary_15075239
PublicationCentury 2000
PublicationDate 2004-04-01
PublicationDateYYYYMMDD 2004-04-01
PublicationDate_xml – month: 04
  year: 2004
  text: 2004-04-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of cell science
PublicationTitleAlternate J Cell Sci
PublicationYear 2004
SSID ssj0007297
Score 2.2568843
Snippet The transcriptional regulation of several dozen genes in response to low oxygen tension is mediated by hypoxia-inducible factor 1 (HIF-1), a heterodimeric...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1785
SubjectTerms Animals
Antioxidants - pharmacology
Aryl Hydrocarbon Receptor Nuclear Translocator
Burkitt Lymphoma - genetics
Burkitt Lymphoma - metabolism
Carcinoma, Hepatocellular - genetics
Cell Hypoxia - drug effects
Cell Hypoxia - genetics
Cell Hypoxia - physiology
Cell Line, Tumor
Cyanides - pharmacology
Dactinomycin - pharmacology
DNA-Binding Proteins - deficiency
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Gene Expression Profiling
Gene Expression Regulation - drug effects
Humans
Hypothermia - genetics
Hypoxia-Inducible Factor 1, alpha Subunit
Mice
Mitochondria - drug effects
Mitochondria - metabolism
Oxidation-Reduction - drug effects
Oxygen - pharmacology
Receptors, Aryl Hydrocarbon - deficiency
Receptors, Aryl Hydrocarbon - genetics
Receptors, Aryl Hydrocarbon - metabolism
RNA, Messenger - genetics
RNA, Messenger - metabolism
RNA-Binding Proteins - genetics
Sodium Azide - pharmacology
Transcription Factors - deficiency
Transcription Factors - genetics
Transcription Factors - metabolism
Transcriptional Activation - drug effects
Title Oxygen-regulated expression of the RNA-binding proteins RBM3 and CIRP by a HIF-1-independent mechanism
URI https://www.ncbi.nlm.nih.gov/pubmed/15075239
https://www.proquest.com/docview/71826362
Volume 117
WOSCitedRecordID wos000221227600019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6qVfDi-1Gfe_C62nQ3LxCkFkt7aCxFobewT6jQpDZV2n_vbB72JB685BYSZmdnvm9ndj6EboOAOU3pGOJzHhIG8I0ELDCEG6Zb4C--8lQuNuFHUTAeh8Maeqjuwti2yiom5oFapdKekd_7FghDtH2cfRCrGWVrq6WAxgaqUwAytqHLH69nhcN3S8FWxxYpaTlXCHLS_bvM7uwwNe93XJnnl-7e__5sH-2WuBK3C0c4QDWdHKLtQmlydYTMy3IFrkLmhfS8VlgvyxbYBKcGAwzEo6htebJNZjgf3zBJMjx6GlDME4U7_dEQixXmuNfvAiOc_OjnLvBU2_vDk2x6jN66z6-dHiklFogEarogzAk843uSOUaZlpBgHB4K12hNW5oKKgNhOaAwVszGM25LN7XyXEWbxvMFcM8TtJmkiT5DWHFHNw2jwjiaGQk4SHEaMuWxUElXuA10U5kvBhe2dQme6PQziysDNtBpsQLxrJi0EVu0Ckw5PP_z3Qu0s-6puUR1A5tXX6Et-bWYZPPr3DPgGQ0H32F9wyY
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxygen-regulated+expression+of+the+RNA-binding+proteins+RBM3+and+CIRP+by+a+HIF-1-independent+mechanism&rft.jtitle=Journal+of+cell+science&rft.au=Wellmann%2C+Sven&rft.au=B%C3%BChrer%2C+Christoph&rft.au=Moderegger%2C+Eva&rft.au=Zelmer%2C+Andrea&rft.date=2004-04-01&rft.issn=0021-9533&rft.volume=117&rft.issue=Pt+9&rft.spage=1785&rft_id=info:doi/10.1242%2Fjcs.01026&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9533&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9533&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9533&client=summon