Forecasting Strength of CFRP Confined Concrete Using Multi Expression Programming

This study provides the application of a machine learning-based algorithm approach names “Multi Expression Programming” (MEP) to forecast the compressive strength of carbon fiber-reinforced polymer (CFRP) confined concrete. The suggested computational Multiphysics model is based on previously report...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Materials Ročník 14; číslo 23; s. 7134
Hlavní autoři: Ilyas, Israr, Zafar, Adeel, Javed, Muhammad, Farooq, Furqan, Aslam, Fahid, Musarat, Muhammad, Vatin, Nikolai
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 24.11.2021
MDPI
Témata:
ISSN:1996-1944, 1996-1944
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This study provides the application of a machine learning-based algorithm approach names “Multi Expression Programming” (MEP) to forecast the compressive strength of carbon fiber-reinforced polymer (CFRP) confined concrete. The suggested computational Multiphysics model is based on previously reported experimental results. However, critical parameters comprise both the geometrical and mechanical properties, including the height and diameter of the specimen, the modulus of elasticity of CFRP, unconfined strength of concrete, and CFRP overall layer thickness. A detailed statistical analysis is done to evaluate the model performance. Then the validation of the soft computational model is made by drawing a comparison with experimental results and other external validation criteria. Moreover, the results and predictions of the presented soft computing model are verified by incorporating a parametric analysis, and the reliability of the model is compared with available models in the literature by an experimental versus theoretical comparison. Based on the findings, the valuation and performance of the proposed model is assessed with other strength models provided in the literature using the collated database. Thus the proposed model outperformed other existing models in term of accuracy and predictability. Both parametric and statistical analysis demonstrate that the proposed model is well trained to efficiently forecast strength of CFRP wrapped structural members. The presented study will promote its utilization in rehabilitation and retrofitting and contribute towards sustainable construction material.
AbstractList This study provides the application of a machine learning-based algorithm approach names “Multi Expression Programming” (MEP) to forecast the compressive strength of carbon fiber-reinforced polymer (CFRP) confined concrete. The suggested computational Multiphysics model is based on previously reported experimental results. However, critical parameters comprise both the geometrical and mechanical properties, including the height and diameter of the specimen, the modulus of elasticity of CFRP, unconfined strength of concrete, and CFRP overall layer thickness. A detailed statistical analysis is done to evaluate the model performance. Then the validation of the soft computational model is made by drawing a comparison with experimental results and other external validation criteria. Moreover, the results and predictions of the presented soft computing model are verified by incorporating a parametric analysis, and the reliability of the model is compared with available models in the literature by an experimental versus theoretical comparison. Based on the findings, the valuation and performance of the proposed model is assessed with other strength models provided in the literature using the collated database. Thus the proposed model outperformed other existing models in term of accuracy and predictability. Both parametric and statistical analysis demonstrate that the proposed model is well trained to efficiently forecast strength of CFRP wrapped structural members. The presented study will promote its utilization in rehabilitation and retrofitting and contribute towards sustainable construction material.
This study provides the application of a machine learning-based algorithm approach names "Multi Expression Programming" (MEP) to forecast the compressive strength of carbon fiber-reinforced polymer (CFRP) confined concrete. The suggested computational Multiphysics model is based on previously reported experimental results. However, critical parameters comprise both the geometrical and mechanical properties, including the height and diameter of the specimen, the modulus of elasticity of CFRP, unconfined strength of concrete, and CFRP overall layer thickness. A detailed statistical analysis is done to evaluate the model performance. Then the validation of the soft computational model is made by drawing a comparison with experimental results and other external validation criteria. Moreover, the results and predictions of the presented soft computing model are verified by incorporating a parametric analysis, and the reliability of the model is compared with available models in the literature by an experimental versus theoretical comparison. Based on the findings, the valuation and performance of the proposed model is assessed with other strength models provided in the literature using the collated database. Thus the proposed model outperformed other existing models in term of accuracy and predictability. Both parametric and statistical analysis demonstrate that the proposed model is well trained to efficiently forecast strength of CFRP wrapped structural members. The presented study will promote its utilization in rehabilitation and retrofitting and contribute towards sustainable construction material.This study provides the application of a machine learning-based algorithm approach names "Multi Expression Programming" (MEP) to forecast the compressive strength of carbon fiber-reinforced polymer (CFRP) confined concrete. The suggested computational Multiphysics model is based on previously reported experimental results. However, critical parameters comprise both the geometrical and mechanical properties, including the height and diameter of the specimen, the modulus of elasticity of CFRP, unconfined strength of concrete, and CFRP overall layer thickness. A detailed statistical analysis is done to evaluate the model performance. Then the validation of the soft computational model is made by drawing a comparison with experimental results and other external validation criteria. Moreover, the results and predictions of the presented soft computing model are verified by incorporating a parametric analysis, and the reliability of the model is compared with available models in the literature by an experimental versus theoretical comparison. Based on the findings, the valuation and performance of the proposed model is assessed with other strength models provided in the literature using the collated database. Thus the proposed model outperformed other existing models in term of accuracy and predictability. Both parametric and statistical analysis demonstrate that the proposed model is well trained to efficiently forecast strength of CFRP wrapped structural members. The presented study will promote its utilization in rehabilitation and retrofitting and contribute towards sustainable construction material.
Author Zafar, Adeel
Vatin, Nikolai
Farooq, Furqan
Aslam, Fahid
Ilyas, Israr
Javed, Muhammad
Musarat, Muhammad
AuthorAffiliation 5 Department of Civil and Environmental Engineering, Bandar Seri Iskandar 32610, Perak, Malaysia; muhammad_19000316@utp.edu.my
1 Department of Structural Engineering, Military College of Engineering (MCE), National University of Science and Technology (NUST), Islamabad 44000, Pakistan; israr.awaan@gmail.com (I.I.); adeel.zafar@mce.nust.edu.pk (A.Z.)
4 Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; f.aslam@psau.edu.sa
2 Department of Civil Engineering, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
3 Faculty of Civil Engineering, Cracow University of Technology, 24 Warszawska Str., 31-155 Cracow, Poland; furqan@cuiatd.edu.pk
6 Peter the Great St. Petersburg Polytechnic University, 195291 St. Petersburg, Russia; vatin@mail.ru
AuthorAffiliation_xml – name: 1 Department of Structural Engineering, Military College of Engineering (MCE), National University of Science and Technology (NUST), Islamabad 44000, Pakistan; israr.awaan@gmail.com (I.I.); adeel.zafar@mce.nust.edu.pk (A.Z.)
– name: 3 Faculty of Civil Engineering, Cracow University of Technology, 24 Warszawska Str., 31-155 Cracow, Poland; furqan@cuiatd.edu.pk
– name: 6 Peter the Great St. Petersburg Polytechnic University, 195291 St. Petersburg, Russia; vatin@mail.ru
– name: 4 Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; f.aslam@psau.edu.sa
– name: 2 Department of Civil Engineering, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
– name: 5 Department of Civil and Environmental Engineering, Bandar Seri Iskandar 32610, Perak, Malaysia; muhammad_19000316@utp.edu.my
Author_xml – sequence: 1
  givenname: Israr
  orcidid: 0000-0002-4604-9905
  surname: Ilyas
  fullname: Ilyas, Israr
– sequence: 2
  givenname: Adeel
  surname: Zafar
  fullname: Zafar, Adeel
– sequence: 3
  givenname: Muhammad
  orcidid: 0000-0001-5478-9324
  surname: Javed
  fullname: Javed, Muhammad
– sequence: 4
  givenname: Furqan
  orcidid: 0000-0002-4671-1655
  surname: Farooq
  fullname: Farooq, Furqan
– sequence: 5
  givenname: Fahid
  orcidid: 0000-0003-2863-3283
  surname: Aslam
  fullname: Aslam, Fahid
– sequence: 6
  givenname: Muhammad
  orcidid: 0000-0003-0298-7796
  surname: Musarat
  fullname: Musarat, Muhammad
– sequence: 7
  givenname: Nikolai
  orcidid: 0000-0002-1196-8004
  surname: Vatin
  fullname: Vatin, Nikolai
BookMark eNptkd9LHDEQx0NR6o_60r9goS9FOE12spvkpVAOTwVLtepzyGVnz8huck2ypf735qrYVpyXGZjPfPnOzB7Z8sEjIR8ZPQJQ9Hg0jNcgGPB3ZJcp1c6Y4nzrn3qHHKR0T0sAMFmr92QHuJRNLdUuuVqEiNak7Pyqus4R_SrfVaGv5osfl9U8-N557DaFjZixuk0b8Ns0ZFed_F5HTMkFX13GsIpmHEvzA9nuzZDw4Dnvk9vFyc38bHbx_fR8_vViZkFCLs5asQRBRWcopwggGtNLSmuFgvWoagmt4dIo2qGyHRqolwIaziXvuGIW9smXJ931tByxs-hzNINeRzea-KCDcfr_jnd3ehV-adk2sgVRBD4_C8Twc8KU9eiSxWEwHsOUdN1S2RRfwAr66RV6H6boy3p_KMapFE2hDp8oG0NKEfsXM4zqzbP032cVmL6Crcsml2MWs254a-QRNSWWNg
CitedBy_id crossref_primary_10_1007_s41939_023_00356_5
crossref_primary_10_1038_s41598_024_54513_y
crossref_primary_10_3390_buildings13010112
crossref_primary_10_3390_polym14091789
crossref_primary_10_1016_j_rinma_2025_100727
crossref_primary_10_3390_buildings14030591
crossref_primary_10_3390_w14060947
crossref_primary_10_1016_j_jobe_2024_110417
crossref_primary_10_1016_j_mtcomm_2023_105901
crossref_primary_10_3390_buildings12040456
crossref_primary_10_3390_ma15113808
crossref_primary_10_1016_j_clema_2022_100072
crossref_primary_10_1016_j_mtcomm_2023_107428
crossref_primary_10_3390_ma15103478
crossref_primary_10_1016_j_mtcomm_2024_108832
crossref_primary_10_7717_peerj_cs_1853
crossref_primary_10_1007_s43503_024_00033_7
crossref_primary_10_1177_07316844251340751
crossref_primary_10_1016_j_rineng_2023_101044
crossref_primary_10_1016_j_jclepro_2022_131364
crossref_primary_10_32604_jpm_2024_053859
crossref_primary_10_3390_gels10020148
crossref_primary_10_1016_j_istruc_2024_106837
crossref_primary_10_1016_j_jobe_2025_112323
crossref_primary_10_1002_suco_70063
crossref_primary_10_3390_ma15082823
crossref_primary_10_1080_23311916_2023_2297501
crossref_primary_10_1038_s41598_023_28868_7
crossref_primary_10_3390_su16010011
crossref_primary_10_3390_ma15207133
crossref_primary_10_1016_j_tws_2024_111763
crossref_primary_10_1186_s44147_023_00266_w
crossref_primary_10_1007_s11831_024_10143_1
crossref_primary_10_1016_j_asoc_2024_111956
crossref_primary_10_1016_j_pes_2025_100077
Cites_doi 10.1016/j.autcon.2021.103936
10.1007/s11709-017-0445-3
10.1007/s13042-018-00913-2
10.1109/IEEECONF51154.2020.9319950
10.3390/su12114412
10.1108/IJSI-05-2019-0044
10.1007/s12205-011-1117-9
10.1016/j.eswa.2010.10.069
10.3390/ma14164675
10.1007/s00521-016-2492-4
10.1061/(ASCE)CC.1943-5614.0000012
10.12989/cac.2011.8.5.597
10.1016/j.istruc.2017.07.002
10.1007/s12205-021-0431-0
10.1016/j.compositesb.2012.05.044
10.1016/j.advengsoft.2015.05.007
10.3390/ma13010174
10.1016/j.jclepro.2020.120678
10.1061/(ASCE)MT.1943-5533.0000154
10.1177/1369433219836176
10.1016/j.conbuildmat.2005.01.054
10.1109/IEEECONF51154.2020.9319980
10.1016/j.advengsoft.2009.10.015
10.1016/j.conbuildmat.2013.01.016
10.7551/mitpress/1090.001.0001
10.1016/j.compositesb.2011.08.043
10.1061/(ASCE)0733-9445(1997)123:5(624)
10.1007/s13369-016-2340-y
10.1016/j.conbuildmat.2018.09.097
10.1007/s00366-009-0140-7
10.1061/(ASCE)0733-9445(1988)114:8(1804)
10.1061/(ASCE)CC.1943-5614.0000477
10.1016/j.compstruct.2010.04.008
10.1016/S0950-0618(03)00045-X
10.1177/8755293019878137
10.1016/j.scitotenv.2020.140162
10.1016/j.conbuildmat.2019.117266
10.1016/j.engstruct.2020.110676
10.12989/cac.2017.19.3.233
10.1002/app.28839
10.1088/1757-899X/116/1/012020
10.3846/13923730.2014.893910
10.1680/macr.1983.35.125.242
10.1016/j.buildenv.2007.01.036
10.1016/j.envsoft.2011.07.007
10.1007/s11709-016-0363-9
10.1061/(ASCE)CC.1943-5614.0000744
10.1016/S0263-8223(03)00094-1
10.1111/mice.12422
10.1177/8755293020919419
10.1109/ICCIS.2012.207
10.1061/(ASCE)MT.1943-5533.0000494
10.3846/jcem.2019.10798
10.1016/j.conbuildmat.2012.11.109
10.1111/mice.12602
10.1016/j.scitotenv.2020.141182
10.1016/j.asoc.2019.105842
10.1016/0141-0296(95)92642-L
10.12989/sem.2010.36.6.759
10.3390/su13137465
10.1016/j.conbuildmat.2016.10.114
10.1016/j.istruc.2020.02.028
10.1016/j.istruc.2019.09.019
10.1016/j.scitotenv.2020.141418
10.1016/S1093-3263(01)00123-1
10.1007/s11709-018-0489-z
10.1061/(ASCE)0899-1561(1997)9:4(185)
10.1007/978-3-540-24687-9_99
10.1016/j.compstruct.2018.07.029
10.1016/j.compstruct.2011.11.032
10.1061/(ASCE)0733-9445(1998)124:9(1025)
10.1016/j.scitotenv.2020.139729
10.1016/j.engstruct.2017.02.047
10.1016/j.compositesb.2011.01.028
10.3846/jcem.2020.11931
10.1016/j.rser.2015.11.058
10.1016/j.istruc.2020.06.011
10.3390/app7080751
10.1109/IWISA.2010.5473464
10.1002/qsar.200710043
10.1016/j.tws.2015.04.023
10.3390/en13112768
10.1016/j.eswa.2013.04.014
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
COVID
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ma14237134
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID PMC8658637
10_3390_ma14237134
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
TR2
TUS
7SR
8FD
ABUWG
AZQEC
COVID
DWQXO
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c383t-1967b3707da040e3375af80029e71fe92836a48a90de9cdea32b7354484d491c3
IEDL.DBID BENPR
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000734951600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1944
IngestDate Tue Nov 04 02:00:28 EST 2025
Sun Nov 09 11:49:58 EST 2025
Fri Jul 25 11:53:46 EDT 2025
Sat Nov 29 07:10:10 EST 2025
Tue Nov 18 20:49:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-1967b3707da040e3375af80029e71fe92836a48a90de9cdea32b7354484d491c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1196-8004
0000-0001-5478-9324
0000-0002-4671-1655
0000-0002-4604-9905
0000-0003-0298-7796
0000-0003-2863-3283
OpenAccessLink https://www.proquest.com/docview/2608140875?pq-origsite=%requestingapplication%
PMID 34885289
PQID 2608140875
PQPubID 2032366
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8658637
proquest_miscellaneous_2608533731
proquest_journals_2608140875
crossref_primary_10_3390_ma14237134
crossref_citationtrail_10_3390_ma14237134
PublicationCentury 2000
PublicationDate 20211124
PublicationDateYYYYMMDD 2021-11-24
PublicationDate_xml – month: 11
  year: 2021
  text: 20211124
  day: 24
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Materials
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Tang (ref_10) 2020; 216
Faris (ref_48) 2019; 10
Despotovic (ref_100) 2016; 56
ref_14
Golafshani (ref_21) 2020; 232
ref_99
ref_98
Jalal (ref_44) 2012; 43
Khademi (ref_28) 2017; 11
Lam (ref_62) 2003; 17
ref_15
Oreta (ref_42) 2011; 8
Salawu (ref_8) 1993; 17
Nguyen (ref_22) 2019; 34
Gandomi (ref_92) 2015; 88
Getahun (ref_20) 2018; 190
Elsanadedy (ref_43) 2012; 43
Saafi (ref_61) 1999; 96
Li (ref_5) 2003; 62
ref_26
Kawashima (ref_1) 2000; 46
Gandomi (ref_83) 2011; 23
Teng (ref_68) 2009; 13
ref_72
Hashmi (ref_52) 2011; 26
Cevik (ref_38) 2010; 41
Azim (ref_49) 2020; 25
ref_76
ref_75
ref_74
ref_73
Gandomi (ref_91) 2012; 24
Gandomi (ref_78) 2015; 21
Xie (ref_13) 2020; 36
Tohidi (ref_94) 2015; 94
Golbraikh (ref_102) 2002; 20
Sharifi (ref_93) 2019; 9
Murad (ref_53) 2019; 25
Azim (ref_79) 2020; 27
Azim (ref_80) 2021; 25
Smith (ref_87) 1986; 244
Cevik (ref_36) 2008; 110
Cascardi (ref_33) 2017; 140
Mansouri (ref_30) 2018; 29
Oltean (ref_70) 2004; 14
Mousavi (ref_88) 2010; 36
Pham (ref_46) 2014; 18
Sharifi (ref_97) 2020; 4
Mangalathu (ref_12) 2020; 36
Ashteyat (ref_19) 2020; 26
ref_86
ref_85
Bagheri (ref_16) 2021; 751
Ghanizadeh (ref_27) 2019; 13
Ziegel (ref_106) 1996; 38
Camoes (ref_34) 2017; 19
Cevik (ref_41) 2011; 38
Sharifi (ref_81) 2020; 86
Hoshikuma (ref_3) 1997; 123
Karbhari (ref_59) 1997; 9
Alavi (ref_82) 2012; 11
ref_58
Newman (ref_57) 1971; 11
Gandomi (ref_84) 2011; 15
ref_51
Pham (ref_35) 2017; 21
Cheok (ref_9) 1990; 87
Wang (ref_18) 2021; 36
Wang (ref_17) 2020; 258
Murad (ref_54) 2019; 11
Aval (ref_50) 2017; 12
Pala (ref_24) 2006; 20
ref_67
ref_66
Nazari (ref_55) 2013; 40
Mander (ref_63) 1988; 114
Mozumder (ref_32) 2016; 42
Hosseinpour (ref_95) 2018; 38
Ruggieri (ref_11) 2021; 132
Sharifi (ref_96) 2019; 22
Qiu (ref_89) 2020; 737
Roy (ref_101) 2008; 27
Fardis (ref_56) 1983; 35
ref_31
Liu (ref_25) 2020; 746
Naderpour (ref_39) 2010; 92
Mashrei (ref_45) 2013; 40
Delgado (ref_6) 2012; 94
Sadrmomtazi (ref_23) 2013; 42
Samaan (ref_60) 1998; 124
Arabshahi (ref_71) 2020; 23
Castillo (ref_7) 2018; 203
Gholampour (ref_103) 2017; 130
Realfonzo (ref_69) 2011; 42
Pyo (ref_90) 2020; 741
ref_104
ref_105
ref_107
Alavi (ref_77) 2010; 26
ref_47
Takemura (ref_2) 1997; 43
Fediuk (ref_108) 2016; 116
ref_40
Reddy (ref_29) 2018; 12
Sheikh (ref_4) 1993; 90
Bisby (ref_64) 2005; 102
Cevik (ref_37) 2008; 43
Matthys (ref_65) 2005; 102
References_xml – volume: 132
  start-page: 103936
  year: 2021
  ident: ref_11
  article-title: Machine-learning based vulnerability analysis of existing buildings
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103936
– volume: 102
  start-page: 62
  year: 2005
  ident: ref_64
  article-title: Comparison of confinement models for fiber reinforced polymer-wrapped concrete
  publication-title: ACI Struct J.
– volume: 12
  start-page: 490
  year: 2018
  ident: ref_29
  article-title: Engineering, Predicting the strength properties of slurry infiltrated fibrous concrete using artificial neural network
  publication-title: Front. Struct. Civ. Eng.
  doi: 10.1007/s11709-017-0445-3
– ident: ref_74
– ident: ref_51
– volume: 10
  start-page: 2901
  year: 2019
  ident: ref_48
  article-title: Automatic selection of hidden neurons and weights in neural networks using grey wolf optimizer based on a hybrid encoding scheme
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-018-00913-2
– volume: 38
  start-page: 193
  year: 1996
  ident: ref_106
  article-title: Data Analysis Handbook
  publication-title: Technometrics
– ident: ref_105
  doi: 10.1109/IEEECONF51154.2020.9319950
– ident: ref_15
  doi: 10.3390/su12114412
– volume: 11
  start-page: 169
  year: 2019
  ident: ref_54
  article-title: Predictive compressive strength models for green concrete
  publication-title: Int. J. Struct. Integr.
  doi: 10.1108/IJSI-05-2019-0044
– volume: 15
  start-page: 363
  year: 2011
  ident: ref_84
  article-title: Formulation of uplift capacity of suction caissons using multi expression programming
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-011-1117-9
– volume: 38
  start-page: 5662
  year: 2011
  ident: ref_41
  article-title: Modeling strength enhancement of FRP confined concrete cylinders using soft computing
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.10.069
– ident: ref_104
  doi: 10.3390/ma14164675
– volume: 29
  start-page: 873
  year: 2018
  ident: ref_30
  article-title: Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2492-4
– volume: 13
  start-page: 269
  year: 2009
  ident: ref_68
  article-title: Refinement of a Design-Oriented Stress–Strain Model for FRP-Confined Concrete
  publication-title: J. Compos. Constr.
  doi: 10.1061/(ASCE)CC.1943-5614.0000012
– volume: 8
  start-page: 597
  year: 2011
  ident: ref_42
  article-title: Ongpeng, and Concrete, Modeling the confined compressive strength of hybrid circular concrete columns using neural networks
  publication-title: Comput. Concr.
  doi: 10.12989/cac.2011.8.5.597
– volume: 12
  start-page: 13
  year: 2017
  ident: ref_50
  article-title: Estimating Shear Strength of Short Rectangular Reinforced Concrete Columns Using Nonlinear Regression and Gene Expression Programming
  publication-title: Structures
  doi: 10.1016/j.istruc.2017.07.002
– volume: 25
  start-page: 891
  year: 2021
  ident: ref_80
  article-title: Prediction of Catenary Action Capacity of RC Beam-Column Substructures under a Missing Column Scenario Using Evolutionary Algorithm
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-021-0431-0
– volume: 43
  start-page: 2990
  year: 2012
  ident: ref_44
  article-title: Strength enhancement modeling of concrete cylinders confined with CFRP composites using artificial neural networks
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2012.05.044
– volume: 88
  start-page: 63
  year: 2015
  ident: ref_92
  article-title: Assessment of artificial neural network and genetic programming as predictive tools
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2015.05.007
– ident: ref_26
  doi: 10.3390/ma13010174
– volume: 258
  start-page: 120678
  year: 2020
  ident: ref_17
  article-title: Biochar as green additives in cement-based composites with carbon dioxide curing
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120678
– volume: 23
  start-page: 248
  year: 2011
  ident: ref_83
  article-title: Nonlinear Genetic-Based Models for Prediction of Flow Number of Asphalt Mixtures
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0000154
– volume: 22
  start-page: 2192
  year: 2019
  ident: ref_96
  article-title: Neural networks for lateral torsional buckling strength assessment of cellular steel I-beams
  publication-title: Adv. Struct. Eng.
  doi: 10.1177/1369433219836176
– volume: 20
  start-page: 769
  year: 2006
  ident: ref_24
  article-title: Predicting the compressive strength and slump of high strength concrete using neural network
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2005.01.054
– ident: ref_107
  doi: 10.1109/IEEECONF51154.2020.9319980
– volume: 43
  start-page: 849
  year: 1997
  ident: ref_2
  article-title: Effect of loading hysteresis on ductility capacity of reinforced concrete bridge piers
  publication-title: J. Struct Eng.
– volume: 11
  start-page: 963
  year: 1971
  ident: ref_57
  article-title: Solid mechanics, and e. design, Failure theories and design criteria for plain concrete
  publication-title: Expert Syst. Appl.
– volume: 41
  start-page: 527
  year: 2010
  ident: ref_38
  article-title: Soft computing based formulation for strength enhancement of CFRP confined concrete cylinders
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2009.10.015
– volume: 42
  start-page: 205
  year: 2013
  ident: ref_23
  article-title: Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.01.016
– ident: ref_72
  doi: 10.7551/mitpress/1090.001.0001
– volume: 43
  start-page: 228
  year: 2012
  ident: ref_43
  article-title: Prediction of strength parameters of FRP-confined concrete
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2011.08.043
– volume: 123
  start-page: 624
  year: 1997
  ident: ref_3
  article-title: Stress-Strain Model for Confined Reinforced Concrete in Bridge Piers
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)0733-9445(1997)123:5(624)
– volume: 42
  start-page: 1129
  year: 2016
  ident: ref_32
  article-title: Support Vector Regression Approach to Predict the Strength of FRP Confined Concrete
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-016-2340-y
– ident: ref_47
– volume: 87
  start-page: 630
  year: 1990
  ident: ref_9
  article-title: Behavior of 1/6-scale model bridge columns subjected to inelastic cyclic loading
  publication-title: Struct. J.
– volume: 190
  start-page: 517
  year: 2018
  ident: ref_20
  article-title: Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.09.097
– ident: ref_86
– volume: 26
  start-page: 111
  year: 2010
  ident: ref_77
  article-title: Multi expression programming: A new approach to formulation of soil classification
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-009-0140-7
– ident: ref_67
– volume: 114
  start-page: 1804
  year: 1988
  ident: ref_63
  article-title: Theoretical Stress-Strain Model for Confined Concrete
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)
– volume: 18
  start-page: 04014019
  year: 2014
  ident: ref_46
  article-title: Predicting stress and strain of FRP-confined square/rectangular columns using artificial neural networks
  publication-title: J. Compos. Constr.
  doi: 10.1061/(ASCE)CC.1943-5614.0000477
– ident: ref_73
– volume: 92
  start-page: 2817
  year: 2010
  ident: ref_39
  article-title: Prediction of FRP-confined compressive strength of concrete using artificial neural networks
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2010.04.008
– volume: 17
  start-page: 471
  year: 2003
  ident: ref_62
  article-title: Design-oriented stress–strain model for FRP-confined concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/S0950-0618(03)00045-X
– volume: 4
  start-page: 173
  year: 2020
  ident: ref_97
  article-title: Shear strength assessment of slender reinforced normal concrete beams using artificial neural networks
  publication-title: J. Concr. Struct. Mater.
– volume: 36
  start-page: 183
  year: 2020
  ident: ref_12
  article-title: Classifying earthquake damage to buildings using machine learning
  publication-title: Earthq. Spectra
  doi: 10.1177/8755293019878137
– ident: ref_75
– volume: 741
  start-page: 140162
  year: 2020
  ident: ref_90
  article-title: Estimation of heavy metals using deep neural network with visible and infrared spectroscopy of soil
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.140162
– volume: 232
  start-page: 117266
  year: 2020
  ident: ref_21
  article-title: Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117266
– volume: 216
  start-page: 110676
  year: 2020
  ident: ref_10
  article-title: Axial compression behavior of recycled-aggregate-concrete-filled GFRP–steel composite tube columns
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.110676
– volume: 19
  start-page: 233
  year: 2017
  ident: ref_34
  article-title: Compressive strength prediction of CFRP confined concrete using data mining techniques
  publication-title: Comput. Concr.
  doi: 10.12989/cac.2017.19.3.233
– volume: 110
  start-page: 3087
  year: 2008
  ident: ref_36
  article-title: A genetic-programming-based formulation for the strength enhancement of fiber-reinforced-polymer-confined concrete cylinders
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.28839
– volume: 116
  start-page: 012020
  year: 2016
  ident: ref_108
  article-title: High-strength fibrous concrete of Russian Far East natural materials
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/116/1/012020
– volume: 21
  start-page: 761
  year: 2015
  ident: ref_78
  article-title: New design equations for elastic modulus of concrete using multi expression programming
  publication-title: J. Civ. Eng. Manag.
  doi: 10.3846/13923730.2014.893910
– volume: 35
  start-page: 242
  year: 1983
  ident: ref_56
  article-title: Discussion: FRP-encased concrete as a structural material
  publication-title: Mag. Concr. Res.
  doi: 10.1680/macr.1983.35.125.242
– volume: 43
  start-page: 751
  year: 2008
  ident: ref_37
  article-title: Neural network modeling of strength enhancement for CFRP confined concrete cylinders
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2007.01.036
– volume: 26
  start-page: 1639
  year: 2011
  ident: ref_52
  article-title: Statistical downscaling of watershed precipitation using Gene Expression Programming (GEP)
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2011.07.007
– volume: 11
  start-page: 90
  year: 2017
  ident: ref_28
  article-title: Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete
  publication-title: Front. Struct. Civ. Eng.
  doi: 10.1007/s11709-016-0363-9
– volume: 21
  start-page: 04016088
  year: 2017
  ident: ref_35
  article-title: Axial Impact Resistance of FRP-Confined Concrete
  publication-title: J. Compos. Constr.
  doi: 10.1061/(ASCE)CC.1943-5614.0000744
– volume: 62
  start-page: 83
  year: 2003
  ident: ref_5
  article-title: Investigation into FRP repaired RC columns
  publication-title: Compos. Struct.
  doi: 10.1016/S0263-8223(03)00094-1
– volume: 34
  start-page: 316
  year: 2019
  ident: ref_22
  article-title: Deep neural network with high-order neuron for the prediction of foamed concrete strength
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12422
– volume: 102
  start-page: 258
  year: 2005
  ident: ref_65
  article-title: Axial load behavior of large-scale columns confined with fiber reinforced polymer composites
  publication-title: ACI Struct J.
– volume: 36
  start-page: 1769
  year: 2020
  ident: ref_13
  article-title: The promise of implementing machine learning in earthquake engineering: A state-of-the-art review
  publication-title: Earthq. Spectra
  doi: 10.1177/8755293020919419
– ident: ref_85
  doi: 10.1109/ICCIS.2012.207
– volume: 24
  start-page: 1132
  year: 2012
  ident: ref_91
  article-title: Novel Approach to Strength Modeling of Concrete under Triaxial Compression
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0000494
– volume: 25
  start-page: 773
  year: 2019
  ident: ref_53
  article-title: Predictive model to the bond strength of frp-to-concrete under direct pullout using gene expression programming
  publication-title: J. Civ. Eng. Manag.
  doi: 10.3846/jcem.2019.10798
– volume: 40
  start-page: 812
  year: 2013
  ident: ref_45
  article-title: Application of artificial neural networks to predict the bond strength of FRP-to-concrete joints
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2012.11.109
– volume: 9
  start-page: 251
  year: 2019
  ident: ref_93
  article-title: Adaptive neuro-fuzzy inference system and stepwise regression for compressive strength assessment of concrete containing metakaolin
  publication-title: Int. J. Optim. Civ. Eng.
– ident: ref_58
– volume: 36
  start-page: 289
  year: 2021
  ident: ref_18
  article-title: Shear loading detection of through bolts in bridge structures using a percussion-based one-dimensional memory-augmented convolutional neural network
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12602
– ident: ref_98
– volume: 746
  start-page: 141182
  year: 2020
  ident: ref_25
  article-title: Recycling drinking water treatment sludge into eco-concrete blocks with CO2 curing: Durability and leachability
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.141182
– volume: 86
  start-page: 105842
  year: 2020
  ident: ref_81
  article-title: Consolidation assessment using Multi Expression Programming
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105842
– volume: 17
  start-page: 113
  year: 1993
  ident: ref_8
  article-title: Review of full-scale dynamic testing of bridge columns
  publication-title: Eng. Struct.
  doi: 10.1016/0141-0296(95)92642-L
– volume: 36
  start-page: 759
  year: 2010
  ident: ref_88
  article-title: A data mining approach to compressive strength of CFRP-confined concrete cylinders
  publication-title: Struct. Eng. Mech.
  doi: 10.12989/sem.2010.36.6.759
– ident: ref_99
  doi: 10.3390/su13137465
– volume: 130
  start-page: 122
  year: 2017
  ident: ref_103
  article-title: New formulations for mechanical properties of recycled aggregate concrete using gene expression programming
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.10.114
– volume: 25
  start-page: 212
  year: 2020
  ident: ref_49
  article-title: Prediction model for compressive arch action capacity of RC frame structures under column removal scenario using gene expression programming
  publication-title: Structures
  doi: 10.1016/j.istruc.2020.02.028
– volume: 23
  start-page: 225
  year: 2020
  ident: ref_71
  article-title: Development of applicable design models for concrete columns confined with aramid fiber reinforced polymer using Multi-Expression Programming
  publication-title: Structures
  doi: 10.1016/j.istruc.2019.09.019
– volume: 751
  start-page: 141418
  year: 2021
  ident: ref_16
  article-title: Investigating plant uptake of organic contaminants through transpiration stream concentration factor and neural network models
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.141418
– volume: 20
  start-page: 269
  year: 2002
  ident: ref_102
  article-title: Beware of q2!
  publication-title: J. Mol. Graph. Model.
  doi: 10.1016/S1093-3263(01)00123-1
– volume: 13
  start-page: 215
  year: 2019
  ident: ref_27
  article-title: Modeling of bentonite/sepiolite plastic concrete compressive strength using artificial neural network and support vector machine
  publication-title: Front. Struct. Civ. Eng.
  doi: 10.1007/s11709-018-0489-z
– ident: ref_66
– volume: 46
  start-page: 767
  year: 2000
  ident: ref_1
  article-title: A cyclic loading test for clarifying the plastic hinge length of reinforced concrete piers
  publication-title: J. Struct. Eng. A
– volume: 9
  start-page: 185
  year: 1997
  ident: ref_59
  article-title: Composite Jacketed Concrete under Uniaxial Compression—Verification of Simple Design Equations
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)0899-1561(1997)9:4(185)
– ident: ref_76
  doi: 10.1007/978-3-540-24687-9_99
– volume: 203
  start-page: 382
  year: 2018
  ident: ref_7
  article-title: Seismic behavior of RC columns flexurally strengthened with FRP sheets and FRP anchors
  publication-title: Compos. Struct
  doi: 10.1016/j.compstruct.2018.07.029
– volume: 94
  start-page: 1280
  year: 2012
  ident: ref_6
  article-title: Retrofit of RC hollow piers with CFRP sheets
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2011.11.032
– volume: 124
  start-page: 1025
  year: 1998
  ident: ref_60
  article-title: Model of Concrete Confined by Fiber Composites
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)0733-9445(1998)124:9(1025)
– volume: 737
  start-page: 139729
  year: 2020
  ident: ref_89
  article-title: Water temperature forecasting based on modified artificial neural network methods: Two cases of the Yangtze River
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.139729
– volume: 140
  start-page: 199
  year: 2017
  ident: ref_33
  article-title: An Artificial Neural Networks model for the prediction of the compressive strength of FRP-confined concrete circular columns
  publication-title: Eng. Struct
  doi: 10.1016/j.engstruct.2017.02.047
– volume: 244
  start-page: 145
  year: 1986
  ident: ref_87
  article-title: Probability and statistics in civil engineering
  publication-title: Collins Prof. Tech. Books
– volume: 42
  start-page: 736
  year: 2011
  ident: ref_69
  article-title: Concrete confined by FRP systems: Confinement efficiency and design strength models
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2011.01.028
– volume: 26
  start-page: 189
  year: 2020
  ident: ref_19
  article-title: Compressive strength prediction of lightweight short columns at elevated temperature using gene expression programing and artificial neural network
  publication-title: J. Civ. Eng. Manag.
  doi: 10.3846/jcem.2020.11931
– volume: 56
  start-page: 246
  year: 2016
  ident: ref_100
  article-title: Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.11.058
– volume: 27
  start-page: 1231
  year: 2020
  ident: ref_79
  article-title: Semi-analytical model for compressive arch action capacity of RC frame structures
  publication-title: Structures
  doi: 10.1016/j.istruc.2020.06.011
– ident: ref_31
  doi: 10.3390/app7080751
– ident: ref_40
  doi: 10.1109/IWISA.2010.5473464
– volume: 14
  start-page: 285
  year: 2004
  ident: ref_70
  article-title: A comparison of several linear genetic programming techniques
  publication-title: Complex. Syst.
– volume: 11
  start-page: 124
  year: 2012
  ident: ref_82
  article-title: Formulation of Secant and Reloading Soil Deformation Moduli Using Multi Expression Programming
  publication-title: Eng. Comput.
– volume: 27
  start-page: 302
  year: 2008
  ident: ref_101
  article-title: On Some Aspects of Variable Selection for Partial Least Squares Regression Models
  publication-title: QSAR Comb. Sci.
  doi: 10.1002/qsar.200710043
– volume: 94
  start-page: 359
  year: 2015
  ident: ref_94
  article-title: Neural networks for inelastic distortional buckling capacity assessment of steel I-beams
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2015.04.023
– ident: ref_14
  doi: 10.3390/en13112768
– volume: 40
  start-page: 5427
  year: 2013
  ident: ref_55
  article-title: Modeling the compressive strength of geopolymeric binders by gene expression programming-GEP
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.04.014
– volume: 96
  start-page: 500
  year: 1999
  ident: ref_61
  article-title: Behavior of concrete columns confined with fiber reinforced polymer tubes
  publication-title: Mater. J.
– volume: 90
  start-page: 542
  year: 1993
  ident: ref_4
  article-title: Reinforced concrete columns confined by circular spirals and hoops
  publication-title: ACI Struct. J.
– volume: 38
  start-page: 207
  year: 2018
  ident: ref_95
  article-title: Stepwise regression modeling for compressive strength assessment of mortar containing metakaolin
  publication-title: Int. J. Model. Simul.
SSID ssj0000331829
Score 2.4751549
Snippet This study provides the application of a machine learning-based algorithm approach names “Multi Expression Programming” (MEP) to forecast the compressive...
This study provides the application of a machine learning-based algorithm approach names "Multi Expression Programming" (MEP) to forecast the compressive...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 7134
SubjectTerms Algorithms
Artificial intelligence
Carbon fiber reinforced concretes
Carbon fiber reinforced plastics
Civil engineering
Compressive strength
Concrete
Construction materials
Diameters
Fiber reinforced polymers
Gene expression
Genetic algorithms
Genetic engineering
Machine learning
Mathematical functions
Mathematical models
Mechanical properties
Modulus of elasticity
Parametric analysis
Parametric statistics
Performance evaluation
Rehabilitation
Reliability analysis
Research methodology
Researchers
Retrofitting
Soft computing
Statistical analysis
Structural members
Thickness
Variables
Title Forecasting Strength of CFRP Confined Concrete Using Multi Expression Programming
URI https://www.proquest.com/docview/2608140875
https://www.proquest.com/docview/2608533731
https://pubmed.ncbi.nlm.nih.gov/PMC8658637
Volume 14
WOSCitedRecordID wos000734951600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: KB.
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: PIMPY
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED7Rsgf2sAEbWgdDnsbLHkKT2Injp2mgVkwbVYa2qTxFxnZppZGyNkz7-dwlbksltBfeYtmRLZ_P_u78-Q7gSHCdGJeaIBPC1K6bQKFpHQh6t4mQmTckml_f5GCQDYcq9w63uadVLvbEeqO2U0M-8i7ibgrOhPD60-2fgLJG0e2qT6HRgk2KVIbrfPOkN8gvll6WkOOajVUTl5TjILo3OiImSMTF-km0gpfr5MgHp03_5VPHuQ0vPM5kn5uFsQMbrtyF5w-iD76C75SW0-g5EZ8Z3U6X19WYTUfstH-RM3oKiG0tfSCyrByr2QWsfrHLev88gbZkecPwusHK1_Cz3_txehb4DAuBQcu0ClD95BWXobQaldlxLhM9IgipnIxGTiH2SLXItAqtU8Y6zeMryRM06YQVKjJ8D9rltHRvgClrRYLmTmqVFolFmONkplL8NRRok4Qd-LiY7cL48OOUBeN3gWYISaZYSaYDH5Ztb5ugG4-2OlhIoPCKNy9W09-B98tqVBm6B9Glm941bRDlSh51QK4Je9kbBd1erykn4zr4doaQLeXy7f8734etmMgvURTE4gDa1ezOvYNn5m81mc8OoSWH2aFfq1j6enKMpfzLeX55DxqV9Qs
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB3BUon20EJpxRbaGrUcOEQksRPHhwohyooVyyqtANFTamxvQYIsZUNp_1R_Y2fysctKqDcO3CLZieXMs_3Gfp4B-Ci4joyLjZcIYcqtG0-ha-0JureJlJlXIprjnuz3k5MTlc7A3-YuDMkqmzmxnKjt0NAe-SbybgrOhPR66-qnR1mj6HS1SaFRwWLf_blFl230qfsZ7bsehp3dw509r84q4Bn0xgoPISdPufSl1Qhgx7mM9IBok3IyGDiF622sRaKVb50y1mkenkoeoRsjrFCB4fjdWZgTBPYWzKXdg_TbeFfH5zhGQlXFQeXY6c1LHZDyJOBieuWb0NlpMead1a3z4rH9lwV4XvNotl0BfxFmXP4Snt2JrrgEXyjtqNEjEnYzOn3PfxRnbDhgO52vKaOrjljX0gMy58KxUj3ByhvJbPd3LRDOWVop2C6x8BUcPUifXkMrH-ZuGZiyVkTozsVWaRFZpHFOJirGV32BPpffho3Gupmpw6tTlo-LDN0sQkI2QUIbPozrXlVBRe6ttdpYPKsnllE2MXcb1sbFOCXQOY_O3fCmqoMsXvKgDXIKXOPWKKj4dEl-flYGF0-QksZcvvl_4-9hfu_woJf1uv39FXgaktAnCLxQrEKruL5xb-GJ-VWcj67f1SOEwfeHBt8_cMlMUQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7RpargUNrSim2hddX2wCHaJHbi-FBVFbDqClgF1CI4BWN7AQmywIY-_hq_jpk8dlmp4saBWyQ7seIZj7-xv5kB-Cy4joyLjZcIYcqjG0-ha-0JittEyMwrEs3eluz3k_19lc7ATRMLQ7TKxiaWhtoODZ2RdxB3U3ImhNedQU2LSNe73y4uPaogRTetTTmNSkU23b8_6L6NvvbWUdZfwrC78XPth1dXGPAMemaFh-onj7j0pdWozI5zGekBQSjlZDBwCvfeWItEK986ZazTPDySPEKXRlihAsPxu09gFiG5CFswm_a204PxCY_Pcb2EqsqJynECOuc6IBZKwMX0LjiBttPEzDs7XXfhMc_RC3he42v2vVoQL2HG5a9g_k7WxUXYoXKkRo-I8M3oVj4_Lk7YcMDWurspoxBI7GvpARF14VjJqmBlpDLb-FsTh3OWVsy2c2x8Db8e5J_eQCsf5m4JmLJWROjmxVZpEVmEd04mKsZXfYG-mN-G1UbSmanTrlP1j7MM3S_SimyiFW34NO57USUb-W-v5Ub6WW1wRtlE9G34OG5GU0H3Pzp3w-uqD6J7yYM2yClFG49GycanW_LTkzLpeIJQNeby7f2Df4BnqHHZVq-_-Q7mQuL_lHGby9Aqrq7dCjw1v4vT0dX7erEwOHxo3bsF7qBVDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+Strength+of+CFRP+Confined+Concrete+Using+Multi+Expression+Programming&rft.jtitle=Materials&rft.au=Ilyas%2C+Israr&rft.au=Zafar%2C+Adeel&rft.au=Javed%2C+Muhammad+Faisal&rft.au=Farooq%2C+Furqan&rft.date=2021-11-24&rft.pub=MDPI&rft.eissn=1996-1944&rft.volume=14&rft.issue=23&rft_id=info:doi/10.3390%2Fma14237134&rft_id=info%3Apmid%2F34885289&rft.externalDocID=PMC8658637
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon