A multi-period source–sink mixed integer linear programming model for biochar-based carbon sequestration systems

Biochar-based systems are a potentially effective means of large-scale carbon sequestration. Such systems rely on carbonization of biomass into biochar, which can then be added to soil for the dual purpose of sequestering carbon and improving fertility. When properly deployed, these systems can pote...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sustainable production and consumption Ročník 8; s. 57 - 63
Hlavný autor: Tan, Raymond R.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.10.2016
Predmet:
ISSN:2352-5509, 2352-5509
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Biochar-based systems are a potentially effective means of large-scale carbon sequestration. Such systems rely on carbonization of biomass into biochar, which can then be added to soil for the dual purpose of sequestering carbon and improving fertility. When properly deployed, these systems can potentially achieve negative emissions through the net transfer of carbon from the atmosphere into the ground. In this work, an optimization model is developed to determine the allocation of biochar streams of different quality levels to various biochar sinks, which are farms whose tolerance to impurities present in biochar are known a priori. The optimization model determines source–sink allocation of biochar so as to minimize total system carbon footprint, while ensuring that soil quality parameters for each sink are not exceeded. An illustrative case study is solved to demonstrate the use of the model. •A mixed integer linear programming (MILP) model is proposed for biochar systems.•The MILP model is based on a multi-period source–sink formulation.•A case study is presented as proof of concept.
AbstractList Biochar-based systems are a potentially effective means of large-scale carbon sequestration. Such systems rely on carbonization of biomass into biochar, which can then be added to soil for the dual purpose of sequestering carbon and improving fertility. When properly deployed, these systems can potentially achieve negative emissions through the net transfer of carbon from the atmosphere into the ground. In this work, an optimization model is developed to determine the allocation of biochar streams of different quality levels to various biochar sinks, which are farms whose tolerance to impurities present in biochar are known a priori. The optimization model determines source–sink allocation of biochar so as to minimize total system carbon footprint, while ensuring that soil quality parameters for each sink are not exceeded. An illustrative case study is solved to demonstrate the use of the model.
Biochar-based systems are a potentially effective means of large-scale carbon sequestration. Such systems rely on carbonization of biomass into biochar, which can then be added to soil for the dual purpose of sequestering carbon and improving fertility. When properly deployed, these systems can potentially achieve negative emissions through the net transfer of carbon from the atmosphere into the ground. In this work, an optimization model is developed to determine the allocation of biochar streams of different quality levels to various biochar sinks, which are farms whose tolerance to impurities present in biochar are known a priori. The optimization model determines source–sink allocation of biochar so as to minimize total system carbon footprint, while ensuring that soil quality parameters for each sink are not exceeded. An illustrative case study is solved to demonstrate the use of the model. •A mixed integer linear programming (MILP) model is proposed for biochar systems.•The MILP model is based on a multi-period source–sink formulation.•A case study is presented as proof of concept.
Author Tan, Raymond R.
Author_xml – sequence: 1
  givenname: Raymond R.
  surname: Tan
  fullname: Tan, Raymond R.
  email: Raymond.Tan@dlsu.edu.ph
  organization: Chemical Engineering Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
BookMark eNp9kE1u1EAQhVsoSISQA7DrJRub6rZ7bItVFEFAisQG1q3-KQ812N1DtQeRHXfghpwEzwwLxCKreiW9r_TqPRcXKScU4qWCWoHavN7VZR9qvcoa-hpAPRGXujG6MgaGi3_0M3Fdyg4AtOnbFvpLwTdyPkwLVXtkylGWfOCAv3_-KpS-ypl-YJSUFtwiy4kSOpZ7zlt280xpK-cccZJjZukphy-OK-_KigTHPidZ8NsBy8JuoeP2UBacywvxdHRTweu_80p8fvf20-376v7j3Yfbm_sqNH2zVCpsxgjNYIzeDGAQTROHaNrQgtHeKwd-bJ1Xvum8i3oYxthtfO86PQ7d6FVzJV6d766BTzHsTCXgNLmE-VCs1k1ntOrhaO3O1sC5FMbRBlpOodfsNFkF9li03dm1aHss2kJv4USq_8g90-z44VHmzZnB9fvvhGxLIEwBIzGGxcZMj9B_AGCwm8M
CitedBy_id crossref_primary_10_3390_en16041708
crossref_primary_10_1007_s10098_021_02119_7
crossref_primary_10_1016_j_cherd_2024_10_023
crossref_primary_10_1016_j_psep_2022_10_044
crossref_primary_10_1016_j_compchemeng_2017_01_047
crossref_primary_10_1007_s41660_023_00390_3
crossref_primary_10_1016_j_ijggc_2025_104395
crossref_primary_10_1016_j_jclepro_2020_125494
crossref_primary_10_1016_j_spc_2019_03_008
crossref_primary_10_1007_s41660_018_0033_6
crossref_primary_10_1016_j_jclepro_2018_08_041
crossref_primary_10_1016_j_jclepro_2019_01_002
crossref_primary_10_1016_j_rser_2020_110035
crossref_primary_10_1016_j_rser_2019_01_032
crossref_primary_10_1371_journal_pstr_0000059
crossref_primary_10_1016_j_jclepro_2018_04_023
crossref_primary_10_1007_s10098_023_02675_0
crossref_primary_10_1007_s10098_020_01990_0
crossref_primary_10_1007_s10098_021_02053_8
crossref_primary_10_1016_j_coche_2017_08_005
crossref_primary_10_1016_j_apcatb_2023_123223
Cites_doi 10.1016/j.energy.2013.01.045
10.1021/es902266r
10.1016/j.ces.2011.05.049
10.1002/ep.11630
10.1007/s10098-016-1218-8
10.1016/j.psep.2012.10.004
10.1016/j.envint.2015.10.018
10.1016/j.spc.2016.02.001
10.1111/gcbb.12032
10.1016/j.cherd.2013.08.019
10.1038/ncomms1053
10.1007/s10098-014-0721-z
10.1016/j.spc.2015.06.005
10.1016/j.psep.2015.11.007
10.1016/j.cherd.2009.07.012
10.1016/j.psep.2012.10.005
10.1007/s10098-016-1113-3
10.1016/j.spc.2015.06.003
ContentType Journal Article
Copyright 2016 Institution of Chemical Engineers
Copyright_xml – notice: 2016 Institution of Chemical Engineers
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.spc.2016.08.001
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 2352-5509
EndPage 63
ExternalDocumentID 10_1016_j_spc_2016_08_001
S2352550916300173
GroupedDBID --M
0R~
457
AACTN
AAEDT
AAEDW
AAIAV
AAKOC
AALRI
AAOAW
AAXUO
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
AEBSH
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AHEUO
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
ALXNB
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLECG
EBS
EFJIC
EFLBG
EJD
FDB
FYGXN
KOM
KQ8
O9-
ROL
SPC
SPCBC
SSG
SSJ
SST
SSZ
T5K
~G-
AAHBH
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c383t-1c6fd0395526905ee53d9d54c4052bb1a0bf4ab1b37bad299fd76b8a72f97fb13
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000449015800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2352-5509
IngestDate Sat Sep 27 16:38:43 EDT 2025
Tue Nov 18 22:02:20 EST 2025
Thu Nov 13 04:30:43 EST 2025
Fri Feb 23 02:30:30 EST 2024
IsPeerReviewed false
IsScholarly true
Keywords Negative emissions technology
Mixed integer linear programming
Biochar
Carbon sequestration
Optimization
Source–sink model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c383t-1c6fd0395526905ee53d9d54c4052bb1a0bf4ab1b37bad299fd76b8a72f97fb13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2237521801
PQPubID 24069
PageCount 7
ParticipantIDs proquest_miscellaneous_2237521801
crossref_citationtrail_10_1016_j_spc_2016_08_001
crossref_primary_10_1016_j_spc_2016_08_001
elsevier_sciencedirect_doi_10_1016_j_spc_2016_08_001
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Sustainable production and consumption
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Field, Keske, Birch, Defoort, Francesca Cotrufo (br000015) 2013; 5
(accessed 22.03.16)).
McGlashan, Shah, Caldecott, Workman (br000060) 2012; 90
Ubando, Culaba, Aviso, Ng, Tan (br000090) 2014; 16
Amin, Huang, He, Zhang, Liu, Chen (br000010) 2016; 18
Roberts, Gloy, Joseph, Scott, Lehmann (br000075) 2010; 44
Poplewski, Walczyk, Jezowski (br000070) 2010; 88
International Biochar Initiative
Ahi, Searcy, Jaber (br000005) 2016; 7
Guerena, Neufeldt, Berazneva, Duby (br000030) 2015; 3
Vochozka, Marouskova, Vachal, Strakova (br000095) 2016; 18
Woolf, Amonette, Street-Perrott, Lehmann, Joseph (br000100) 2010
McLaren (br000065) 2012; 90
Kuppusamy, Thavamani, Megharaj, Venkateswarlu, Naidu (br000045) 2016; 87
Foo, Tan (br000020) 2016
Stephanopoulos, Reklaitis (br000080) 2011; 66
Tan, Aviso, Bandyopadhyay, Ng (br000085) 2013; 32
Klemeš, Varbanov, Kravanja (br000040) 2013; 91
Martin, Grossmann (br000055) 2015; 2
Foo, Tan, Lam, Abdul Aziz, Klemeš (br000025) 2013; 55
Lehmann, Amonette, Roberts (br000050) 2011
Ahi (10.1016/j.spc.2016.08.001_br000005) 2016; 7
10.1016/j.spc.2016.08.001_br000035
Klemeš (10.1016/j.spc.2016.08.001_br000040) 2013; 91
Field (10.1016/j.spc.2016.08.001_br000015) 2013; 5
Martin (10.1016/j.spc.2016.08.001_br000055) 2015; 2
Roberts (10.1016/j.spc.2016.08.001_br000075) 2010; 44
Foo (10.1016/j.spc.2016.08.001_br000020) 2016
Ubando (10.1016/j.spc.2016.08.001_br000090) 2014; 16
Vochozka (10.1016/j.spc.2016.08.001_br000095) 2016; 18
Stephanopoulos (10.1016/j.spc.2016.08.001_br000080) 2011; 66
Guerena (10.1016/j.spc.2016.08.001_br000030) 2015; 3
Lehmann (10.1016/j.spc.2016.08.001_br000050) 2011
Kuppusamy (10.1016/j.spc.2016.08.001_br000045) 2016; 87
Poplewski (10.1016/j.spc.2016.08.001_br000070) 2010; 88
Amin (10.1016/j.spc.2016.08.001_br000010) 2016; 18
Foo (10.1016/j.spc.2016.08.001_br000025) 2013; 55
Woolf (10.1016/j.spc.2016.08.001_br000100) 2010
Tan (10.1016/j.spc.2016.08.001_br000085) 2013; 32
McGlashan (10.1016/j.spc.2016.08.001_br000060) 2012; 90
McLaren (10.1016/j.spc.2016.08.001_br000065) 2012; 90
References_xml – reference:  (accessed 22.03.16)).
– volume: 66
  start-page: 4272
  year: 2011
  end-page: 4306
  ident: br000080
  article-title: Process systems engineering: From Solvay to modern bio- and nanotechnology. A history of development, successes and prospects for the future
  publication-title: Chem. Eng. Sci.
– year: 2011
  ident: br000050
  article-title: Role of biochar in mitigation of climate change
  publication-title: Handbook of Climate Change and Agroecosystems–Impacts, Adaptation and Mitigation
– year: 2010
  ident: br000100
  article-title: Sustainable biochar to mitigate climate change
  publication-title: Nature Commun.
– volume: 88
  start-page: 109
  year: 2010
  end-page: 120
  ident: br000070
  article-title: Optimization-based method for calculating water networks with user specified characteristics
  publication-title: Chem. Eng. Res. Des.
– volume: 87
  start-page: 1
  year: 2016
  end-page: 12
  ident: br000045
  article-title: Agronomic and remedial benefits and risks of applying biochar to soil: Current knwoeldge and future research directions
  publication-title: Environ. Int.
– volume: 5
  start-page: 177
  year: 2013
  end-page: 191
  ident: br000015
  article-title: Distributed biochar and bioenergy coproduction: A regionally specific case study of environmental benefits and economic impacts
  publication-title: GCB Bioenergy
– volume: 2
  start-page: 96
  year: 2015
  end-page: 108
  ident: br000055
  article-title: Water–energy nexus in biofuels production and renewable based power
  publication-title: Sustainable Prod. Consumpt.
– volume: 3
  start-page: 59
  year: 2015
  end-page: 69
  ident: br000030
  article-title: Water hyacinth control in Lake Victoria: Transforming an ecological catastrophe into economic, social, and environmental benefits
  publication-title: Sustainable Prod. Consumpt.
– volume: 32
  start-page: 411
  year: 2013
  end-page: 416
  ident: br000085
  article-title: Optimal source–sink matching in carbon capture and storage systems with time, injection rate, and capacity constraints
  publication-title: Environ. Prog. Sustainable Energy
– volume: 7
  start-page: 1
  year: 2016
  end-page: 15
  ident: br000005
  article-title: Energy-related performance measures employed in sustainable supply chains: A bibliometric analysis
  publication-title: Sustainable Prod. Consumpt.
– volume: 18
  start-page: 1457
  year: 2016
  end-page: 1473
  ident: br000010
  article-title: Biochar applications and modern techniques for characterization
  publication-title: Clean Technol. Environ. Policy
– year: 2016
  ident: br000020
  article-title: A review on process integration techniques for carbon emissions and environmental footprint problems
  publication-title: Process Saf. Environ. Prot.
– volume: 16
  start-page: 1537
  year: 2014
  end-page: 1549
  ident: br000090
  article-title: Fuzzy mixed-integer linear programming model for optimizing a multi-functional bioenergy system with biochar production for negative carbon emissions
  publication-title: Clean Technol. Environ. Policy
– reference: International Biochar Initiative (
– volume: 90
  start-page: 489
  year: 2012
  end-page: 500
  ident: br000065
  article-title: A comparative global assessment of potential negative emissions technologies
  publication-title: Process Saf. Environ. Prot.
– volume: 55
  start-page: 68
  year: 2013
  end-page: 73
  ident: br000025
  article-title: Robust models for the synthesis of flexible palm oil-based regional bioenergy supply chain
  publication-title: Energy
– volume: 18
  start-page: 1225
  year: 2016
  end-page: 1231
  ident: br000095
  article-title: Biochar pricing hampers biochar farming
  publication-title: Clean Technol. Environ. Policy
– volume: 90
  start-page: 501
  year: 2012
  end-page: 510
  ident: br000060
  article-title: High-level techno-economic assessment of negative emissions technologies
  publication-title: Process Saf. Environ. Prot.
– volume: 44
  start-page: 827
  year: 2010
  end-page: 833
  ident: br000075
  article-title: Life cycle assessment of biochar systems: Estimating the energetic, economic, and climate change potential
  publication-title: Environ. Sci. Technol.
– volume: 91
  start-page: 2037
  year: 2013
  end-page: 2053
  ident: br000040
  article-title: Recent developments in process integration
  publication-title: Chem. Eng. Res. Des.
– ident: 10.1016/j.spc.2016.08.001_br000035
– volume: 55
  start-page: 68
  year: 2013
  ident: 10.1016/j.spc.2016.08.001_br000025
  article-title: Robust models for the synthesis of flexible palm oil-based regional bioenergy supply chain
  publication-title: Energy
  doi: 10.1016/j.energy.2013.01.045
– volume: 44
  start-page: 827
  year: 2010
  ident: 10.1016/j.spc.2016.08.001_br000075
  article-title: Life cycle assessment of biochar systems: Estimating the energetic, economic, and climate change potential
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es902266r
– volume: 66
  start-page: 4272
  year: 2011
  ident: 10.1016/j.spc.2016.08.001_br000080
  article-title: Process systems engineering: From Solvay to modern bio- and nanotechnology. A history of development, successes and prospects for the future
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2011.05.049
– volume: 32
  start-page: 411
  year: 2013
  ident: 10.1016/j.spc.2016.08.001_br000085
  article-title: Optimal source–sink matching in carbon capture and storage systems with time, injection rate, and capacity constraints
  publication-title: Environ. Prog. Sustainable Energy
  doi: 10.1002/ep.11630
– year: 2011
  ident: 10.1016/j.spc.2016.08.001_br000050
  article-title: Role of biochar in mitigation of climate change
– volume: 18
  start-page: 1457
  year: 2016
  ident: 10.1016/j.spc.2016.08.001_br000010
  article-title: Biochar applications and modern techniques for characterization
  publication-title: Clean Technol. Environ. Policy
  doi: 10.1007/s10098-016-1218-8
– volume: 90
  start-page: 501
  year: 2012
  ident: 10.1016/j.spc.2016.08.001_br000060
  article-title: High-level techno-economic assessment of negative emissions technologies
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2012.10.004
– volume: 87
  start-page: 1
  year: 2016
  ident: 10.1016/j.spc.2016.08.001_br000045
  article-title: Agronomic and remedial benefits and risks of applying biochar to soil: Current knwoeldge and future research directions
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2015.10.018
– volume: 7
  start-page: 1
  year: 2016
  ident: 10.1016/j.spc.2016.08.001_br000005
  article-title: Energy-related performance measures employed in sustainable supply chains: A bibliometric analysis
  publication-title: Sustainable Prod. Consumpt.
  doi: 10.1016/j.spc.2016.02.001
– volume: 5
  start-page: 177
  year: 2013
  ident: 10.1016/j.spc.2016.08.001_br000015
  article-title: Distributed biochar and bioenergy coproduction: A regionally specific case study of environmental benefits and economic impacts
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12032
– volume: 91
  start-page: 2037
  year: 2013
  ident: 10.1016/j.spc.2016.08.001_br000040
  article-title: Recent developments in process integration
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2013.08.019
– year: 2010
  ident: 10.1016/j.spc.2016.08.001_br000100
  article-title: Sustainable biochar to mitigate climate change
  publication-title: Nature Commun.
  doi: 10.1038/ncomms1053
– volume: 16
  start-page: 1537
  year: 2014
  ident: 10.1016/j.spc.2016.08.001_br000090
  article-title: Fuzzy mixed-integer linear programming model for optimizing a multi-functional bioenergy system with biochar production for negative carbon emissions
  publication-title: Clean Technol. Environ. Policy
  doi: 10.1007/s10098-014-0721-z
– volume: 2
  start-page: 96
  year: 2015
  ident: 10.1016/j.spc.2016.08.001_br000055
  article-title: Water–energy nexus in biofuels production and renewable based power
  publication-title: Sustainable Prod. Consumpt.
  doi: 10.1016/j.spc.2015.06.005
– year: 2016
  ident: 10.1016/j.spc.2016.08.001_br000020
  article-title: A review on process integration techniques for carbon emissions and environmental footprint problems
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2015.11.007
– volume: 88
  start-page: 109
  year: 2010
  ident: 10.1016/j.spc.2016.08.001_br000070
  article-title: Optimization-based method for calculating water networks with user specified characteristics
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2009.07.012
– volume: 90
  start-page: 489
  year: 2012
  ident: 10.1016/j.spc.2016.08.001_br000065
  article-title: A comparative global assessment of potential negative emissions technologies
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2012.10.005
– volume: 18
  start-page: 1225
  year: 2016
  ident: 10.1016/j.spc.2016.08.001_br000095
  article-title: Biochar pricing hampers biochar farming
  publication-title: Clean Technol. Environ. Policy
  doi: 10.1007/s10098-016-1113-3
– volume: 3
  start-page: 59
  year: 2015
  ident: 10.1016/j.spc.2016.08.001_br000030
  article-title: Water hyacinth control in Lake Victoria: Transforming an ecological catastrophe into economic, social, and environmental benefits
  publication-title: Sustainable Prod. Consumpt.
  doi: 10.1016/j.spc.2015.06.003
SSID ssj0002584408
Score 2.1877794
Snippet Biochar-based systems are a potentially effective means of large-scale carbon sequestration. Such systems rely on carbonization of biomass into biochar, which...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 57
SubjectTerms Biochar
biomass
carbon
carbon footprint
Carbon sequestration
carbonization
case studies
emissions
farms
linear programming
Mixed integer linear programming
Negative emissions technology
Optimization
soil
soil quality
Source–sink model
Title A multi-period source–sink mixed integer linear programming model for biochar-based carbon sequestration systems
URI https://dx.doi.org/10.1016/j.spc.2016.08.001
https://www.proquest.com/docview/2237521801
Volume 8
WOSCitedRecordID wos000449015800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 2352-5509
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002584408
  issn: 2352-5509
  databaseCode: AIEXJ
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxELWilAMXxFdFC0VG4kRltF9e7x6jKggQqhAEKbeV7fVKqZpNlE2rcOM_8A_7SzqztrebQCt64LKKNrGzyTyPn-2ZN4S8DSIZRjCNMJmrnCWGCxhSXLHUwPAQ0CTUrYjrF3F6mk2n-dfBYONzYS7PRV1nm02-_K-mhntgbEydvYe5u07hBrwGo8MVzA7XfzL8yAYJMpQwXuCmOO7O-5iGuIG15_F8tjGlVYowq2Mkmih4bSO15rh30NbHsZGcswUmZjGc7UrUsVYAlzb-2gvuOjHopk9zv_fSspZWU9aHPes253PZP_-fuLMo-XOO2TTf3ve3IsK0C2pzHisCNsdgyWN9oPnLPedys57LtPrUbvK1zu4Pt253GM6gBapOhmmruuq-eUtCe2dq6wIOfSzbWQFdFNhFgdU3MfFvLxI8z4Zkb_RpPP3c7c9FwMwSW9DQ_wJ_KN6GB-48ym20ZmeCb1nL5DF55JYbdGRh8oQMTP2U7I9vshvhTefem2dkNaJ97FCLnatfvxE1tEUNdaihFjW0hxraooYCaugWaqhFDd1CDXWoeU5-fBhPTj4yV5SD6TiL1yzUaVUGcc6xNH3AjeFxmZc80cD8I6VCGagqkSpUsVCyBLJTlSJVmRRRlYtKhfE-GdaL2rwgVOkqUEaoLBIySThXXFXQa6WhqYnT9IAE_j8ttFOsx8Ip58Wt5jwg77omSyvXcteHE2-owvFNyyMLwN1dzd54oxbgi_GATdZmcdEUQLUF0GEgfYf3eY6X5OHNaHpFhuvVhTkiD_TletasXjtgXgOG1bIi
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-period+source%E2%80%93sink+mixed+integer+linear+programming+model+for+biochar-based+carbon+sequestration+systems&rft.jtitle=Sustainable+production+and+consumption&rft.au=Tan%2C+Raymond+R.&rft.date=2016-10-01&rft.issn=2352-5509&rft.eissn=2352-5509&rft.volume=8&rft.spage=57&rft.epage=63&rft_id=info:doi/10.1016%2Fj.spc.2016.08.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_spc_2016_08_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-5509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-5509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-5509&client=summon