Gut Permeability and Microbiota in Parkinson’s Disease: Mechanistic Insights and Experimental Therapeutic Strategies
Globally, Parkinson’s disease (PD) is the neurodegenerative condition with the most rapidly increasing prevalence, and a growing body of evidence associates its pathology with impairments in the gut–brain axis. Traditionally viewed as a disease marked by the loss of dopaminergic neurons, emerging ev...
Uloženo v:
| Vydáno v: | International journal of molecular sciences Ročník 26; číslo 19; s. 9593 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
01.10.2025
|
| Témata: | |
| ISSN: | 1422-0067, 1661-6596, 1422-0067 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Globally, Parkinson’s disease (PD) is the neurodegenerative condition with the most rapidly increasing prevalence, and a growing body of evidence associates its pathology with impairments in the gut–brain axis. Traditionally viewed as a disease marked by the loss of dopaminergic neurons, emerging evidence emphasizes that chronic neuroinflammation is a driver of neurodegeneration, with gut-originating inflammation playing a crucial role. Increased intestinal permeability, often called “leaky gut,” allows harmful substances, toxins, and misfolded α-synuclein into the systemic circulation, potentially exacerbating neuroinflammation and spreading α-synuclein pathology to the brain through the vagus nerve or compromised blood–brain barrier (BBB). This review synthesizes current insights into the relationship between gut health and PD, emphasizing the importance of gut permeability in disrupting intestinal barrier function. This paper highlights innovative therapeutic approaches, particularly personalized therapies involving gut microbiome engineering, as promising strategies for restoring gut integrity and improving neurological outcomes. Modulating specific gut bacteria to enhance the synthesis of certain metabolites, notably short-chain fatty acids (SCFAs), represents a promising strategy for reducing inflammatory responses and decelerating neurodegeneration in Parkinson’s disease. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ISSN: | 1422-0067 1661-6596 1422-0067 |
| DOI: | 10.3390/ijms26199593 |