Dynamic Electrical Pathway Tuning in Neuromorphic Nanowire Networks

Neurobiology‐inspired phenomena such as winner‐takes‐all competition and critical dynamics have been recently reported to arise in neuromorphic nanowire networks. These are unique systems where interactions between memristive elements creates emergent conductance pathways between discrete electrodes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials Jg. 30; H. 43
Hauptverfasser: Li, Qiao, Diaz‐Alvarez, Adrian, Iguchi, Ryo, Hochstetter, Joel, Loeffler, Alon, Zhu, Ruomin, Shingaya, Yoshitaka, Kuncic, Zdenka, Uchida, Ken‐ichi, Nakayama, Tomonobu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken Wiley Subscription Services, Inc 01.10.2020
Schlagworte:
ISSN:1616-301X, 1616-3028
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Neurobiology‐inspired phenomena such as winner‐takes‐all competition and critical dynamics have been recently reported to arise in neuromorphic nanowire networks. These are unique systems where interactions between memristive elements creates emergent conductance pathways between discrete electrodes. This mode of operation can offer substantial advantages to create a truly concomitant plastic‐static system for integration in neuromorphic devices. However, critical aspects such as pathway controllability and stability are yet to be explored. In this study, pathway formation in self‐assembled neuromorphic networks formed by Ag nanowires decorated with TiO2 nanoparticles is investigated. Direct visualization of pathway formation through a neuromorphic network is attained using the lock‐in thermography technique. Using this technique, it is demonstrated that how networks preserve information from previously used pathways through increased local junction connectivity. This effect directly reshapes subsequent formation of pathways whenever the spatial location of the electrodes is dynamically changed. Combining these results with conventional current–voltage measurements, which show that the network electrically acts as a volatile switching memristor, a unique interaction between short‐term and long‐term memory arises. This produces unexpected collective dynamical states of potentiation and inhibition of network conductance whenever different spatiotemporal signals are dynamically fed to the network. Current pathway formation in neuromorphic networks is directly visualized with the lock‐in thermography technique that uses infrared sensitive camera to detect heat radiation. The network recycles parts of previously used pathways to create new ones when multiple electrodes are used. This effect is used to dynamically tune the conductance of the system by alternating voltage pulses on different electrodes.
AbstractList Neurobiology‐inspired phenomena such as winner‐takes‐all competition and critical dynamics have been recently reported to arise in neuromorphic nanowire networks. These are unique systems where interactions between memristive elements creates emergent conductance pathways between discrete electrodes. This mode of operation can offer substantial advantages to create a truly concomitant plastic‐static system for integration in neuromorphic devices. However, critical aspects such as pathway controllability and stability are yet to be explored. In this study, pathway formation in self‐assembled neuromorphic networks formed by Ag nanowires decorated with TiO2 nanoparticles is investigated. Direct visualization of pathway formation through a neuromorphic network is attained using the lock‐in thermography technique. Using this technique, it is demonstrated that how networks preserve information from previously used pathways through increased local junction connectivity. This effect directly reshapes subsequent formation of pathways whenever the spatial location of the electrodes is dynamically changed. Combining these results with conventional current–voltage measurements, which show that the network electrically acts as a volatile switching memristor, a unique interaction between short‐term and long‐term memory arises. This produces unexpected collective dynamical states of potentiation and inhibition of network conductance whenever different spatiotemporal signals are dynamically fed to the network. Current pathway formation in neuromorphic networks is directly visualized with the lock‐in thermography technique that uses infrared sensitive camera to detect heat radiation. The network recycles parts of previously used pathways to create new ones when multiple electrodes are used. This effect is used to dynamically tune the conductance of the system by alternating voltage pulses on different electrodes.
Neurobiology‐inspired phenomena such as winner‐takes‐all competition and critical dynamics have been recently reported to arise in neuromorphic nanowire networks. These are unique systems where interactions between memristive elements creates emergent conductance pathways between discrete electrodes. This mode of operation can offer substantial advantages to create a truly concomitant plastic‐static system for integration in neuromorphic devices. However, critical aspects such as pathway controllability and stability are yet to be explored. In this study, pathway formation in self‐assembled neuromorphic networks formed by Ag nanowires decorated with TiO 2 nanoparticles is investigated. Direct visualization of pathway formation through a neuromorphic network is attained using the lock‐in thermography technique. Using this technique, it is demonstrated that how networks preserve information from previously used pathways through increased local junction connectivity. This effect directly reshapes subsequent formation of pathways whenever the spatial location of the electrodes is dynamically changed. Combining these results with conventional current–voltage measurements, which show that the network electrically acts as a volatile switching memristor, a unique interaction between short‐term and long‐term memory arises. This produces unexpected collective dynamical states of potentiation and inhibition of network conductance whenever different spatiotemporal signals are dynamically fed to the network.
Neurobiology‐inspired phenomena such as winner‐takes‐all competition and critical dynamics have been recently reported to arise in neuromorphic nanowire networks. These are unique systems where interactions between memristive elements creates emergent conductance pathways between discrete electrodes. This mode of operation can offer substantial advantages to create a truly concomitant plastic‐static system for integration in neuromorphic devices. However, critical aspects such as pathway controllability and stability are yet to be explored. In this study, pathway formation in self‐assembled neuromorphic networks formed by Ag nanowires decorated with TiO2 nanoparticles is investigated. Direct visualization of pathway formation through a neuromorphic network is attained using the lock‐in thermography technique. Using this technique, it is demonstrated that how networks preserve information from previously used pathways through increased local junction connectivity. This effect directly reshapes subsequent formation of pathways whenever the spatial location of the electrodes is dynamically changed. Combining these results with conventional current–voltage measurements, which show that the network electrically acts as a volatile switching memristor, a unique interaction between short‐term and long‐term memory arises. This produces unexpected collective dynamical states of potentiation and inhibition of network conductance whenever different spatiotemporal signals are dynamically fed to the network.
Author Li, Qiao
Zhu, Ruomin
Diaz‐Alvarez, Adrian
Hochstetter, Joel
Loeffler, Alon
Shingaya, Yoshitaka
Iguchi, Ryo
Uchida, Ken‐ichi
Nakayama, Tomonobu
Kuncic, Zdenka
Author_xml – sequence: 1
  givenname: Qiao
  surname: Li
  fullname: Li, Qiao
  organization: National Institute for Materials Science (NIMS)
– sequence: 2
  givenname: Adrian
  orcidid: 0000-0003-4638-8488
  surname: Diaz‐Alvarez
  fullname: Diaz‐Alvarez, Adrian
  email: diazalvarez.adrian@nims.go.jp
  organization: National Institute for Materials Science (NIMS)
– sequence: 3
  givenname: Ryo
  surname: Iguchi
  fullname: Iguchi, Ryo
  organization: National Institute for Materials Science (NIMS)
– sequence: 4
  givenname: Joel
  surname: Hochstetter
  fullname: Hochstetter, Joel
  organization: University of Sydney
– sequence: 5
  givenname: Alon
  surname: Loeffler
  fullname: Loeffler, Alon
  organization: University of Sydney
– sequence: 6
  givenname: Ruomin
  surname: Zhu
  fullname: Zhu, Ruomin
  organization: University of Sydney
– sequence: 7
  givenname: Yoshitaka
  surname: Shingaya
  fullname: Shingaya, Yoshitaka
  organization: National Institute for Materials Science (NIMS)
– sequence: 8
  givenname: Zdenka
  surname: Kuncic
  fullname: Kuncic, Zdenka
  organization: University of Sydney
– sequence: 9
  givenname: Ken‐ichi
  surname: Uchida
  fullname: Uchida, Ken‐ichi
  organization: Tohoku University
– sequence: 10
  givenname: Tomonobu
  surname: Nakayama
  fullname: Nakayama, Tomonobu
  email: nakayama.tomonobu@nims.go.jp
  organization: National Institute for Materials Science (NIMS)
BookMark eNqFkE1LAzEQhoMo2Favnhc8b002-5Vj6YcKtXqo4C2k2YlN3U1qssuy_94tlQqCeJpheJ4Z5h2ic2MNIHRD8JhgHN2JQlXjCEcY0zRjZ2hAUpKGFEf5-aknb5do6P0OY5JlNB6g6awzotIymJcga6elKIMXUW9b0QXrxmjzHmgTrKBxtrJuv-3JlTC21Q76ad1a9-Gv0IUSpYfr7zpCr4v5evoQLp_vH6eTZShpTlkIJJMF5KAyhoXcpHksKRRU4mSTU8LEJpWMSiVBEZmQSDBKmUoKqggQgYHQEbo97t07-9mAr_nONs70J3kUJzRN--eznoqPlHTWeweKS12LWltTO6FLTjA_xMUPcfFTXL02_qXtna6E6_4W2FFodQndPzSfzBZPP-4Xy_iAZA
CitedBy_id crossref_primary_10_1063_5_0137686
crossref_primary_10_1088_2634_4386_ac4d86
crossref_primary_10_1002_adma_202201248
crossref_primary_10_3389_fnins_2022_736642
crossref_primary_10_1038_s41467_025_58741_2
crossref_primary_10_3390_nano15100724
crossref_primary_10_1088_2752_5724_acc678
crossref_primary_10_1038_s41467_021_24260_z
crossref_primary_10_1080_14686996_2023_2178815
crossref_primary_10_3389_fphy_2024_1400919
crossref_primary_10_1038_s41467_023_42470_5
crossref_primary_10_1002_sstr_202500330
crossref_primary_10_1088_1361_6528_ac43e8
crossref_primary_10_1063_5_0220628
crossref_primary_10_1002_adfm_202302929
crossref_primary_10_1039_D4CP03242J
crossref_primary_10_1002_aelm_202200631
crossref_primary_10_1039_D1NR03944J
crossref_primary_10_1088_2632_959X_ad2999
crossref_primary_10_1002_aelm_202500159
crossref_primary_10_1038_s41467_023_40939_x
crossref_primary_10_3390_electronics11101610
crossref_primary_10_1002_aelm_202400750
crossref_primary_10_1088_1361_6463_ad7a82
crossref_primary_10_1002_adfm_202312989
crossref_primary_10_1038_s41563_021_01099_9
crossref_primary_10_1038_s41598_021_92170_7
crossref_primary_10_1088_2634_4386_ac4a83
crossref_primary_10_1088_2752_5724_accd87
crossref_primary_10_1002_smll_202007344
Cites_doi 10.1021/nl904092h
10.1038/s41467-017-00869-x
10.1038/nmat4756
10.1038/nature06932
10.1038/s41586-018-0143-x
10.1126/science.1077229
10.1002/adma.201604457
10.1038/s41598-017-05480-0
10.1088/0957-4484/24/38/384004
10.1103/PhysRevE.92.052134
10.1002/adfm.201001520
10.1002/adfm.201401304
10.1002/pssr.201900029
10.1007/978-3-642-02417-7
10.1038/srep28233
10.1021/acsami.0c11157
10.1126/sciadv.aau3407
10.1039/C4NR02338B
10.1038/s41598-017-08244-y
10.1038/s41467-018-04482-4
10.1002/admt.201800589
10.1088/1361-6528/ab76ec
10.1016/j.matlet.2011.05.076
10.1080/17686733.2018.1563349
10.1038/ncomms13754
10.1007/s11432-017-9424-y
10.1038/nnano.2012.240
10.1038/s41598-019-51330-6
10.1371/journal.pone.0042772
10.1002/aisy.201900084
10.7567/JJAP.53.01AA02
10.1103/PhysRevE.84.046703
10.1002/adma.200903680
10.1177/1073858416667720
10.1039/C8FD00109J
10.1063/1.5037835
10.1021/acsami.7b10666
10.1038/nature03190
10.1021/acs.nanolett.6b03270
10.1038/s41467-018-05517-6
10.1021/nl303416h
10.1038/nmat3054
10.1109/TED.2017.2766063
10.1016/j.jhazmat.2010.01.013
10.1038/s41598-019-50802-z
10.1103/PhysRevLett.102.026801
10.1166/nnl.2014.1888
10.1103/PhysRevB.98.014402
10.1021/nl034312m
10.1002/aelm.201800909
10.1021/nn1010667
10.1038/nnano.2008.160
10.1088/1468-6996/16/4/045004
10.1021/acsami.7b04839
10.3389/fnins.2020.00184
10.1063/1.5140579
10.1002/adfm.201704862
10.1007/978-3-319-02630-5_10
10.1063/1.5037817
10.1038/nmat2023
10.1038/s41467-017-02337-y
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202003679
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202003679
ADFM202003679
Genre article
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAMMB
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
O8X
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3839-e17cde8ef790acb684c3ed3c05b8319ab6c93cfcef1c512a9339f5d3f1e1a0e13
IEDL.DBID DRFUL
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000565644400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1616-301X
IngestDate Sun Nov 09 06:43:12 EST 2025
Tue Nov 18 21:48:49 EST 2025
Sat Nov 29 07:20:51 EST 2025
Wed Jan 22 16:59:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3839-e17cde8ef790acb684c3ed3c05b8319ab6c93cfcef1c512a9339f5d3f1e1a0e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4638-8488
PQID 2453662027
PQPubID 2045204
PageCount 11
ParticipantIDs proquest_journals_2453662027
crossref_citationtrail_10_1002_adfm_202003679
crossref_primary_10_1002_adfm_202003679
wiley_primary_10_1002_adfm_202003679_ADFM202003679
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2010; 10
2017; 8
2013; 24
2018; 124
2019; 13
2019; 16
2011; 10
2014; 24
2020; 14
2008; 3
2020; 10
2013; 8
2012; 12
2017; 9
2010; 22
2018; 9
2003; 3
2007; 6
2011; 21
2011; 65
2014; 6
2010; 4
2014; 53
2017; 64
2018; 28
2019; 9
2019; 4
2015; 16
2019; 5
2015; 92
2010
2019; 1
2005; 433
2011; 84
2002; 298
2017; 23
2017; 29
2018; 61
2016; 16
2016; 6
2016; 7
2020; 31
2017; 16
2018; 558
2020
2010; 177
2018
2009; 102
2019; 213
2017
2014
2008; 453
2012; 7
2018; 98
e_1_2_8_28_1
Scharnhorst K. (e_1_2_8_41_1) 2017
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
Kuncic Z. (e_1_2_8_34_1) 2018
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 23
  start-page: 499
  year: 2017
  publication-title: Neuroscientist
– volume: 22
  start-page: 1831
  year: 2010
  publication-title: Adv. Mater.
– volume: 177
  start-page: 971
  year: 2010
  publication-title: J. Hazard. Mater.
– volume: 7
  start-page: 7955
  year: 2017
  publication-title: Sci. Rep.
– volume: 10
  year: 2020
  publication-title: AIP Adv.
– volume: 84
  year: 2011
  publication-title: Phys. Rev. E
– volume: 10
  start-page: 1297
  year: 2010
  publication-title: Nano Lett.
– volume: 16
  start-page: 203
  year: 2019
  publication-title: Quant. Infrared Thermogr. J.
– volume: 453
  start-page: 80
  year: 2008
  publication-title: Nature
– volume: 7
  year: 2012
  publication-title: PLoS One
– volume: 3
  start-page: 429
  year: 2008
  publication-title: Nat. Nanotechnol.
– volume: 102
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 729
  year: 2014
  publication-title: Nanosci. Nanotechnol. Lett.
– volume: 433
  start-page: 47
  year: 2005
  publication-title: Nature
– volume: 4
  start-page: 5414
  year: 2010
  publication-title: ACS Nano
– volume: 61
  year: 2018
  publication-title: Sci. China Inf. Sci.
– volume: 64
  start-page: 5194
  year: 2017
  publication-title: IEEE Trans. Electron Devices
– volume: 3
  start-page: 955
  year: 2003
  publication-title: Nano Lett.
– volume: 6
  start-page: 833
  year: 2007
  publication-title: Nat. Mater.
– volume: 8
  start-page: 2204
  year: 2017
  publication-title: Nat. Commun.
– volume: 6
  start-page: 9632
  year: 2014
  publication-title: Nanoscale
– volume: 92
  year: 2015
  publication-title: Phys. Rev. E
– volume: 9
  start-page: 2331
  year: 2018
  publication-title: Nat. Commun.
– volume: 10
  start-page: 591
  year: 2011
  publication-title: Nat. Mater.
– volume: 8
  start-page: 13
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 53
  year: 2014
  publication-title: Jpn. J. Appl. Phys.
– volume: 9
  start-page: 3219
  year: 2018
  publication-title: Nat. Commun.
– volume: 5
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 12
  start-page: 5966
  year: 2012
  publication-title: Nano Lett.
– volume: 298
  start-page: 2176
  year: 2002
  publication-title: Science
– volume: 65
  start-page: 2673
  year: 2011
  publication-title: Mater. Lett.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– start-page: 173
  year: 2014
  end-page: 209
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 4
  year: 2019
  publication-title: Adv. Mater. Technol.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 7
  start-page: 5288
  year: 2017
  publication-title: Sci. Rep.
– volume: 16
  year: 2015
  publication-title: Sci. Technol. Adv. Mater.
– volume: 98
  year: 2018
  publication-title: Phys. Rev. B
– volume: 9
  year: 2019
  publication-title: Sci. Rep.
– year: 2010
– volume: 124
  year: 2018
  publication-title: J. Appl. Phys.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 16
  start-page: 7046
  year: 2016
  publication-title: Nano Lett.
– volume: 1
  year: 2019
  publication-title: Adv. Intell. Syst.
– volume: 21
  start-page: 93
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 24
  start-page: 5679
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 101
  year: 2017
  publication-title: Nat. Mater.
– volume: 14
  start-page: 184
  year: 2020
  publication-title: Front. Neurosci.
– year: 2020
– volume: 8
  start-page: 882
  year: 2017
  publication-title: Nat. Commun.
– volume: 24
  year: 2013
  publication-title: Nanotechnology
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 213
  start-page: 471
  year: 2019
  publication-title: Faraday Discuss.
– volume: 31
  year: 2020
  publication-title: Nanotechnology
– start-page: 1
  year: 2018
  end-page: 3
– volume: 13
  year: 2019
  publication-title: Phys. Status Solidi RRL
– volume: 558
  start-page: 95
  year: 2018
  publication-title: Nature
– start-page: 133
  year: 2017
  end-page: 138
– ident: e_1_2_8_45_1
  doi: 10.1021/nl904092h
– ident: e_1_2_8_18_1
  doi: 10.1038/s41467-017-00869-x
– ident: e_1_2_8_16_1
  doi: 10.1038/nmat4756
– ident: e_1_2_8_8_1
  doi: 10.1038/nature06932
– ident: e_1_2_8_49_1
  doi: 10.1038/s41586-018-0143-x
– ident: e_1_2_8_63_1
  doi: 10.1126/science.1077229
– ident: e_1_2_8_17_1
  doi: 10.1002/adma.201604457
– ident: e_1_2_8_21_1
  doi: 10.1038/s41598-017-05480-0
– ident: e_1_2_8_25_1
  doi: 10.1088/0957-4484/24/38/384004
– ident: e_1_2_8_31_1
  doi: 10.1103/PhysRevE.92.052134
– ident: e_1_2_8_38_1
  doi: 10.1002/adfm.201001520
– ident: e_1_2_8_11_1
  doi: 10.1002/adfm.201401304
– ident: e_1_2_8_15_1
  doi: 10.1002/pssr.201900029
– ident: e_1_2_8_47_1
  doi: 10.1007/978-3-642-02417-7
– ident: e_1_2_8_52_1
  doi: 10.1038/srep28233
– ident: e_1_2_8_56_1
  doi: 10.1021/acsami.0c11157
– start-page: 1
  volume-title: 2018 IEEE 18th Int. Conf. on Nanotechnology (IEEE‐NANO)
  year: 2018
  ident: e_1_2_8_34_1
– ident: e_1_2_8_55_1
  doi: 10.1126/sciadv.aau3407
– ident: e_1_2_8_39_1
  doi: 10.1039/C4NR02338B
– ident: e_1_2_8_30_1
  doi: 10.1038/s41598-017-08244-y
– ident: e_1_2_8_14_1
  doi: 10.1038/s41467-018-04482-4
– ident: e_1_2_8_2_1
  doi: 10.1002/admt.201800589
– ident: e_1_2_8_32_1
  doi: 10.1088/1361-6528/ab76ec
– ident: e_1_2_8_43_1
  doi: 10.1016/j.matlet.2011.05.076
– ident: e_1_2_8_48_1
  doi: 10.1080/17686733.2018.1563349
– ident: e_1_2_8_50_1
  doi: 10.1038/ncomms13754
– ident: e_1_2_8_61_1
  doi: 10.1007/s11432-017-9424-y
– ident: e_1_2_8_6_1
  doi: 10.1038/nnano.2012.240
– ident: e_1_2_8_33_1
  doi: 10.1038/s41598-019-51330-6
– start-page: 133
  volume-title: Proceedings of the IEEE/ACM International Symposium on Nanoscale Architectures, NANOARCH
  year: 2017
  ident: e_1_2_8_41_1
– ident: e_1_2_8_24_1
  doi: 10.1371/journal.pone.0042772
– ident: e_1_2_8_19_1
  doi: 10.1002/aisy.201900084
– ident: e_1_2_8_27_1
  doi: 10.7567/JJAP.53.01AA02
– ident: e_1_2_8_42_1
  doi: 10.1103/PhysRevE.84.046703
– ident: e_1_2_8_5_1
  doi: 10.1002/adma.200903680
– ident: e_1_2_8_22_1
  doi: 10.1177/1073858416667720
– ident: e_1_2_8_28_1
  doi: 10.1039/C8FD00109J
– ident: e_1_2_8_1_1
  doi: 10.1063/1.5037835
– ident: e_1_2_8_60_1
  doi: 10.1021/acsami.7b10666
– ident: e_1_2_8_36_1
  doi: 10.1038/nature03190
– ident: e_1_2_8_54_1
  doi: 10.1021/acs.nanolett.6b03270
– ident: e_1_2_8_35_1
  doi: 10.1038/s41467-018-05517-6
– ident: e_1_2_8_40_1
  doi: 10.1021/nl303416h
– ident: e_1_2_8_4_1
  doi: 10.1038/nmat3054
– ident: e_1_2_8_29_1
  doi: 10.1109/TED.2017.2766063
– ident: e_1_2_8_44_1
  doi: 10.1016/j.jhazmat.2010.01.013
– ident: e_1_2_8_53_1
  doi: 10.1038/s41598-019-50802-z
– ident: e_1_2_8_12_1
  doi: 10.1103/PhysRevLett.102.026801
– ident: e_1_2_8_7_1
  doi: 10.1166/nnl.2014.1888
– ident: e_1_2_8_51_1
  doi: 10.1103/PhysRevB.98.014402
– ident: e_1_2_8_62_1
  doi: 10.1021/nl034312m
– ident: e_1_2_8_3_1
  doi: 10.1002/aelm.201800909
– ident: e_1_2_8_59_1
  doi: 10.1021/nn1010667
– ident: e_1_2_8_10_1
  doi: 10.1038/nnano.2008.160
– ident: e_1_2_8_37_1
  doi: 10.1088/1468-6996/16/4/045004
– ident: e_1_2_8_58_1
  doi: 10.1021/acsami.7b04839
– ident: e_1_2_8_23_1
  doi: 10.3389/fnins.2020.00184
– ident: e_1_2_8_57_1
  doi: 10.1063/1.5140579
– ident: e_1_2_8_13_1
  doi: 10.1002/adfm.201704862
– ident: e_1_2_8_26_1
  doi: 10.1007/978-3-319-02630-5_10
– ident: e_1_2_8_46_1
  doi: 10.1063/1.5037817
– ident: e_1_2_8_9_1
  doi: 10.1038/nmat2023
– ident: e_1_2_8_20_1
  doi: 10.1038/s41467-017-02337-y
SSID ssj0017734
Score 2.5161817
Snippet Neurobiology‐inspired phenomena such as winner‐takes‐all competition and critical dynamics have been recently reported to arise in neuromorphic nanowire...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Control stability
Controllability
Electrical measurement
Electrodes
lock‐in thermography
Materials science
Memristors
Nanoparticles
Nanowires
Networks
neuromorphic
Neurosciences
Resistance
Thermography
Titanium dioxide
Title Dynamic Electrical Pathway Tuning in Neuromorphic Nanowire Networks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202003679
https://www.proquest.com/docview/2453662027
Volume 30
WOSCitedRecordID wos000565644400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_o5kEPfovTKT0InsLapl85jm3FwxxDNtitpGkCA21l3RT_e_PartsOIuitLUkoeZ957-X3AB4UdyRXlBPqBh5xWOIQhilEKvF4rW0sEwWI69AfjYLZjI23bvGX-BB1wA0lo9DXKOA8zjsb0FCeKLxJjsVVns_2oWlr5nUa0Oy_hNNhnUnw_TKz7FlY42XN1sCNpt3ZXWHXMG28zW2ftTA64cn_f_cUjiuH0-iWHHIGezI9h6MtGMIL6PXLtvTGoOiJg2Qzxtoz_ORfxmSFgRNjnhoFjMdbpumiR2qlnCHKsf5alJHnlzANB5PeE6maKxChD6WMSMsXiQyk8pnJRewFjqAyocJ040CLJY89wahQQipLaKeAM0qZchOqLGlxU1r0ChpplsprMIKYukof2xhXWgXIhDNJE0TScjFtyoIWkPXORqJCHscGGK9RiZlsR7g5Ub05LXisx7-XmBs_jmyvCRVVspdHtuNSz8OgTgvsgiS_rBJ1--Fz_Xbzl0m3cIjPZZVfGxrLxUrewYH4WM7zxX3Fk9_ta-D5
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFH_oJqgHv8Xp1B4ET2Vt068cx7YysRtDNtitpGkCA-1kH4r_vXlt120HEcRjQxJK3mfee_k9gAfJbMEkYTpxfFe3aWLrFFOIROD1WtlYyjMQ19Dr9_3xmA6KakJ8C5PjQ5QBN5SMTF-jgGNAurFGDWWJxKfkWF3lenQXqrbiJacC1fZLMArLVILn5all18QiL3O8Qm40rMb2DtuWae1ubjqtmdUJjv_hf0_gqHA5tWbOI6ewI9IzONwAIjyHVjtvTK91sq44SDhtoHzDT_alDZcYOtEmqZYBebxNFWXUTKWWp4hzrEazQvL5BYyCzrDV1Yv2CjpX11KqC9PjifCF9KjBeOz6NiciIdxwYl8JJotdTgmXXEiTK7eAUUKodBIiTWEyQ5jkEirpNBVXoPkxcaS6uFEmlRIQCaOCJIil5WDilPo10FdHG_ECexxbYLxGOWqyFeHhROXh1OCxnP-eo278OLO-olRUSN88smyHuC6GdWpgZTT5ZZeo2Q565df1Xxbdw3532Auj8Kn_fAMHOJ7X_NWhspgtxS3s8Y_FZD67Kxj0G3hw5Ok
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED90E9EHv8X52QfBp7K16Vcex7qiOMeQDfYW0jSBgXZjH4r_vbm267YHEcTHhksoudxX7vI7gHvFHckV4SZxA890aOKYFFOIRGJ4rW0sFRmIa8fvdoPhkPaKakJ8C5PjQ5QXbigZmb5GAZeTRNVXqKE8UfiUHKurPJ9uQ9Vxqadlsxq-RoNOmUrw_Ty17FlY5GUNl8iNDbu-ucKmZVq5m-tOa2Z1osN_-N8jOChcTqOZn5Fj2JLpCeyvARGeQivMG9Mb7awrDjLO6Gnf8JN_Gf0FXp0Yo9TIgDzex5ozmlKr5THiHOvRrJB8dgaDqN1vPZpFewVT6LCUmtLyRSIDqXza4CL2AkcQmRDRcONACyaPPUGJUEIqS2i3gFNCqHIToixp8Ya0yDlU0nEqL8AIYuIqHbhRrrQSkAmnkiSIpeVi4pQGNTCXW8tEgT2OLTDeWI6abDPcHFZuTg0eSvpJjrrxI-X1klOskL4Zsx2XeB5e69TAznjyyyqsGUYv5dflXybdwW4vjFjnqft8BXs4nJf8XUNlPl3IG9gRH_PRbHpbnM9vKYHkZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Electrical+Pathway+Tuning+in+Neuromorphic+Nanowire+Networks&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Qiao&rft.au=Diaz%E2%80%90Alvarez%2C+Adrian&rft.au=Iguchi%2C+Ryo&rft.au=Hochstetter%2C+Joel&rft.date=2020-10-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=43&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202003679&rft.externalDBID=10.1002%252Fadfm.202003679&rft.externalDocID=ADFM202003679
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon