Forecasting Strength of CFRP Confined Concrete Using Multi Expression Programming
This study provides the application of a machine learning-based algorithm approach names “Multi Expression Programming” (MEP) to forecast the compressive strength of carbon fiber-reinforced polymer (CFRP) confined concrete. The suggested computational Multiphysics model is based on previously report...
Saved in:
| Published in: | Materials Vol. 14; no. 23; p. 7134 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
24.11.2021
MDPI |
| Subjects: | |
| ISSN: | 1996-1944, 1996-1944 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This study provides the application of a machine learning-based algorithm approach names “Multi Expression Programming” (MEP) to forecast the compressive strength of carbon fiber-reinforced polymer (CFRP) confined concrete. The suggested computational Multiphysics model is based on previously reported experimental results. However, critical parameters comprise both the geometrical and mechanical properties, including the height and diameter of the specimen, the modulus of elasticity of CFRP, unconfined strength of concrete, and CFRP overall layer thickness. A detailed statistical analysis is done to evaluate the model performance. Then the validation of the soft computational model is made by drawing a comparison with experimental results and other external validation criteria. Moreover, the results and predictions of the presented soft computing model are verified by incorporating a parametric analysis, and the reliability of the model is compared with available models in the literature by an experimental versus theoretical comparison. Based on the findings, the valuation and performance of the proposed model is assessed with other strength models provided in the literature using the collated database. Thus the proposed model outperformed other existing models in term of accuracy and predictability. Both parametric and statistical analysis demonstrate that the proposed model is well trained to efficiently forecast strength of CFRP wrapped structural members. The presented study will promote its utilization in rehabilitation and retrofitting and contribute towards sustainable construction material. |
|---|---|
| AbstractList | This study provides the application of a machine learning-based algorithm approach names “Multi Expression Programming” (MEP) to forecast the compressive strength of carbon fiber-reinforced polymer (CFRP) confined concrete. The suggested computational Multiphysics model is based on previously reported experimental results. However, critical parameters comprise both the geometrical and mechanical properties, including the height and diameter of the specimen, the modulus of elasticity of CFRP, unconfined strength of concrete, and CFRP overall layer thickness. A detailed statistical analysis is done to evaluate the model performance. Then the validation of the soft computational model is made by drawing a comparison with experimental results and other external validation criteria. Moreover, the results and predictions of the presented soft computing model are verified by incorporating a parametric analysis, and the reliability of the model is compared with available models in the literature by an experimental versus theoretical comparison. Based on the findings, the valuation and performance of the proposed model is assessed with other strength models provided in the literature using the collated database. Thus the proposed model outperformed other existing models in term of accuracy and predictability. Both parametric and statistical analysis demonstrate that the proposed model is well trained to efficiently forecast strength of CFRP wrapped structural members. The presented study will promote its utilization in rehabilitation and retrofitting and contribute towards sustainable construction material. This study provides the application of a machine learning-based algorithm approach names "Multi Expression Programming" (MEP) to forecast the compressive strength of carbon fiber-reinforced polymer (CFRP) confined concrete. The suggested computational Multiphysics model is based on previously reported experimental results. However, critical parameters comprise both the geometrical and mechanical properties, including the height and diameter of the specimen, the modulus of elasticity of CFRP, unconfined strength of concrete, and CFRP overall layer thickness. A detailed statistical analysis is done to evaluate the model performance. Then the validation of the soft computational model is made by drawing a comparison with experimental results and other external validation criteria. Moreover, the results and predictions of the presented soft computing model are verified by incorporating a parametric analysis, and the reliability of the model is compared with available models in the literature by an experimental versus theoretical comparison. Based on the findings, the valuation and performance of the proposed model is assessed with other strength models provided in the literature using the collated database. Thus the proposed model outperformed other existing models in term of accuracy and predictability. Both parametric and statistical analysis demonstrate that the proposed model is well trained to efficiently forecast strength of CFRP wrapped structural members. The presented study will promote its utilization in rehabilitation and retrofitting and contribute towards sustainable construction material.This study provides the application of a machine learning-based algorithm approach names "Multi Expression Programming" (MEP) to forecast the compressive strength of carbon fiber-reinforced polymer (CFRP) confined concrete. The suggested computational Multiphysics model is based on previously reported experimental results. However, critical parameters comprise both the geometrical and mechanical properties, including the height and diameter of the specimen, the modulus of elasticity of CFRP, unconfined strength of concrete, and CFRP overall layer thickness. A detailed statistical analysis is done to evaluate the model performance. Then the validation of the soft computational model is made by drawing a comparison with experimental results and other external validation criteria. Moreover, the results and predictions of the presented soft computing model are verified by incorporating a parametric analysis, and the reliability of the model is compared with available models in the literature by an experimental versus theoretical comparison. Based on the findings, the valuation and performance of the proposed model is assessed with other strength models provided in the literature using the collated database. Thus the proposed model outperformed other existing models in term of accuracy and predictability. Both parametric and statistical analysis demonstrate that the proposed model is well trained to efficiently forecast strength of CFRP wrapped structural members. The presented study will promote its utilization in rehabilitation and retrofitting and contribute towards sustainable construction material. |
| Author | Zafar, Adeel Vatin, Nikolai Farooq, Furqan Aslam, Fahid Ilyas, Israr Javed, Muhammad Musarat, Muhammad |
| AuthorAffiliation | 5 Department of Civil and Environmental Engineering, Bandar Seri Iskandar 32610, Perak, Malaysia; muhammad_19000316@utp.edu.my 1 Department of Structural Engineering, Military College of Engineering (MCE), National University of Science and Technology (NUST), Islamabad 44000, Pakistan; israr.awaan@gmail.com (I.I.); adeel.zafar@mce.nust.edu.pk (A.Z.) 4 Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; f.aslam@psau.edu.sa 2 Department of Civil Engineering, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan 3 Faculty of Civil Engineering, Cracow University of Technology, 24 Warszawska Str., 31-155 Cracow, Poland; furqan@cuiatd.edu.pk 6 Peter the Great St. Petersburg Polytechnic University, 195291 St. Petersburg, Russia; vatin@mail.ru |
| AuthorAffiliation_xml | – name: 1 Department of Structural Engineering, Military College of Engineering (MCE), National University of Science and Technology (NUST), Islamabad 44000, Pakistan; israr.awaan@gmail.com (I.I.); adeel.zafar@mce.nust.edu.pk (A.Z.) – name: 3 Faculty of Civil Engineering, Cracow University of Technology, 24 Warszawska Str., 31-155 Cracow, Poland; furqan@cuiatd.edu.pk – name: 6 Peter the Great St. Petersburg Polytechnic University, 195291 St. Petersburg, Russia; vatin@mail.ru – name: 4 Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; f.aslam@psau.edu.sa – name: 2 Department of Civil Engineering, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan – name: 5 Department of Civil and Environmental Engineering, Bandar Seri Iskandar 32610, Perak, Malaysia; muhammad_19000316@utp.edu.my |
| Author_xml | – sequence: 1 givenname: Israr orcidid: 0000-0002-4604-9905 surname: Ilyas fullname: Ilyas, Israr – sequence: 2 givenname: Adeel surname: Zafar fullname: Zafar, Adeel – sequence: 3 givenname: Muhammad orcidid: 0000-0001-5478-9324 surname: Javed fullname: Javed, Muhammad – sequence: 4 givenname: Furqan orcidid: 0000-0002-4671-1655 surname: Farooq fullname: Farooq, Furqan – sequence: 5 givenname: Fahid orcidid: 0000-0003-2863-3283 surname: Aslam fullname: Aslam, Fahid – sequence: 6 givenname: Muhammad orcidid: 0000-0003-0298-7796 surname: Musarat fullname: Musarat, Muhammad – sequence: 7 givenname: Nikolai orcidid: 0000-0002-1196-8004 surname: Vatin fullname: Vatin, Nikolai |
| BookMark | eNptkd9LHDEQx0NR6o_60r9goS9FOE12spvkpVAOTwVLtepzyGVnz8huck2ypf735qrYVpyXGZjPfPnOzB7Z8sEjIR8ZPQJQ9Hg0jNcgGPB3ZJcp1c6Y4nzrn3qHHKR0T0sAMFmr92QHuJRNLdUuuVqEiNak7Pyqus4R_SrfVaGv5osfl9U8-N557DaFjZixuk0b8Ns0ZFed_F5HTMkFX13GsIpmHEvzA9nuzZDw4Dnvk9vFyc38bHbx_fR8_vViZkFCLs5asQRBRWcopwggGtNLSmuFgvWoagmt4dIo2qGyHRqolwIaziXvuGIW9smXJ931tByxs-hzNINeRzea-KCDcfr_jnd3ehV-adk2sgVRBD4_C8Twc8KU9eiSxWEwHsOUdN1S2RRfwAr66RV6H6boy3p_KMapFE2hDp8oG0NKEfsXM4zqzbP032cVmL6Crcsml2MWs254a-QRNSWWNg |
| CitedBy_id | crossref_primary_10_1007_s41939_023_00356_5 crossref_primary_10_1038_s41598_024_54513_y crossref_primary_10_3390_buildings13010112 crossref_primary_10_3390_polym14091789 crossref_primary_10_1016_j_rinma_2025_100727 crossref_primary_10_3390_buildings14030591 crossref_primary_10_3390_w14060947 crossref_primary_10_1016_j_jobe_2024_110417 crossref_primary_10_1016_j_mtcomm_2023_105901 crossref_primary_10_3390_buildings12040456 crossref_primary_10_3390_ma15113808 crossref_primary_10_1016_j_clema_2022_100072 crossref_primary_10_1016_j_mtcomm_2023_107428 crossref_primary_10_3390_ma15103478 crossref_primary_10_1016_j_mtcomm_2024_108832 crossref_primary_10_7717_peerj_cs_1853 crossref_primary_10_1007_s43503_024_00033_7 crossref_primary_10_1177_07316844251340751 crossref_primary_10_1016_j_rineng_2023_101044 crossref_primary_10_1016_j_jclepro_2022_131364 crossref_primary_10_32604_jpm_2024_053859 crossref_primary_10_3390_gels10020148 crossref_primary_10_1016_j_istruc_2024_106837 crossref_primary_10_1016_j_jobe_2025_112323 crossref_primary_10_1002_suco_70063 crossref_primary_10_3390_ma15082823 crossref_primary_10_1080_23311916_2023_2297501 crossref_primary_10_1038_s41598_023_28868_7 crossref_primary_10_3390_su16010011 crossref_primary_10_3390_ma15207133 crossref_primary_10_1016_j_tws_2024_111763 crossref_primary_10_1186_s44147_023_00266_w crossref_primary_10_1007_s11831_024_10143_1 crossref_primary_10_1016_j_asoc_2024_111956 crossref_primary_10_1016_j_pes_2025_100077 |
| Cites_doi | 10.1016/j.autcon.2021.103936 10.1007/s11709-017-0445-3 10.1007/s13042-018-00913-2 10.1109/IEEECONF51154.2020.9319950 10.3390/su12114412 10.1108/IJSI-05-2019-0044 10.1007/s12205-011-1117-9 10.1016/j.eswa.2010.10.069 10.3390/ma14164675 10.1007/s00521-016-2492-4 10.1061/(ASCE)CC.1943-5614.0000012 10.12989/cac.2011.8.5.597 10.1016/j.istruc.2017.07.002 10.1007/s12205-021-0431-0 10.1016/j.compositesb.2012.05.044 10.1016/j.advengsoft.2015.05.007 10.3390/ma13010174 10.1016/j.jclepro.2020.120678 10.1061/(ASCE)MT.1943-5533.0000154 10.1177/1369433219836176 10.1016/j.conbuildmat.2005.01.054 10.1109/IEEECONF51154.2020.9319980 10.1016/j.advengsoft.2009.10.015 10.1016/j.conbuildmat.2013.01.016 10.7551/mitpress/1090.001.0001 10.1016/j.compositesb.2011.08.043 10.1061/(ASCE)0733-9445(1997)123:5(624) 10.1007/s13369-016-2340-y 10.1016/j.conbuildmat.2018.09.097 10.1007/s00366-009-0140-7 10.1061/(ASCE)0733-9445(1988)114:8(1804) 10.1061/(ASCE)CC.1943-5614.0000477 10.1016/j.compstruct.2010.04.008 10.1016/S0950-0618(03)00045-X 10.1177/8755293019878137 10.1016/j.scitotenv.2020.140162 10.1016/j.conbuildmat.2019.117266 10.1016/j.engstruct.2020.110676 10.12989/cac.2017.19.3.233 10.1002/app.28839 10.1088/1757-899X/116/1/012020 10.3846/13923730.2014.893910 10.1680/macr.1983.35.125.242 10.1016/j.buildenv.2007.01.036 10.1016/j.envsoft.2011.07.007 10.1007/s11709-016-0363-9 10.1061/(ASCE)CC.1943-5614.0000744 10.1016/S0263-8223(03)00094-1 10.1111/mice.12422 10.1177/8755293020919419 10.1109/ICCIS.2012.207 10.1061/(ASCE)MT.1943-5533.0000494 10.3846/jcem.2019.10798 10.1016/j.conbuildmat.2012.11.109 10.1111/mice.12602 10.1016/j.scitotenv.2020.141182 10.1016/j.asoc.2019.105842 10.1016/0141-0296(95)92642-L 10.12989/sem.2010.36.6.759 10.3390/su13137465 10.1016/j.conbuildmat.2016.10.114 10.1016/j.istruc.2020.02.028 10.1016/j.istruc.2019.09.019 10.1016/j.scitotenv.2020.141418 10.1016/S1093-3263(01)00123-1 10.1007/s11709-018-0489-z 10.1061/(ASCE)0899-1561(1997)9:4(185) 10.1007/978-3-540-24687-9_99 10.1016/j.compstruct.2018.07.029 10.1016/j.compstruct.2011.11.032 10.1061/(ASCE)0733-9445(1998)124:9(1025) 10.1016/j.scitotenv.2020.139729 10.1016/j.engstruct.2017.02.047 10.1016/j.compositesb.2011.01.028 10.3846/jcem.2020.11931 10.1016/j.rser.2015.11.058 10.1016/j.istruc.2020.06.011 10.3390/app7080751 10.1109/IWISA.2010.5473464 10.1002/qsar.200710043 10.1016/j.tws.2015.04.023 10.3390/en13112768 10.1016/j.eswa.2013.04.014 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU COVID D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
| DOI | 10.3390/ma14237134 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central SciTech Collection (ProQuest) Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1944 |
| ExternalDocumentID | PMC8658637 10_3390_ma14237134 |
| GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM TR2 TUS 7SR 8FD ABUWG AZQEC COVID DWQXO JG9 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c383t-1967b3707da040e3375af80029e71fe92836a48a90de9cdea32b7354484d491c3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 36 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000734951600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1996-1944 |
| IngestDate | Tue Nov 04 02:00:28 EST 2025 Sun Nov 09 11:49:58 EST 2025 Fri Jul 25 11:53:46 EDT 2025 Sat Nov 29 07:10:10 EST 2025 Tue Nov 18 20:49:22 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c383t-1967b3707da040e3375af80029e71fe92836a48a90de9cdea32b7354484d491c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1196-8004 0000-0001-5478-9324 0000-0002-4671-1655 0000-0002-4604-9905 0000-0003-0298-7796 0000-0003-2863-3283 |
| OpenAccessLink | https://www.proquest.com/docview/2608140875?pq-origsite=%requestingapplication% |
| PMID | 34885289 |
| PQID | 2608140875 |
| PQPubID | 2032366 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8658637 proquest_miscellaneous_2608533731 proquest_journals_2608140875 crossref_primary_10_3390_ma14237134 crossref_citationtrail_10_3390_ma14237134 |
| PublicationCentury | 2000 |
| PublicationDate | 20211124 |
| PublicationDateYYYYMMDD | 2021-11-24 |
| PublicationDate_xml | – month: 11 year: 2021 text: 20211124 day: 24 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Materials |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Tang (ref_10) 2020; 216 Faris (ref_48) 2019; 10 Despotovic (ref_100) 2016; 56 ref_14 Golafshani (ref_21) 2020; 232 ref_99 ref_98 Jalal (ref_44) 2012; 43 Khademi (ref_28) 2017; 11 Lam (ref_62) 2003; 17 ref_15 Oreta (ref_42) 2011; 8 Salawu (ref_8) 1993; 17 Nguyen (ref_22) 2019; 34 Gandomi (ref_92) 2015; 88 Getahun (ref_20) 2018; 190 Elsanadedy (ref_43) 2012; 43 Saafi (ref_61) 1999; 96 Li (ref_5) 2003; 62 ref_26 Kawashima (ref_1) 2000; 46 Gandomi (ref_83) 2011; 23 Teng (ref_68) 2009; 13 ref_72 Hashmi (ref_52) 2011; 26 Cevik (ref_38) 2010; 41 Azim (ref_49) 2020; 25 ref_76 ref_75 ref_74 ref_73 Gandomi (ref_91) 2012; 24 Gandomi (ref_78) 2015; 21 Xie (ref_13) 2020; 36 Tohidi (ref_94) 2015; 94 Golbraikh (ref_102) 2002; 20 Sharifi (ref_93) 2019; 9 Murad (ref_53) 2019; 25 Azim (ref_79) 2020; 27 Azim (ref_80) 2021; 25 Smith (ref_87) 1986; 244 Cevik (ref_36) 2008; 110 Cascardi (ref_33) 2017; 140 Mansouri (ref_30) 2018; 29 Oltean (ref_70) 2004; 14 Mousavi (ref_88) 2010; 36 Pham (ref_46) 2014; 18 Sharifi (ref_97) 2020; 4 Mangalathu (ref_12) 2020; 36 Ashteyat (ref_19) 2020; 26 ref_86 ref_85 Bagheri (ref_16) 2021; 751 Ghanizadeh (ref_27) 2019; 13 Ziegel (ref_106) 1996; 38 Camoes (ref_34) 2017; 19 Cevik (ref_41) 2011; 38 Sharifi (ref_81) 2020; 86 Hoshikuma (ref_3) 1997; 123 Karbhari (ref_59) 1997; 9 Alavi (ref_82) 2012; 11 ref_58 Newman (ref_57) 1971; 11 Gandomi (ref_84) 2011; 15 ref_51 Pham (ref_35) 2017; 21 Cheok (ref_9) 1990; 87 Wang (ref_18) 2021; 36 Wang (ref_17) 2020; 258 Murad (ref_54) 2019; 11 Aval (ref_50) 2017; 12 Pala (ref_24) 2006; 20 ref_67 ref_66 Nazari (ref_55) 2013; 40 Mander (ref_63) 1988; 114 Mozumder (ref_32) 2016; 42 Hosseinpour (ref_95) 2018; 38 Ruggieri (ref_11) 2021; 132 Sharifi (ref_96) 2019; 22 Qiu (ref_89) 2020; 737 Roy (ref_101) 2008; 27 Fardis (ref_56) 1983; 35 ref_31 Liu (ref_25) 2020; 746 Naderpour (ref_39) 2010; 92 Mashrei (ref_45) 2013; 40 Delgado (ref_6) 2012; 94 Sadrmomtazi (ref_23) 2013; 42 Samaan (ref_60) 1998; 124 Arabshahi (ref_71) 2020; 23 Castillo (ref_7) 2018; 203 Gholampour (ref_103) 2017; 130 Realfonzo (ref_69) 2011; 42 Pyo (ref_90) 2020; 741 ref_104 ref_105 ref_107 Alavi (ref_77) 2010; 26 ref_47 Takemura (ref_2) 1997; 43 Fediuk (ref_108) 2016; 116 ref_40 Reddy (ref_29) 2018; 12 Sheikh (ref_4) 1993; 90 Bisby (ref_64) 2005; 102 Cevik (ref_37) 2008; 43 Matthys (ref_65) 2005; 102 |
| References_xml | – volume: 132 start-page: 103936 year: 2021 ident: ref_11 article-title: Machine-learning based vulnerability analysis of existing buildings publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103936 – volume: 102 start-page: 62 year: 2005 ident: ref_64 article-title: Comparison of confinement models for fiber reinforced polymer-wrapped concrete publication-title: ACI Struct J. – volume: 12 start-page: 490 year: 2018 ident: ref_29 article-title: Engineering, Predicting the strength properties of slurry infiltrated fibrous concrete using artificial neural network publication-title: Front. Struct. Civ. Eng. doi: 10.1007/s11709-017-0445-3 – ident: ref_74 – ident: ref_51 – volume: 10 start-page: 2901 year: 2019 ident: ref_48 article-title: Automatic selection of hidden neurons and weights in neural networks using grey wolf optimizer based on a hybrid encoding scheme publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-018-00913-2 – volume: 38 start-page: 193 year: 1996 ident: ref_106 article-title: Data Analysis Handbook publication-title: Technometrics – ident: ref_105 doi: 10.1109/IEEECONF51154.2020.9319950 – ident: ref_15 doi: 10.3390/su12114412 – volume: 11 start-page: 169 year: 2019 ident: ref_54 article-title: Predictive compressive strength models for green concrete publication-title: Int. J. Struct. Integr. doi: 10.1108/IJSI-05-2019-0044 – volume: 15 start-page: 363 year: 2011 ident: ref_84 article-title: Formulation of uplift capacity of suction caissons using multi expression programming publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-011-1117-9 – volume: 38 start-page: 5662 year: 2011 ident: ref_41 article-title: Modeling strength enhancement of FRP confined concrete cylinders using soft computing publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.10.069 – ident: ref_104 doi: 10.3390/ma14164675 – volume: 29 start-page: 873 year: 2018 ident: ref_30 article-title: Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2492-4 – volume: 13 start-page: 269 year: 2009 ident: ref_68 article-title: Refinement of a Design-Oriented Stress–Strain Model for FRP-Confined Concrete publication-title: J. Compos. Constr. doi: 10.1061/(ASCE)CC.1943-5614.0000012 – volume: 8 start-page: 597 year: 2011 ident: ref_42 article-title: Ongpeng, and Concrete, Modeling the confined compressive strength of hybrid circular concrete columns using neural networks publication-title: Comput. Concr. doi: 10.12989/cac.2011.8.5.597 – volume: 12 start-page: 13 year: 2017 ident: ref_50 article-title: Estimating Shear Strength of Short Rectangular Reinforced Concrete Columns Using Nonlinear Regression and Gene Expression Programming publication-title: Structures doi: 10.1016/j.istruc.2017.07.002 – volume: 25 start-page: 891 year: 2021 ident: ref_80 article-title: Prediction of Catenary Action Capacity of RC Beam-Column Substructures under a Missing Column Scenario Using Evolutionary Algorithm publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-021-0431-0 – volume: 43 start-page: 2990 year: 2012 ident: ref_44 article-title: Strength enhancement modeling of concrete cylinders confined with CFRP composites using artificial neural networks publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2012.05.044 – volume: 88 start-page: 63 year: 2015 ident: ref_92 article-title: Assessment of artificial neural network and genetic programming as predictive tools publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2015.05.007 – ident: ref_26 doi: 10.3390/ma13010174 – volume: 258 start-page: 120678 year: 2020 ident: ref_17 article-title: Biochar as green additives in cement-based composites with carbon dioxide curing publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120678 – volume: 23 start-page: 248 year: 2011 ident: ref_83 article-title: Nonlinear Genetic-Based Models for Prediction of Flow Number of Asphalt Mixtures publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)MT.1943-5533.0000154 – volume: 22 start-page: 2192 year: 2019 ident: ref_96 article-title: Neural networks for lateral torsional buckling strength assessment of cellular steel I-beams publication-title: Adv. Struct. Eng. doi: 10.1177/1369433219836176 – volume: 20 start-page: 769 year: 2006 ident: ref_24 article-title: Predicting the compressive strength and slump of high strength concrete using neural network publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2005.01.054 – ident: ref_107 doi: 10.1109/IEEECONF51154.2020.9319980 – volume: 43 start-page: 849 year: 1997 ident: ref_2 article-title: Effect of loading hysteresis on ductility capacity of reinforced concrete bridge piers publication-title: J. Struct Eng. – volume: 11 start-page: 963 year: 1971 ident: ref_57 article-title: Solid mechanics, and e. design, Failure theories and design criteria for plain concrete publication-title: Expert Syst. Appl. – volume: 41 start-page: 527 year: 2010 ident: ref_38 article-title: Soft computing based formulation for strength enhancement of CFRP confined concrete cylinders publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2009.10.015 – volume: 42 start-page: 205 year: 2013 ident: ref_23 article-title: Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.01.016 – ident: ref_72 doi: 10.7551/mitpress/1090.001.0001 – volume: 43 start-page: 228 year: 2012 ident: ref_43 article-title: Prediction of strength parameters of FRP-confined concrete publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2011.08.043 – volume: 123 start-page: 624 year: 1997 ident: ref_3 article-title: Stress-Strain Model for Confined Reinforced Concrete in Bridge Piers publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)0733-9445(1997)123:5(624) – volume: 42 start-page: 1129 year: 2016 ident: ref_32 article-title: Support Vector Regression Approach to Predict the Strength of FRP Confined Concrete publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-016-2340-y – ident: ref_47 – volume: 87 start-page: 630 year: 1990 ident: ref_9 article-title: Behavior of 1/6-scale model bridge columns subjected to inelastic cyclic loading publication-title: Struct. J. – volume: 190 start-page: 517 year: 2018 ident: ref_20 article-title: Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.09.097 – ident: ref_86 – volume: 26 start-page: 111 year: 2010 ident: ref_77 article-title: Multi expression programming: A new approach to formulation of soil classification publication-title: Eng. Comput. doi: 10.1007/s00366-009-0140-7 – ident: ref_67 – volume: 114 start-page: 1804 year: 1988 ident: ref_63 article-title: Theoretical Stress-Strain Model for Confined Concrete publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804) – volume: 18 start-page: 04014019 year: 2014 ident: ref_46 article-title: Predicting stress and strain of FRP-confined square/rectangular columns using artificial neural networks publication-title: J. Compos. Constr. doi: 10.1061/(ASCE)CC.1943-5614.0000477 – ident: ref_73 – volume: 92 start-page: 2817 year: 2010 ident: ref_39 article-title: Prediction of FRP-confined compressive strength of concrete using artificial neural networks publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2010.04.008 – volume: 17 start-page: 471 year: 2003 ident: ref_62 article-title: Design-oriented stress–strain model for FRP-confined concrete publication-title: Constr. Build. Mater. doi: 10.1016/S0950-0618(03)00045-X – volume: 4 start-page: 173 year: 2020 ident: ref_97 article-title: Shear strength assessment of slender reinforced normal concrete beams using artificial neural networks publication-title: J. Concr. Struct. Mater. – volume: 36 start-page: 183 year: 2020 ident: ref_12 article-title: Classifying earthquake damage to buildings using machine learning publication-title: Earthq. Spectra doi: 10.1177/8755293019878137 – ident: ref_75 – volume: 741 start-page: 140162 year: 2020 ident: ref_90 article-title: Estimation of heavy metals using deep neural network with visible and infrared spectroscopy of soil publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.140162 – volume: 232 start-page: 117266 year: 2020 ident: ref_21 article-title: Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117266 – volume: 216 start-page: 110676 year: 2020 ident: ref_10 article-title: Axial compression behavior of recycled-aggregate-concrete-filled GFRP–steel composite tube columns publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2020.110676 – volume: 19 start-page: 233 year: 2017 ident: ref_34 article-title: Compressive strength prediction of CFRP confined concrete using data mining techniques publication-title: Comput. Concr. doi: 10.12989/cac.2017.19.3.233 – volume: 110 start-page: 3087 year: 2008 ident: ref_36 article-title: A genetic-programming-based formulation for the strength enhancement of fiber-reinforced-polymer-confined concrete cylinders publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.28839 – volume: 116 start-page: 012020 year: 2016 ident: ref_108 article-title: High-strength fibrous concrete of Russian Far East natural materials publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/116/1/012020 – volume: 21 start-page: 761 year: 2015 ident: ref_78 article-title: New design equations for elastic modulus of concrete using multi expression programming publication-title: J. Civ. Eng. Manag. doi: 10.3846/13923730.2014.893910 – volume: 35 start-page: 242 year: 1983 ident: ref_56 article-title: Discussion: FRP-encased concrete as a structural material publication-title: Mag. Concr. Res. doi: 10.1680/macr.1983.35.125.242 – volume: 43 start-page: 751 year: 2008 ident: ref_37 article-title: Neural network modeling of strength enhancement for CFRP confined concrete cylinders publication-title: Build. Environ. doi: 10.1016/j.buildenv.2007.01.036 – volume: 26 start-page: 1639 year: 2011 ident: ref_52 article-title: Statistical downscaling of watershed precipitation using Gene Expression Programming (GEP) publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2011.07.007 – volume: 11 start-page: 90 year: 2017 ident: ref_28 article-title: Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete publication-title: Front. Struct. Civ. Eng. doi: 10.1007/s11709-016-0363-9 – volume: 21 start-page: 04016088 year: 2017 ident: ref_35 article-title: Axial Impact Resistance of FRP-Confined Concrete publication-title: J. Compos. Constr. doi: 10.1061/(ASCE)CC.1943-5614.0000744 – volume: 62 start-page: 83 year: 2003 ident: ref_5 article-title: Investigation into FRP repaired RC columns publication-title: Compos. Struct. doi: 10.1016/S0263-8223(03)00094-1 – volume: 34 start-page: 316 year: 2019 ident: ref_22 article-title: Deep neural network with high-order neuron for the prediction of foamed concrete strength publication-title: Comput. Civ. Infrastruct. Eng. doi: 10.1111/mice.12422 – volume: 102 start-page: 258 year: 2005 ident: ref_65 article-title: Axial load behavior of large-scale columns confined with fiber reinforced polymer composites publication-title: ACI Struct J. – volume: 36 start-page: 1769 year: 2020 ident: ref_13 article-title: The promise of implementing machine learning in earthquake engineering: A state-of-the-art review publication-title: Earthq. Spectra doi: 10.1177/8755293020919419 – ident: ref_85 doi: 10.1109/ICCIS.2012.207 – volume: 24 start-page: 1132 year: 2012 ident: ref_91 article-title: Novel Approach to Strength Modeling of Concrete under Triaxial Compression publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)MT.1943-5533.0000494 – volume: 25 start-page: 773 year: 2019 ident: ref_53 article-title: Predictive model to the bond strength of frp-to-concrete under direct pullout using gene expression programming publication-title: J. Civ. Eng. Manag. doi: 10.3846/jcem.2019.10798 – volume: 40 start-page: 812 year: 2013 ident: ref_45 article-title: Application of artificial neural networks to predict the bond strength of FRP-to-concrete joints publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2012.11.109 – volume: 9 start-page: 251 year: 2019 ident: ref_93 article-title: Adaptive neuro-fuzzy inference system and stepwise regression for compressive strength assessment of concrete containing metakaolin publication-title: Int. J. Optim. Civ. Eng. – ident: ref_58 – volume: 36 start-page: 289 year: 2021 ident: ref_18 article-title: Shear loading detection of through bolts in bridge structures using a percussion-based one-dimensional memory-augmented convolutional neural network publication-title: Comput. Civ. Infrastruct. Eng. doi: 10.1111/mice.12602 – ident: ref_98 – volume: 746 start-page: 141182 year: 2020 ident: ref_25 article-title: Recycling drinking water treatment sludge into eco-concrete blocks with CO2 curing: Durability and leachability publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141182 – volume: 86 start-page: 105842 year: 2020 ident: ref_81 article-title: Consolidation assessment using Multi Expression Programming publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105842 – volume: 17 start-page: 113 year: 1993 ident: ref_8 article-title: Review of full-scale dynamic testing of bridge columns publication-title: Eng. Struct. doi: 10.1016/0141-0296(95)92642-L – volume: 36 start-page: 759 year: 2010 ident: ref_88 article-title: A data mining approach to compressive strength of CFRP-confined concrete cylinders publication-title: Struct. Eng. Mech. doi: 10.12989/sem.2010.36.6.759 – ident: ref_99 doi: 10.3390/su13137465 – volume: 130 start-page: 122 year: 2017 ident: ref_103 article-title: New formulations for mechanical properties of recycled aggregate concrete using gene expression programming publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.10.114 – volume: 25 start-page: 212 year: 2020 ident: ref_49 article-title: Prediction model for compressive arch action capacity of RC frame structures under column removal scenario using gene expression programming publication-title: Structures doi: 10.1016/j.istruc.2020.02.028 – volume: 23 start-page: 225 year: 2020 ident: ref_71 article-title: Development of applicable design models for concrete columns confined with aramid fiber reinforced polymer using Multi-Expression Programming publication-title: Structures doi: 10.1016/j.istruc.2019.09.019 – volume: 751 start-page: 141418 year: 2021 ident: ref_16 article-title: Investigating plant uptake of organic contaminants through transpiration stream concentration factor and neural network models publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141418 – volume: 20 start-page: 269 year: 2002 ident: ref_102 article-title: Beware of q2! publication-title: J. Mol. Graph. Model. doi: 10.1016/S1093-3263(01)00123-1 – volume: 13 start-page: 215 year: 2019 ident: ref_27 article-title: Modeling of bentonite/sepiolite plastic concrete compressive strength using artificial neural network and support vector machine publication-title: Front. Struct. Civ. Eng. doi: 10.1007/s11709-018-0489-z – ident: ref_66 – volume: 46 start-page: 767 year: 2000 ident: ref_1 article-title: A cyclic loading test for clarifying the plastic hinge length of reinforced concrete piers publication-title: J. Struct. Eng. A – volume: 9 start-page: 185 year: 1997 ident: ref_59 article-title: Composite Jacketed Concrete under Uniaxial Compression—Verification of Simple Design Equations publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)0899-1561(1997)9:4(185) – ident: ref_76 doi: 10.1007/978-3-540-24687-9_99 – volume: 203 start-page: 382 year: 2018 ident: ref_7 article-title: Seismic behavior of RC columns flexurally strengthened with FRP sheets and FRP anchors publication-title: Compos. Struct doi: 10.1016/j.compstruct.2018.07.029 – volume: 94 start-page: 1280 year: 2012 ident: ref_6 article-title: Retrofit of RC hollow piers with CFRP sheets publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2011.11.032 – volume: 124 start-page: 1025 year: 1998 ident: ref_60 article-title: Model of Concrete Confined by Fiber Composites publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)0733-9445(1998)124:9(1025) – volume: 737 start-page: 139729 year: 2020 ident: ref_89 article-title: Water temperature forecasting based on modified artificial neural network methods: Two cases of the Yangtze River publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139729 – volume: 140 start-page: 199 year: 2017 ident: ref_33 article-title: An Artificial Neural Networks model for the prediction of the compressive strength of FRP-confined concrete circular columns publication-title: Eng. Struct doi: 10.1016/j.engstruct.2017.02.047 – volume: 244 start-page: 145 year: 1986 ident: ref_87 article-title: Probability and statistics in civil engineering publication-title: Collins Prof. Tech. Books – volume: 42 start-page: 736 year: 2011 ident: ref_69 article-title: Concrete confined by FRP systems: Confinement efficiency and design strength models publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2011.01.028 – volume: 26 start-page: 189 year: 2020 ident: ref_19 article-title: Compressive strength prediction of lightweight short columns at elevated temperature using gene expression programing and artificial neural network publication-title: J. Civ. Eng. Manag. doi: 10.3846/jcem.2020.11931 – volume: 56 start-page: 246 year: 2016 ident: ref_100 article-title: Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.11.058 – volume: 27 start-page: 1231 year: 2020 ident: ref_79 article-title: Semi-analytical model for compressive arch action capacity of RC frame structures publication-title: Structures doi: 10.1016/j.istruc.2020.06.011 – ident: ref_31 doi: 10.3390/app7080751 – ident: ref_40 doi: 10.1109/IWISA.2010.5473464 – volume: 14 start-page: 285 year: 2004 ident: ref_70 article-title: A comparison of several linear genetic programming techniques publication-title: Complex. Syst. – volume: 11 start-page: 124 year: 2012 ident: ref_82 article-title: Formulation of Secant and Reloading Soil Deformation Moduli Using Multi Expression Programming publication-title: Eng. Comput. – volume: 27 start-page: 302 year: 2008 ident: ref_101 article-title: On Some Aspects of Variable Selection for Partial Least Squares Regression Models publication-title: QSAR Comb. Sci. doi: 10.1002/qsar.200710043 – volume: 94 start-page: 359 year: 2015 ident: ref_94 article-title: Neural networks for inelastic distortional buckling capacity assessment of steel I-beams publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2015.04.023 – ident: ref_14 doi: 10.3390/en13112768 – volume: 40 start-page: 5427 year: 2013 ident: ref_55 article-title: Modeling the compressive strength of geopolymeric binders by gene expression programming-GEP publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.04.014 – volume: 96 start-page: 500 year: 1999 ident: ref_61 article-title: Behavior of concrete columns confined with fiber reinforced polymer tubes publication-title: Mater. J. – volume: 90 start-page: 542 year: 1993 ident: ref_4 article-title: Reinforced concrete columns confined by circular spirals and hoops publication-title: ACI Struct. J. – volume: 38 start-page: 207 year: 2018 ident: ref_95 article-title: Stepwise regression modeling for compressive strength assessment of mortar containing metakaolin publication-title: Int. J. Model. Simul. |
| SSID | ssj0000331829 |
| Score | 2.4751549 |
| Snippet | This study provides the application of a machine learning-based algorithm approach names “Multi Expression Programming” (MEP) to forecast the compressive... This study provides the application of a machine learning-based algorithm approach names "Multi Expression Programming" (MEP) to forecast the compressive... |
| SourceID | pubmedcentral proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 7134 |
| SubjectTerms | Algorithms Artificial intelligence Carbon fiber reinforced concretes Carbon fiber reinforced plastics Civil engineering Compressive strength Concrete Construction materials Diameters Fiber reinforced polymers Gene expression Genetic algorithms Genetic engineering Machine learning Mathematical functions Mathematical models Mechanical properties Modulus of elasticity Parametric analysis Parametric statistics Performance evaluation Rehabilitation Reliability analysis Research methodology Researchers Retrofitting Soft computing Statistical analysis Structural members Thickness Variables |
| Title | Forecasting Strength of CFRP Confined Concrete Using Multi Expression Programming |
| URI | https://www.proquest.com/docview/2608140875 https://www.proquest.com/docview/2608533731 https://pubmed.ncbi.nlm.nih.gov/PMC8658637 |
| Volume | 14 |
| WOSCitedRecordID | wos000734951600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: KB. dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: PIMPY dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4V6KE9lNKHuuUhV3DpwSWOvev4hADtqlXVVUCttD1Fju0UpJKlbKj685lJvLushLj0FsujJPLM2N_Yn2cADpRL-j4zCS-rynPlheWZ8SVHtCtSG4R0A9sWm9DjcTaZmDxuuM0irXI-J7YTtZ862iM_RNxNyZkQXh9d_-FUNYpOV2MJjTXYoExlaOcbJ8Nxfr7YZUkk2mxqurykEuP7wysriAkipFpdiZbwcpUceW-1GW3-73--hBcRZ7LjzjC24EmoX8Hze9kHX8MZleV0dkbEZ0an0_Wv5oJNK3Y6Os8ZXQVEWU8PiCybwFp2AWtv7LLhv0igrVneMbyusPMN_BgNv59-5rHCAncYmTYc3U-XUifaW3TmIKXu24ogpAlaVMEg9hhYlVmT-GCcD1ampZZ9DOmUV0Y4-RbW62kd3gETpUE40FdVFZRyoUR3LjW-yyE-SkPpevBxPtqFi-nHqQrG7wLDENJMsdRMD_YXstdd0o0HpXbmGiii482K5fD34MOiG12GzkFsHaa3nQyiXC1FD_SKshdfo6Tbqz315UWbfDtDyDaQ-v3jH9-GZymRX4TgqdqB9ebmNuzCU_e3uZzd7MGanmR70Vax9fXkE7byL9_yn3d26PfH |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJw4I26UMAIOHCwGsfedXxACJWuumq7CqhI5ZQ6tkMrtdnSTXn8KX4jM3nsdiXErQdukWzZSubz-Jv48wzAK-WigU9MxPOi8Fx5YXlifM6R7YrYBiHd0NbFJvRkkhwcmHQFfnd3YUhW2fnE2lH7qaN_5BvIuyk5E9Lrd2ffOFWNotPVroRGA4ud8OsHhmyzt-MPaN_XcTza2t_c5m1VAe4wGqs4Qk7nUkfaWwRwkFIPbEG0yQQtimBwvx1alVgT-WCcD1bGuZYDDGOUV0Y4ieNeg1VFYO_BajreS7_M_-pEEtdIbJo8qFKaaOPUClKeCKmWd74FnV0WY17a3UZ3_rfvchdutzyavW-Afw9WQnkfbl3KrvgAPlLZUWdnJOxmdPpefq2O2LRgm6NPKaOrjtjX0wMy5yqwWj3B6hvJbOtnKxAuWdoo2E6x8SF8vpJ3egS9clqGNWAiN0h3BqooglIu5Oiuco1jOeR_cchdH9501s1cm16dqnycZBhmERKyBRL68HLe96xJKvLXXuudxbPWscyyhbn78GLejC6BznlsGaYXTR9k8VqKPuglcM1no6Tiyy3l8VGdXDxBSjqU-vG_J38ON7b393az3fFk5wncjEnoIwSP1Tr0qvOL8BSuu-_V8ez8WbtCGBxeNfj-ACv9Tw0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJwaMtLLC2tEXDgYG382HV8qCrUdsWqsAoIpHIKju3QSjRbuim0f62_ruM8drsS4tYDt0i2bCXzefxN_HkG4LW0Ud_FOqJZnjsqHTM01i6jyHYZN54JOzBVsQk1HseHhzpZgqv2LkyQVbY-sXLUbmLDP_Ie8u6QnAnpdS9vZBHJ3nDn9BcNFaTCSWtbTqOGyIG__IPh23R7tIe2fsP5cP_L7nvaVBigFiOzkiL8VCZUpJxBMHshVN_kgUJpr1juNe69AyNjoyPntXXeCJ4p0ceQRjqpmRU47h1YRkoueQeWk9HH5NvsD08kcL1wXedEFUJHvRPDggqFCbm4C86p7aIw88ZON1z9n7_RGqw0_Jq8qxfEQ1jyxSN4cCPr4mP4FMqRWjMNgm8STuWLH-URmeRkd_g5IeEKJPZ14QEZdelJpaog1U1lsn_RCIcLktTKthNsfAJfb-WdnkKnmBT-GRCWaaRBfZnnXkrrM3RjmcKxLPJC7jPbhbetpVPbpF0P1T9-phh-BVSkc1R04dWs72mdbOSvvTZa66eNw5mmc9N34eWsGV1FOP8xhZ-c132Q3SvBuqAWgDabLSQbX2wpjo-qpOMxUtWBUM__PfkW3EPEpR9G44N1uM-D_ocxyuUGdMqzc_8C7trf5fH0bLNZLAS-3zb2rgHP3lfN |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+Strength+of+CFRP+Confined+Concrete+Using+Multi+Expression+Programming&rft.jtitle=Materials&rft.au=Ilyas%2C+Israr&rft.au=Zafar%2C+Adeel&rft.au=Javed%2C+Muhammad+Faisal&rft.au=Farooq%2C+Furqan&rft.date=2021-11-24&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=14&rft.issue=23&rft_id=info:doi/10.3390%2Fma14237134&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |