Dynamic Electrical Pathway Tuning in Neuromorphic Nanowire Networks
Neurobiology‐inspired phenomena such as winner‐takes‐all competition and critical dynamics have been recently reported to arise in neuromorphic nanowire networks. These are unique systems where interactions between memristive elements creates emergent conductance pathways between discrete electrodes...
Gespeichert in:
| Veröffentlicht in: | Advanced functional materials Jg. 30; H. 43 |
|---|---|
| Hauptverfasser: | , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken
Wiley Subscription Services, Inc
01.10.2020
|
| Schlagworte: | |
| ISSN: | 1616-301X, 1616-3028 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Neurobiology‐inspired phenomena such as winner‐takes‐all competition and critical dynamics have been recently reported to arise in neuromorphic nanowire networks. These are unique systems where interactions between memristive elements creates emergent conductance pathways between discrete electrodes. This mode of operation can offer substantial advantages to create a truly concomitant plastic‐static system for integration in neuromorphic devices. However, critical aspects such as pathway controllability and stability are yet to be explored. In this study, pathway formation in self‐assembled neuromorphic networks formed by Ag nanowires decorated with TiO2 nanoparticles is investigated. Direct visualization of pathway formation through a neuromorphic network is attained using the lock‐in thermography technique. Using this technique, it is demonstrated that how networks preserve information from previously used pathways through increased local junction connectivity. This effect directly reshapes subsequent formation of pathways whenever the spatial location of the electrodes is dynamically changed. Combining these results with conventional current–voltage measurements, which show that the network electrically acts as a volatile switching memristor, a unique interaction between short‐term and long‐term memory arises. This produces unexpected collective dynamical states of potentiation and inhibition of network conductance whenever different spatiotemporal signals are dynamically fed to the network.
Current pathway formation in neuromorphic networks is directly visualized with the lock‐in thermography technique that uses infrared sensitive camera to detect heat radiation. The network recycles parts of previously used pathways to create new ones when multiple electrodes are used. This effect is used to dynamically tune the conductance of the system by alternating voltage pulses on different electrodes. |
|---|---|
| AbstractList | Neurobiology‐inspired phenomena such as winner‐takes‐all competition and critical dynamics have been recently reported to arise in neuromorphic nanowire networks. These are unique systems where interactions between memristive elements creates emergent conductance pathways between discrete electrodes. This mode of operation can offer substantial advantages to create a truly concomitant plastic‐static system for integration in neuromorphic devices. However, critical aspects such as pathway controllability and stability are yet to be explored. In this study, pathway formation in self‐assembled neuromorphic networks formed by Ag nanowires decorated with TiO2 nanoparticles is investigated. Direct visualization of pathway formation through a neuromorphic network is attained using the lock‐in thermography technique. Using this technique, it is demonstrated that how networks preserve information from previously used pathways through increased local junction connectivity. This effect directly reshapes subsequent formation of pathways whenever the spatial location of the electrodes is dynamically changed. Combining these results with conventional current–voltage measurements, which show that the network electrically acts as a volatile switching memristor, a unique interaction between short‐term and long‐term memory arises. This produces unexpected collective dynamical states of potentiation and inhibition of network conductance whenever different spatiotemporal signals are dynamically fed to the network.
Current pathway formation in neuromorphic networks is directly visualized with the lock‐in thermography technique that uses infrared sensitive camera to detect heat radiation. The network recycles parts of previously used pathways to create new ones when multiple electrodes are used. This effect is used to dynamically tune the conductance of the system by alternating voltage pulses on different electrodes. Neurobiology‐inspired phenomena such as winner‐takes‐all competition and critical dynamics have been recently reported to arise in neuromorphic nanowire networks. These are unique systems where interactions between memristive elements creates emergent conductance pathways between discrete electrodes. This mode of operation can offer substantial advantages to create a truly concomitant plastic‐static system for integration in neuromorphic devices. However, critical aspects such as pathway controllability and stability are yet to be explored. In this study, pathway formation in self‐assembled neuromorphic networks formed by Ag nanowires decorated with TiO 2 nanoparticles is investigated. Direct visualization of pathway formation through a neuromorphic network is attained using the lock‐in thermography technique. Using this technique, it is demonstrated that how networks preserve information from previously used pathways through increased local junction connectivity. This effect directly reshapes subsequent formation of pathways whenever the spatial location of the electrodes is dynamically changed. Combining these results with conventional current–voltage measurements, which show that the network electrically acts as a volatile switching memristor, a unique interaction between short‐term and long‐term memory arises. This produces unexpected collective dynamical states of potentiation and inhibition of network conductance whenever different spatiotemporal signals are dynamically fed to the network. Neurobiology‐inspired phenomena such as winner‐takes‐all competition and critical dynamics have been recently reported to arise in neuromorphic nanowire networks. These are unique systems where interactions between memristive elements creates emergent conductance pathways between discrete electrodes. This mode of operation can offer substantial advantages to create a truly concomitant plastic‐static system for integration in neuromorphic devices. However, critical aspects such as pathway controllability and stability are yet to be explored. In this study, pathway formation in self‐assembled neuromorphic networks formed by Ag nanowires decorated with TiO2 nanoparticles is investigated. Direct visualization of pathway formation through a neuromorphic network is attained using the lock‐in thermography technique. Using this technique, it is demonstrated that how networks preserve information from previously used pathways through increased local junction connectivity. This effect directly reshapes subsequent formation of pathways whenever the spatial location of the electrodes is dynamically changed. Combining these results with conventional current–voltage measurements, which show that the network electrically acts as a volatile switching memristor, a unique interaction between short‐term and long‐term memory arises. This produces unexpected collective dynamical states of potentiation and inhibition of network conductance whenever different spatiotemporal signals are dynamically fed to the network. |
| Author | Li, Qiao Zhu, Ruomin Diaz‐Alvarez, Adrian Hochstetter, Joel Loeffler, Alon Shingaya, Yoshitaka Iguchi, Ryo Uchida, Ken‐ichi Nakayama, Tomonobu Kuncic, Zdenka |
| Author_xml | – sequence: 1 givenname: Qiao surname: Li fullname: Li, Qiao organization: National Institute for Materials Science (NIMS) – sequence: 2 givenname: Adrian orcidid: 0000-0003-4638-8488 surname: Diaz‐Alvarez fullname: Diaz‐Alvarez, Adrian email: diazalvarez.adrian@nims.go.jp organization: National Institute for Materials Science (NIMS) – sequence: 3 givenname: Ryo surname: Iguchi fullname: Iguchi, Ryo organization: National Institute for Materials Science (NIMS) – sequence: 4 givenname: Joel surname: Hochstetter fullname: Hochstetter, Joel organization: University of Sydney – sequence: 5 givenname: Alon surname: Loeffler fullname: Loeffler, Alon organization: University of Sydney – sequence: 6 givenname: Ruomin surname: Zhu fullname: Zhu, Ruomin organization: University of Sydney – sequence: 7 givenname: Yoshitaka surname: Shingaya fullname: Shingaya, Yoshitaka organization: National Institute for Materials Science (NIMS) – sequence: 8 givenname: Zdenka surname: Kuncic fullname: Kuncic, Zdenka organization: University of Sydney – sequence: 9 givenname: Ken‐ichi surname: Uchida fullname: Uchida, Ken‐ichi organization: Tohoku University – sequence: 10 givenname: Tomonobu surname: Nakayama fullname: Nakayama, Tomonobu email: nakayama.tomonobu@nims.go.jp organization: National Institute for Materials Science (NIMS) |
| BookMark | eNqFkE1LAzEQhoMo2Favnhc8b002-5Vj6YcKtXqo4C2k2YlN3U1qssuy_94tlQqCeJpheJ4Z5h2ic2MNIHRD8JhgHN2JQlXjCEcY0zRjZ2hAUpKGFEf5-aknb5do6P0OY5JlNB6g6awzotIymJcga6elKIMXUW9b0QXrxmjzHmgTrKBxtrJuv-3JlTC21Q76ad1a9-Gv0IUSpYfr7zpCr4v5evoQLp_vH6eTZShpTlkIJJMF5KAyhoXcpHksKRRU4mSTU8LEJpWMSiVBEZmQSDBKmUoKqggQgYHQEbo97t07-9mAr_nONs70J3kUJzRN--eznoqPlHTWeweKS12LWltTO6FLTjA_xMUPcfFTXL02_qXtna6E6_4W2FFodQndPzSfzBZPP-4Xy_iAZA |
| CitedBy_id | crossref_primary_10_1063_5_0137686 crossref_primary_10_1088_2634_4386_ac4d86 crossref_primary_10_1002_adma_202201248 crossref_primary_10_3389_fnins_2022_736642 crossref_primary_10_1038_s41467_025_58741_2 crossref_primary_10_3390_nano15100724 crossref_primary_10_1088_2752_5724_acc678 crossref_primary_10_1038_s41467_021_24260_z crossref_primary_10_1080_14686996_2023_2178815 crossref_primary_10_3389_fphy_2024_1400919 crossref_primary_10_1038_s41467_023_42470_5 crossref_primary_10_1002_sstr_202500330 crossref_primary_10_1088_1361_6528_ac43e8 crossref_primary_10_1063_5_0220628 crossref_primary_10_1002_adfm_202302929 crossref_primary_10_1039_D4CP03242J crossref_primary_10_1002_aelm_202200631 crossref_primary_10_1039_D1NR03944J crossref_primary_10_1088_2632_959X_ad2999 crossref_primary_10_1002_aelm_202500159 crossref_primary_10_1038_s41467_023_40939_x crossref_primary_10_3390_electronics11101610 crossref_primary_10_1002_aelm_202400750 crossref_primary_10_1088_1361_6463_ad7a82 crossref_primary_10_1002_adfm_202312989 crossref_primary_10_1038_s41563_021_01099_9 crossref_primary_10_1038_s41598_021_92170_7 crossref_primary_10_1088_2634_4386_ac4a83 crossref_primary_10_1088_2752_5724_accd87 crossref_primary_10_1002_smll_202007344 |
| Cites_doi | 10.1021/nl904092h 10.1038/s41467-017-00869-x 10.1038/nmat4756 10.1038/nature06932 10.1038/s41586-018-0143-x 10.1126/science.1077229 10.1002/adma.201604457 10.1038/s41598-017-05480-0 10.1088/0957-4484/24/38/384004 10.1103/PhysRevE.92.052134 10.1002/adfm.201001520 10.1002/adfm.201401304 10.1002/pssr.201900029 10.1007/978-3-642-02417-7 10.1038/srep28233 10.1021/acsami.0c11157 10.1126/sciadv.aau3407 10.1039/C4NR02338B 10.1038/s41598-017-08244-y 10.1038/s41467-018-04482-4 10.1002/admt.201800589 10.1088/1361-6528/ab76ec 10.1016/j.matlet.2011.05.076 10.1080/17686733.2018.1563349 10.1038/ncomms13754 10.1007/s11432-017-9424-y 10.1038/nnano.2012.240 10.1038/s41598-019-51330-6 10.1371/journal.pone.0042772 10.1002/aisy.201900084 10.7567/JJAP.53.01AA02 10.1103/PhysRevE.84.046703 10.1002/adma.200903680 10.1177/1073858416667720 10.1039/C8FD00109J 10.1063/1.5037835 10.1021/acsami.7b10666 10.1038/nature03190 10.1021/acs.nanolett.6b03270 10.1038/s41467-018-05517-6 10.1021/nl303416h 10.1038/nmat3054 10.1109/TED.2017.2766063 10.1016/j.jhazmat.2010.01.013 10.1038/s41598-019-50802-z 10.1103/PhysRevLett.102.026801 10.1166/nnl.2014.1888 10.1103/PhysRevB.98.014402 10.1021/nl034312m 10.1002/aelm.201800909 10.1021/nn1010667 10.1038/nnano.2008.160 10.1088/1468-6996/16/4/045004 10.1021/acsami.7b04839 10.3389/fnins.2020.00184 10.1063/1.5140579 10.1002/adfm.201704862 10.1007/978-3-319-02630-5_10 10.1063/1.5037817 10.1038/nmat2023 10.1038/s41467-017-02337-y |
| ContentType | Journal Article |
| Copyright | 2020 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2020 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/adfm.202003679 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | CrossRef Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1616-3028 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_adfm_202003679 ADFM202003679 |
| Genre | article |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAMMB AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 O8X 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c3839-e17cde8ef790acb684c3ed3c05b8319ab6c93cfcef1c512a9339f5d3f1e1a0e13 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 43 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000565644400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1616-301X |
| IngestDate | Sun Nov 09 06:43:12 EST 2025 Tue Nov 18 21:48:49 EST 2025 Sat Nov 29 07:20:51 EST 2025 Wed Jan 22 16:59:49 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 43 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3839-e17cde8ef790acb684c3ed3c05b8319ab6c93cfcef1c512a9339f5d3f1e1a0e13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4638-8488 |
| PQID | 2453662027 |
| PQPubID | 2045204 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2453662027 crossref_citationtrail_10_1002_adfm_202003679 crossref_primary_10_1002_adfm_202003679 wiley_primary_10_1002_adfm_202003679_ADFM202003679 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-01 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Advanced functional materials |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 7 2010; 10 2017; 8 2013; 24 2018; 124 2019; 13 2019; 16 2011; 10 2014; 24 2020; 14 2008; 3 2020; 10 2013; 8 2012; 12 2017; 9 2010; 22 2018; 9 2003; 3 2007; 6 2011; 21 2011; 65 2014; 6 2010; 4 2014; 53 2017; 64 2018; 28 2019; 9 2019; 4 2015; 16 2019; 5 2015; 92 2010 2019; 1 2005; 433 2011; 84 2002; 298 2017; 23 2017; 29 2018; 61 2016; 16 2016; 6 2016; 7 2020; 31 2017; 16 2018; 558 2020 2010; 177 2018 2009; 102 2019; 213 2017 2014 2008; 453 2012; 7 2018; 98 e_1_2_8_28_1 Scharnhorst K. (e_1_2_8_41_1) 2017 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 Kuncic Z. (e_1_2_8_34_1) 2018 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
| References_xml | – volume: 23 start-page: 499 year: 2017 publication-title: Neuroscientist – volume: 22 start-page: 1831 year: 2010 publication-title: Adv. Mater. – volume: 177 start-page: 971 year: 2010 publication-title: J. Hazard. Mater. – volume: 7 start-page: 7955 year: 2017 publication-title: Sci. Rep. – volume: 10 year: 2020 publication-title: AIP Adv. – volume: 84 year: 2011 publication-title: Phys. Rev. E – volume: 10 start-page: 1297 year: 2010 publication-title: Nano Lett. – volume: 16 start-page: 203 year: 2019 publication-title: Quant. Infrared Thermogr. J. – volume: 453 start-page: 80 year: 2008 publication-title: Nature – volume: 7 year: 2012 publication-title: PLoS One – volume: 3 start-page: 429 year: 2008 publication-title: Nat. Nanotechnol. – volume: 102 year: 2009 publication-title: Phys. Rev. Lett. – volume: 6 start-page: 729 year: 2014 publication-title: Nanosci. Nanotechnol. Lett. – volume: 433 start-page: 47 year: 2005 publication-title: Nature – volume: 4 start-page: 5414 year: 2010 publication-title: ACS Nano – volume: 61 year: 2018 publication-title: Sci. China Inf. Sci. – volume: 64 start-page: 5194 year: 2017 publication-title: IEEE Trans. Electron Devices – volume: 3 start-page: 955 year: 2003 publication-title: Nano Lett. – volume: 6 start-page: 833 year: 2007 publication-title: Nat. Mater. – volume: 8 start-page: 2204 year: 2017 publication-title: Nat. Commun. – volume: 6 start-page: 9632 year: 2014 publication-title: Nanoscale – volume: 92 year: 2015 publication-title: Phys. Rev. E – volume: 9 start-page: 2331 year: 2018 publication-title: Nat. Commun. – volume: 10 start-page: 591 year: 2011 publication-title: Nat. Mater. – volume: 8 start-page: 13 year: 2013 publication-title: Nat. Nanotechnol. – volume: 53 year: 2014 publication-title: Jpn. J. Appl. Phys. – volume: 9 start-page: 3219 year: 2018 publication-title: Nat. Commun. – volume: 5 year: 2019 publication-title: Adv. Electron. Mater. – volume: 12 start-page: 5966 year: 2012 publication-title: Nano Lett. – volume: 298 start-page: 2176 year: 2002 publication-title: Science – volume: 65 start-page: 2673 year: 2011 publication-title: Mater. Lett. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – start-page: 173 year: 2014 end-page: 209 – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 4 year: 2019 publication-title: Adv. Mater. Technol. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 7 start-page: 5288 year: 2017 publication-title: Sci. Rep. – volume: 16 year: 2015 publication-title: Sci. Technol. Adv. Mater. – volume: 98 year: 2018 publication-title: Phys. Rev. B – volume: 9 year: 2019 publication-title: Sci. Rep. – year: 2010 – volume: 124 year: 2018 publication-title: J. Appl. Phys. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 7046 year: 2016 publication-title: Nano Lett. – volume: 1 year: 2019 publication-title: Adv. Intell. Syst. – volume: 21 start-page: 93 year: 2011 publication-title: Adv. Funct. Mater. – volume: 24 start-page: 5679 year: 2014 publication-title: Adv. Funct. Mater. – volume: 16 start-page: 101 year: 2017 publication-title: Nat. Mater. – volume: 14 start-page: 184 year: 2020 publication-title: Front. Neurosci. – year: 2020 – volume: 8 start-page: 882 year: 2017 publication-title: Nat. Commun. – volume: 24 year: 2013 publication-title: Nanotechnology – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 213 start-page: 471 year: 2019 publication-title: Faraday Discuss. – volume: 31 year: 2020 publication-title: Nanotechnology – start-page: 1 year: 2018 end-page: 3 – volume: 13 year: 2019 publication-title: Phys. Status Solidi RRL – volume: 558 start-page: 95 year: 2018 publication-title: Nature – start-page: 133 year: 2017 end-page: 138 – ident: e_1_2_8_45_1 doi: 10.1021/nl904092h – ident: e_1_2_8_18_1 doi: 10.1038/s41467-017-00869-x – ident: e_1_2_8_16_1 doi: 10.1038/nmat4756 – ident: e_1_2_8_8_1 doi: 10.1038/nature06932 – ident: e_1_2_8_49_1 doi: 10.1038/s41586-018-0143-x – ident: e_1_2_8_63_1 doi: 10.1126/science.1077229 – ident: e_1_2_8_17_1 doi: 10.1002/adma.201604457 – ident: e_1_2_8_21_1 doi: 10.1038/s41598-017-05480-0 – ident: e_1_2_8_25_1 doi: 10.1088/0957-4484/24/38/384004 – ident: e_1_2_8_31_1 doi: 10.1103/PhysRevE.92.052134 – ident: e_1_2_8_38_1 doi: 10.1002/adfm.201001520 – ident: e_1_2_8_11_1 doi: 10.1002/adfm.201401304 – ident: e_1_2_8_15_1 doi: 10.1002/pssr.201900029 – ident: e_1_2_8_47_1 doi: 10.1007/978-3-642-02417-7 – ident: e_1_2_8_52_1 doi: 10.1038/srep28233 – ident: e_1_2_8_56_1 doi: 10.1021/acsami.0c11157 – start-page: 1 volume-title: 2018 IEEE 18th Int. Conf. on Nanotechnology (IEEE‐NANO) year: 2018 ident: e_1_2_8_34_1 – ident: e_1_2_8_55_1 doi: 10.1126/sciadv.aau3407 – ident: e_1_2_8_39_1 doi: 10.1039/C4NR02338B – ident: e_1_2_8_30_1 doi: 10.1038/s41598-017-08244-y – ident: e_1_2_8_14_1 doi: 10.1038/s41467-018-04482-4 – ident: e_1_2_8_2_1 doi: 10.1002/admt.201800589 – ident: e_1_2_8_32_1 doi: 10.1088/1361-6528/ab76ec – ident: e_1_2_8_43_1 doi: 10.1016/j.matlet.2011.05.076 – ident: e_1_2_8_48_1 doi: 10.1080/17686733.2018.1563349 – ident: e_1_2_8_50_1 doi: 10.1038/ncomms13754 – ident: e_1_2_8_61_1 doi: 10.1007/s11432-017-9424-y – ident: e_1_2_8_6_1 doi: 10.1038/nnano.2012.240 – ident: e_1_2_8_33_1 doi: 10.1038/s41598-019-51330-6 – start-page: 133 volume-title: Proceedings of the IEEE/ACM International Symposium on Nanoscale Architectures, NANOARCH year: 2017 ident: e_1_2_8_41_1 – ident: e_1_2_8_24_1 doi: 10.1371/journal.pone.0042772 – ident: e_1_2_8_19_1 doi: 10.1002/aisy.201900084 – ident: e_1_2_8_27_1 doi: 10.7567/JJAP.53.01AA02 – ident: e_1_2_8_42_1 doi: 10.1103/PhysRevE.84.046703 – ident: e_1_2_8_5_1 doi: 10.1002/adma.200903680 – ident: e_1_2_8_22_1 doi: 10.1177/1073858416667720 – ident: e_1_2_8_28_1 doi: 10.1039/C8FD00109J – ident: e_1_2_8_1_1 doi: 10.1063/1.5037835 – ident: e_1_2_8_60_1 doi: 10.1021/acsami.7b10666 – ident: e_1_2_8_36_1 doi: 10.1038/nature03190 – ident: e_1_2_8_54_1 doi: 10.1021/acs.nanolett.6b03270 – ident: e_1_2_8_35_1 doi: 10.1038/s41467-018-05517-6 – ident: e_1_2_8_40_1 doi: 10.1021/nl303416h – ident: e_1_2_8_4_1 doi: 10.1038/nmat3054 – ident: e_1_2_8_29_1 doi: 10.1109/TED.2017.2766063 – ident: e_1_2_8_44_1 doi: 10.1016/j.jhazmat.2010.01.013 – ident: e_1_2_8_53_1 doi: 10.1038/s41598-019-50802-z – ident: e_1_2_8_12_1 doi: 10.1103/PhysRevLett.102.026801 – ident: e_1_2_8_7_1 doi: 10.1166/nnl.2014.1888 – ident: e_1_2_8_51_1 doi: 10.1103/PhysRevB.98.014402 – ident: e_1_2_8_62_1 doi: 10.1021/nl034312m – ident: e_1_2_8_3_1 doi: 10.1002/aelm.201800909 – ident: e_1_2_8_59_1 doi: 10.1021/nn1010667 – ident: e_1_2_8_10_1 doi: 10.1038/nnano.2008.160 – ident: e_1_2_8_37_1 doi: 10.1088/1468-6996/16/4/045004 – ident: e_1_2_8_58_1 doi: 10.1021/acsami.7b04839 – ident: e_1_2_8_23_1 doi: 10.3389/fnins.2020.00184 – ident: e_1_2_8_57_1 doi: 10.1063/1.5140579 – ident: e_1_2_8_13_1 doi: 10.1002/adfm.201704862 – ident: e_1_2_8_26_1 doi: 10.1007/978-3-319-02630-5_10 – ident: e_1_2_8_46_1 doi: 10.1063/1.5037817 – ident: e_1_2_8_9_1 doi: 10.1038/nmat2023 – ident: e_1_2_8_20_1 doi: 10.1038/s41467-017-02337-y |
| SSID | ssj0017734 |
| Score | 2.5161817 |
| Snippet | Neurobiology‐inspired phenomena such as winner‐takes‐all competition and critical dynamics have been recently reported to arise in neuromorphic nanowire... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Control stability Controllability Electrical measurement Electrodes lock‐in thermography Materials science Memristors Nanoparticles Nanowires Networks neuromorphic Neurosciences Resistance Thermography Titanium dioxide |
| Title | Dynamic Electrical Pathway Tuning in Neuromorphic Nanowire Networks |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202003679 https://www.proquest.com/docview/2453662027 |
| Volume | 30 |
| WOSCitedRecordID | wos000565644400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 issn: 1616-301X databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_o5kEPfovTKT0InsLapl85jm3FwxxDNtitpGkCA21l3RT_e_PartsOIuitLUkoeZ957-X3AB4UdyRXlBPqBh5xWOIQhilEKvF4rW0sEwWI69AfjYLZjI23bvGX-BB1wA0lo9DXKOA8zjsb0FCeKLxJjsVVns_2oWlr5nUa0Oy_hNNhnUnw_TKz7FlY42XN1sCNpt3ZXWHXMG28zW2ftTA64cn_f_cUjiuH0-iWHHIGezI9h6MtGMIL6PXLtvTGoOiJg2Qzxtoz_ORfxmSFgRNjnhoFjMdbpumiR2qlnCHKsf5alJHnlzANB5PeE6maKxChD6WMSMsXiQyk8pnJRewFjqAyocJ040CLJY89wahQQipLaKeAM0qZchOqLGlxU1r0ChpplsprMIKYukof2xhXWgXIhDNJE0TScjFtyoIWkPXORqJCHscGGK9RiZlsR7g5Ub05LXisx7-XmBs_jmyvCRVVspdHtuNSz8OgTgvsgiS_rBJ1--Fz_Xbzl0m3cIjPZZVfGxrLxUrewYH4WM7zxX3Fk9_ta-D5 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFH_oJqgHv8Xp1B4ET2Vt068cx7YysRtDNtitpGkCA-1kH4r_vXlt120HEcRjQxJK3mfee_k9gAfJbMEkYTpxfFe3aWLrFFOIROD1WtlYyjMQ19Dr9_3xmA6KakJ8C5PjQ5QBN5SMTF-jgGNAurFGDWWJxKfkWF3lenQXqrbiJacC1fZLMArLVILn5all18QiL3O8Qm40rMb2DtuWae1ubjqtmdUJjv_hf0_gqHA5tWbOI6ewI9IzONwAIjyHVjtvTK91sq44SDhtoHzDT_alDZcYOtEmqZYBebxNFWXUTKWWp4hzrEazQvL5BYyCzrDV1Yv2CjpX11KqC9PjifCF9KjBeOz6NiciIdxwYl8JJotdTgmXXEiTK7eAUUKodBIiTWEyQ5jkEirpNBVXoPkxcaS6uFEmlRIQCaOCJIil5WDilPo10FdHG_ECexxbYLxGOWqyFeHhROXh1OCxnP-eo278OLO-olRUSN88smyHuC6GdWpgZTT5ZZeo2Q565df1Xxbdw3532Auj8Kn_fAMHOJ7X_NWhspgtxS3s8Y_FZD67Kxj0G3hw5Ok |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED90E9EHv8X52QfBp7K16Vcex7qiOMeQDfYW0jSBgXZjH4r_vbm267YHEcTHhksoudxX7vI7gHvFHckV4SZxA890aOKYFFOIRGJ4rW0sFRmIa8fvdoPhkPaKakJ8C5PjQ5QXbigZmb5GAZeTRNVXqKE8UfiUHKurPJ9uQ9Vxqadlsxq-RoNOmUrw_Ty17FlY5GUNl8iNDbu-ucKmZVq5m-tOa2Z1osN_-N8jOChcTqOZn5Fj2JLpCeyvARGeQivMG9Mb7awrDjLO6Gnf8JN_Gf0FXp0Yo9TIgDzex5ozmlKr5THiHOvRrJB8dgaDqN1vPZpFewVT6LCUmtLyRSIDqXza4CL2AkcQmRDRcONACyaPPUGJUEIqS2i3gFNCqHIToixp8Ya0yDlU0nEqL8AIYuIqHbhRrrQSkAmnkiSIpeVi4pQGNTCXW8tEgT2OLTDeWI6abDPcHFZuTg0eSvpJjrrxI-X1klOskL4Zsx2XeB5e69TAznjyyyqsGUYv5dflXybdwW4vjFjnqft8BXs4nJf8XUNlPl3IG9gRH_PRbHpbnM9vKYHkZA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Electrical+Pathway+Tuning+in+Neuromorphic+Nanowire+Networks&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Qiao&rft.au=Diaz%E2%80%90Alvarez%2C+Adrian&rft.au=Iguchi%2C+Ryo&rft.au=Hochstetter%2C+Joel&rft.date=2020-10-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=43&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202003679&rft.externalDBID=10.1002%252Fadfm.202003679&rft.externalDocID=ADFM202003679 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |