Unexpected Supremacy of Non‐Dysprosium Single‐Ion Magnets within a Series of Isomorphic Lanthanide Cyanocobaltate(III) Complexes

Slow relaxation of magnetization has been studied for a series of stable isomorphic 3D‐polynuclear Ln‐Co complexes comprising hexadentate [Co(CN)6]3– linkers, namely {[Ln(H2O)2][Co(CN)6]·2H2O}n where Ln = Tb (1), Dy (2), Er (3) and Yb (4). While 1 and 4 behave as field‐induced single‐ion magnets (SI...

Full description

Saved in:
Bibliographic Details
Published in:European journal of inorganic chemistry Vol. 2020; no. 46; pp. 4380 - 4390
Main Authors: Babeshkin, Konstantin A., Gavrikov, Andrey V., Petrosyants, Svetlana P., Ilyukhin, Andrey B., Belova, Ekaterina V., Efimov, Nikolay N.
Format: Journal Article
Language:English
Published: Weinheim Wiley Subscription Services, Inc 13.12.2020
Subjects:
ISSN:1434-1948, 1099-0682
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Slow relaxation of magnetization has been studied for a series of stable isomorphic 3D‐polynuclear Ln‐Co complexes comprising hexadentate [Co(CN)6]3– linkers, namely {[Ln(H2O)2][Co(CN)6]·2H2O}n where Ln = Tb (1), Dy (2), Er (3) and Yb (4). While 1 and 4 behave as field‐induced single‐ion magnets (SIMs), compounds 2 and 3 undergo rapid demagnetization even under magnetic fields up to 5000 Oe. The effective anisotropic energy barrier of 4 was estimated as 63 K (5000 Oe) which, to the best of our knowledge, is the highest value among Yb‐based SIMs. The obtained data are discussed in scope of the configuration of the Ln environment, i.e. accounting its composition and geometry as well as mutual arrangement of chemically unequal donating centers. Thus, the studied series of complexes represents very rare case when SIM performance of non‐dysprosium complexes far surpasses that of isomorphic Dy derivative. A study of Ln cyanocobaltates(III) as single‐ion magnets (SIMs) revealed drastic supremacy of Tb and Yb derivatives over Dy one which is still a rare case among a particular series of isomorphic complexes. Moreover, Δeff/kB value for Yb derivative is the highest one among both mononuclear SIMs and polynuclear single‐molecule magnets (SMMs) formed by that lanthanide.
AbstractList Slow relaxation of magnetization has been studied for a series of stable isomorphic 3D‐polynuclear Ln‐Co complexes comprising hexadentate [Co(CN)6]3– linkers, namely {[Ln(H2O)2][Co(CN)6]·2H2O}n where Ln = Tb (1), Dy (2), Er (3) and Yb (4). While 1 and 4 behave as field‐induced single‐ion magnets (SIMs), compounds 2 and 3 undergo rapid demagnetization even under magnetic fields up to 5000 Oe. The effective anisotropic energy barrier of 4 was estimated as 63 K (5000 Oe) which, to the best of our knowledge, is the highest value among Yb‐based SIMs. The obtained data are discussed in scope of the configuration of the Ln environment, i.e. accounting its composition and geometry as well as mutual arrangement of chemically unequal donating centers. Thus, the studied series of complexes represents very rare case when SIM performance of non‐dysprosium complexes far surpasses that of isomorphic Dy derivative.
Slow relaxation of magnetization has been studied for a series of stable isomorphic 3D‐polynuclear Ln‐Co complexes comprising hexadentate [Co(CN)6]3– linkers, namely {[Ln(H2O)2][Co(CN)6]·2H2O}n where Ln = Tb (1), Dy (2), Er (3) and Yb (4). While 1 and 4 behave as field‐induced single‐ion magnets (SIMs), compounds 2 and 3 undergo rapid demagnetization even under magnetic fields up to 5000 Oe. The effective anisotropic energy barrier of 4 was estimated as 63 K (5000 Oe) which, to the best of our knowledge, is the highest value among Yb‐based SIMs. The obtained data are discussed in scope of the configuration of the Ln environment, i.e. accounting its composition and geometry as well as mutual arrangement of chemically unequal donating centers. Thus, the studied series of complexes represents very rare case when SIM performance of non‐dysprosium complexes far surpasses that of isomorphic Dy derivative. A study of Ln cyanocobaltates(III) as single‐ion magnets (SIMs) revealed drastic supremacy of Tb and Yb derivatives over Dy one which is still a rare case among a particular series of isomorphic complexes. Moreover, Δeff/kB value for Yb derivative is the highest one among both mononuclear SIMs and polynuclear single‐molecule magnets (SMMs) formed by that lanthanide.
Slow relaxation of magnetization has been studied for a series of stable isomorphic 3D‐polynuclear Ln‐Co complexes comprising hexadentate [Co(CN) 6 ] 3– linkers, namely {[Ln(H 2 O) 2 ][Co(CN) 6 ] · 2H 2 O} n where Ln = Tb ( 1 ), Dy ( 2 ), Er ( 3 ) and Yb ( 4 ). While 1 and 4 behave as field‐induced single‐ion magnets (SIMs), compounds 2 and 3 undergo rapid demagnetization even under magnetic fields up to 5000 Oe. The effective anisotropic energy barrier of 4 was estimated as 63 K (5000 Oe) which, to the best of our knowledge, is the highest value among Yb‐based SIMs. The obtained data are discussed in scope of the configuration of the Ln environment, i.e. accounting its composition and geometry as well as mutual arrangement of chemically unequal donating centers. Thus, the studied series of complexes represents very rare case when SIM performance of non‐dysprosium complexes far surpasses that of isomorphic Dy derivative.
Author Belova, Ekaterina V.
Petrosyants, Svetlana P.
Babeshkin, Konstantin A.
Ilyukhin, Andrey B.
Efimov, Nikolay N.
Gavrikov, Andrey V.
Author_xml – sequence: 1
  givenname: Konstantin A.
  surname: Babeshkin
  fullname: Babeshkin, Konstantin A.
  organization: Russian Academy of Sciences
– sequence: 2
  givenname: Andrey V.
  surname: Gavrikov
  fullname: Gavrikov, Andrey V.
  email: penguin1990@yandex.ru
  organization: Russian Academy of Sciences
– sequence: 3
  givenname: Svetlana P.
  surname: Petrosyants
  fullname: Petrosyants, Svetlana P.
  organization: Russian Academy of Sciences
– sequence: 4
  givenname: Andrey B.
  surname: Ilyukhin
  fullname: Ilyukhin, Andrey B.
  organization: Russian Academy of Sciences
– sequence: 5
  givenname: Ekaterina V.
  surname: Belova
  fullname: Belova, Ekaterina V.
  organization: Lomonosov Moscow State University
– sequence: 6
  givenname: Nikolay N.
  orcidid: 0000-0003-4651-7948
  surname: Efimov
  fullname: Efimov, Nikolay N.
  email: nnefimov@narod.ru
  organization: Russian Academy of Sciences
BookMark eNqFkE9P2zAYhy1UJCjsytnSLtshxf-axMcpYyyowKHjHDnuW-oqsTM7VZvbDnyAfUY-Ca6KQJo0cbJlPc_7-vcbo5F1FhC6oGRCCWGXsDZ6wggjhGQyP0KnlEiZkDRno3gXXCRUivwEjUNYR4YTnp6ipwcLuw50Dws833QeWqUH7Jb4ztnnP3-_D6HzLphNi-fGPjYQ30pn8a16tNAHvDX9ylis8By8gbAXy-Ba57uV0XimbL9S1iwAF4OyTrtaNb3q4UtZll9x4dqugR2Ec3S8VE2AT6_nGXr4cfWr-JnM7q_L4tss0TzneaJpVmdcKzZVBGoylSlXmiq2kGnNBVCuJRNCcT1dLGM6qmVGZZppWhOWccH5Gfp8mBsz_d5A6Ku123gbV1ZMpLmMPMkiJQ6UjsmDh2WlTfy0cbb3yjQVJdW-72rfd_XWd9Qm_2idN63yw_8FeRC2poHhA7q6uimLd_cFctiYLQ
CitedBy_id crossref_primary_10_1002_ange_202306372
crossref_primary_10_1016_j_jmmm_2024_172650
crossref_primary_10_1002_anie_202306372
crossref_primary_10_1039_D2DT00766E
crossref_primary_10_1134_S1070328422090056
crossref_primary_10_1039_D5TC00871A
crossref_primary_10_1016_j_poly_2024_116858
crossref_primary_10_1016_j_mencom_2023_01_013
crossref_primary_10_1134_S1070328423601413
crossref_primary_10_1039_D5DT00749F
crossref_primary_10_3390_app11167510
crossref_primary_10_1016_j_poly_2021_115118
crossref_primary_10_1016_j_poly_2024_117114
Cites_doi 10.1002/chem.201902420
10.1039/C4CC00339J
10.1016/j.ccr.2017.08.001
10.1002/chem.201601244
10.1103/PhysRevB.80.014430
10.1016/j.ccr.2018.02.019
10.1039/C7CS00266A
10.1021/cr010303r
10.1039/c1sc00513h
10.1039/C5DT01487E
10.1039/c3tc00925d
10.1126/science.aav0652
10.1039/c3sc22300k
10.1021/ic050650
10.1021/ja2017009
10.1016/j.ica.2012.10.001
10.1039/C9DT00073A
10.1039/C8CC04565H
10.1002/ange.201100818
10.1039/C6DT02537D
10.1039/B616016F
10.1134/S1070328418110064
10.1002/chem.201103816
10.1016/j.ccr.2014.10.013
10.1039/c2dt31400b
10.1021/ic801630z
10.1002/asia.201800511
10.1021/acs.inorgchem.5b02971
10.1039/C7QI00727B
10.1021/cr400018q
10.1002/chem.201402255
10.1016/j.poly.2017.03.021
10.1039/b807083k
10.3390/magnetochemistry2040038
10.1021/ic301115b
10.1021/jacs.9b09103
10.1039/c4dt00168k
10.1039/C8DT03809K
10.1039/C8QI01346B
10.1002/ejic.201700537
10.1016/j.ica.2017.06.019
10.1016/j.poly.2018.08.058
10.1016/j.poly.2018.07.027
10.1021/acs.inorgchem.9b02948
10.1039/C5DT04948B
10.1002/anie.201205938
10.1039/C8CS00986D
10.1038/nature23447
10.1016/j.molstruc.2020.127735
10.1039/C7DT03438E
10.1039/C7DT01121K
10.1021/acs.inorgchem.5b01318
10.1039/D0SC01197E
10.1016/j.ccr.2019.213153
10.1002/anie.201609685
10.3390/magnetochemistry2040043
10.1021/ic034051j
10.1021/jacs.9b13147
10.1021/jacs.7b12667
10.1039/C7QI00332C
10.1002/ejic.201300524
10.1021/acs.chemrev.9b00103
10.1016/j.ccr.2016.12.017
10.1021/acs.inorgchem.8b01688
10.1016/j.ccr.2017.03.015
10.1039/c3ce41704b
10.1039/C8TC06630B
10.1002/ejoc.201501015
10.1002/ange.201611345
10.1039/c2dt32785f
10.1039/b908639k
10.1002/chem.201705378
10.1021/acs.inorgchem.5b01209
10.1038/ncomms3551
10.1016/j.poly.2019.114113
10.1103/PhysRevB.55.11448
10.1021/ic049348b
10.1039/B905604C
10.1002/anie.201100818
10.1039/C5DT03897A
10.1039/C4NJ00627E
10.1021/acs.inorgchem.5b01915
10.1002/ejic.201900976
10.1002/anie.201611345
10.1002/ejic.201600152
10.1039/C7QI00663B
10.1016/j.ica.2018.07.029
10.1016/j.ica.2018.11.006
10.1039/B601344A
10.1039/C4SC00809J
10.1039/C8SC03907K
10.1002/ange.201205938
10.1021/acs.inorgchem.7b00369
10.1021/ic501952b
10.1039/C6DT01082B
10.1016/j.ccr.2015.03.012
10.1021/ja029629n
10.1021/ic050648i
10.1039/C8DT03613F
10.3390/magnetochemistry2040041
10.1039/C8NJ05777J
10.1039/C8DT00624E
10.1016/j.inoche.2011.07.016
10.1039/C7DT02175E
10.1039/c1cs15047b
10.1002/chem.201503635
10.1039/C5QI00087D
10.1039/C8RA02546K
10.3390/magnetochemistry4040045
10.1021/ic400430q
10.1021/ja305163t
10.1039/C9DT02260K
10.1021/ic00112a019
10.1039/B810634G
10.1039/b819594n
10.1039/C7DT02239E
10.1039/c2dt31806g
10.1039/C6DT04895A
10.1021/ja5022552
10.1039/C7DT02717F
10.1039/C5RA21991D
10.1039/C5NJ01724F
10.1039/C8CS00337H
10.1021/acs.cgd.8b00358
10.1002/chem.201601457
10.1021/ic051089i
10.1039/C5QI00224A
10.1039/C4DT03941F
10.1016/j.ccr.2006.03.021
10.1039/C6CC05337H
10.1016/j.ccr.2020.213299
10.1038/nmat2133
10.1039/c3sc22126a
10.1039/D0NJ00533A
10.1016/j.trechm.2019.05.012
10.1021/ic302068c
10.1002/ejic.201701106
10.1002/ange.201609685
10.1039/C6QI00028B
10.1016/j.molstruc.2019.07.092
10.1021/acs.inorgchem.5b01763
10.3390/magnetochemistry4030039
10.1038/nmat2374
10.1021/acs.inorgchem.5b00432
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/ejic.202000798
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1099-0682
EndPage 4390
ExternalDocumentID 10_1002_ejic_202000798
EJIC202000798
Genre article
GrantInformation_xml – fundername: Russian Science Foundation
  funderid: 16‐13‐10407
– fundername: Russian Foundation for Basic Research
  funderid: 18‐33‐20155
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACNCT
ACPOU
ACSCC
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
1OB
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3838-c17b73ca25a0eb05963ac1a2d96b34e13c9244a3c5df3031c971967c1b0273433
IEDL.DBID DRFUL
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000588446400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1434-1948
IngestDate Wed Aug 13 04:57:31 EDT 2025
Sat Nov 29 07:19:00 EST 2025
Tue Nov 18 22:35:32 EST 2025
Wed Jan 22 16:31:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 46
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3838-c17b73ca25a0eb05963ac1a2d96b34e13c9244a3c5df3031c971967c1b0273433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4651-7948
PQID 2468997107
PQPubID 2030176
PageCount 11
ParticipantIDs proquest_journals_2468997107
crossref_citationtrail_10_1002_ejic_202000798
crossref_primary_10_1002_ejic_202000798
wiley_primary_10_1002_ejic_202000798_EJIC202000798
PublicationCentury 2000
PublicationDate December 13, 2020
PublicationDateYYYYMMDD 2020-12-13
PublicationDate_xml – month: 12
  year: 2020
  text: December 13, 2020
  day: 13
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle European journal of inorganic chemistry
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2020 2019 2018 2009; 49 48 355 38
2020 2019 2019 2018 2018 2017 2017 2015; 1207 2019 48 4 47 46 46 54
2013 2019 2015 2017; 4 25 54 46
2018 2016 2011 2015; 154 2 133 21
2003 2015 2015; 125 44 54
2013; 4
2018 2012 2016 2016 2016 2017; 18 18 45 55 2
2011; 2
2012 2011 2011 2011 2009 2009 2009 2008; 51 50 123 40 8 19 19 7
2020 2020 2019 2015 2013 2010; 415 406 1 293 4 39
1997 2009; 55 80
2002; 102
2017 2018 2019; 46 5 6
2019 2018 2018 2017 2017 2016 2013; 119 47 363 346 346 172 113
2015; 296
2019 2018 2018 2016 2013; 48 47 2018 3 52
2019 2017 2013 2018 2016 2014 2013 2011 2012 2014 2016 2019 2004 2012 2018 2017 2018 2017 2009 2015 2019 2018 2016 2018; 43 466 2013 155 6 20 394 14 41 38 45 48 43 41 24 4 140 130 54 1197 54 2016 8
2003 2005 2005 2006 2006 2014 2007 2014 2015 2016 2016 2017 2018 2018 2019 2013 2020 2017 2020 2019; 42 44 44 250 5 50 54 22 52 56 482 44 141 15 142 46 59 7
2017 2018 2018 2016 2016; 548 362 9 55 128
2018 2019 2015 2013 2018 2017 2016 2017 2017 2016 2012 2015 2013; 13 486 44 42 4 46 45 56 129 2 134 2015 1
2009; 48
2014 2016 2014; 136 3 43
2012 2020 2015 2015 2016 2015 2018 2020 2018 2019 2013 2013 2016 2006 1995 2020; 51 11 54 2 45 39 5 44 57 173 52 125 22 45 34
e_1_2_7_3_4
e_1_2_7_19_9
e_1_2_7_3_3
e_1_2_7_19_8
e_1_2_7_3_2
e_1_2_7_19_7
e_1_2_7_3_1
e_1_2_7_19_6
e_1_2_7_19_5
e_1_2_7_3_7
e_1_2_7_19_4
e_1_2_7_19_3
e_1_2_7_3_5
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_19_1
e_1_2_7_15_4
e_1_2_7_15_3
e_1_2_7_15_2
e_1_2_7_15_1
e_1_2_7_10_20
e_1_2_7_11_1
e_1_2_7_10_19
e_1_2_7_10_18
e_1_2_7_10_17
e_1_2_7_10_16
e_1_2_7_10_15
e_1_2_7_18_21
e_1_2_7_10_14
e_1_2_7_18_22
e_1_2_7_10_13
e_1_2_7_10_12
e_1_2_7_18_20
e_1_2_7_10_11
e_1_2_7_18_25
e_1_2_7_10_10
e_1_2_7_18_23
e_1_2_7_18_24
e_1_2_7_23_1
e_1_2_7_18_18
e_1_2_7_18_19
e_1_2_7_18_16
e_1_2_7_18_17
Fondo M. (e_1_2_7_25_16) 2020
Clérac R. (e_1_2_7_3_6) 2016
e_1_2_7_4_3
e_1_2_7_4_2
e_1_2_7_4_1
e_1_2_7_8_3
e_1_2_7_8_2
e_1_2_7_8_1
e_1_2_7_4_4
e_1_2_7_18_10
e_1_2_7_16_3
e_1_2_7_18_11
e_1_2_7_16_2
e_1_2_7_16_1
e_1_2_7_18_14
e_1_2_7_18_15
e_1_2_7_18_12
e_1_2_7_12_1
e_1_2_7_18_13
e_1_2_7_8_6
e_1_2_7_8_5
e_1_2_7_8_4
e_1_2_7_24_4
e_1_2_7_24_3
e_1_2_7_24_2
e_1_2_7_24_1
e_1_2_7_20_2
e_1_2_7_20_1
e_1_2_7_5_2
e_1_2_7_5_1
e_1_2_7_5_6
e_1_2_7_9_2
e_1_2_7_5_5
e_1_2_7_9_1
e_1_2_7_5_4
e_1_2_7_5_3
e_1_2_7_13_5
e_1_2_7_17_1
e_1_2_7_13_4
e_1_2_7_13_3
e_1_2_7_13_2
e_1_2_7_13_1
e_1_2_7_9_6
e_1_2_7_9_5
e_1_2_7_5_8
e_1_2_7_9_4
e_1_2_7_5_7
e_1_2_7_9_3
e_1_2_7_9_8
e_1_2_7_9_7
e_1_2_7_25_9
e_1_2_7_25_8
e_1_2_7_25_7
e_1_2_7_25_6
e_1_2_7_25_5
e_1_2_7_25_4
e_1_2_7_25_3
e_1_2_7_25_2
e_1_2_7_25_1
e_1_2_7_21_1
e_1_2_7_2_5
e_1_2_7_6_1
e_1_2_7_2_4
e_1_2_7_18_9
e_1_2_7_2_3
e_1_2_7_18_8
e_1_2_7_2_2
e_1_2_7_18_7
e_1_2_7_6_5
e_1_2_7_18_6
e_1_2_7_6_4
e_1_2_7_18_5
e_1_2_7_6_3
e_1_2_7_18_4
e_1_2_7_2_6
e_1_2_7_6_2
e_1_2_7_18_3
e_1_2_7_18_2
e_1_2_7_10_9
e_1_2_7_18_1
e_1_2_7_10_8
e_1_2_7_14_4
e_1_2_7_10_7
e_1_2_7_14_3
e_1_2_7_2_1
e_1_2_7_10_6
e_1_2_7_14_2
e_1_2_7_10_5
e_1_2_7_14_1
e_1_2_7_10_4
e_1_2_7_10_3
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_25_15
e_1_2_7_25_14
e_1_2_7_25_13
e_1_2_7_25_12
e_1_2_7_25_11
e_1_2_7_25_10
e_1_2_7_19_12
e_1_2_7_19_11
e_1_2_7_19_10
e_1_2_7_22_3
e_1_2_7_19_13
e_1_2_7_22_2
e_1_2_7_22_1
References_xml – volume: 154 2 133 21
  start-page: 54 41 8830 18563
  year: 2018 2016 2011 2015
  end-page: 64 8833 18565
  publication-title: Polyhedron Magnetochemistry J. Am. Chem. Soc Chem. Eur. J
– volume: 125 44 54
  start-page: 8694 6118 6736
  year: 2003 2015 2015
  end-page: 8695 6125 6743
  publication-title: J. Am. Chem. Soc Dalton Trans Inorg. Chem
– volume: 13 486 44 42 4 46 45 56 129 2 134 2015 1
  start-page: 2060 499 13890 1987 45 17000 15114 1830 1856 43(1 14982 7036 2935
  year: 2018 2019 2015 2013 2018 2017 2016 2017 2017 2016 2012 2015 2013
  end-page: 2068 505 13896 1990 17009 15121 1834 1860 12 14990 7042 2942
  publication-title: Chem. Asian J Inorg. Chim. Acta Dalton Trans Dalton Trans Magnetochemistry Dalton Trans Dalton Trans Angew. Chem. Int. Ed Angew. Chem Magnetochemistry J. Am. Chem. Soc Eur. J. Org. Chem J. Mater. Chem. C
– volume: 415 406 1 293 4 39
  start-page: 213299 213153 751 19 1939 189
  year: 2020 2020 2019 2015 2013 2010
  end-page: 762 47 1949 227
  publication-title: Coord. Chem. Rev Coord. Chem. Rev Trends Chem Coord. Chem. Rev Chem. Sci Chem. Soc. Rev
– volume: 4 25 54 46
  start-page: 1719 11820 7600 14812
  year: 2013 2019 2015 2017
  end-page: 1730 11825 7606 14825
  publication-title: Chem. Sci Chem. Eur. J Inorg. Chem Dalton Trans
– volume: 119 47 363 346 346 172 113
  start-page: 8479 2431 57 150 216 5110
  year: 2019 2018 2018 2017 2017 2016 2013
  end-page: 8505 2453 70 175 239 5148
  publication-title: Chem. Rev Chem. Soc. Rev Coord. Chem. Rev Coord. Chem. Rev Coord. Chem. Rev Chem. Rev
– volume: 51 11 54 2 45 39 5 44 57 173 52 125 22 45 34
  start-page: 8538 3936 7667 1105 2974 8650 605 7270 13225 114113 350 368 14548 1299 2068
  year: 2012 2020 2015 2015 2016 2015 2018 2020 2018 2019 2013 2013 2016 2006 1995 2020
  end-page: 8544 3951 7669 1117 2982 8657 618 7276 13234 354 14559 1304 2076
  publication-title: Inorg. Chem Chem. Sci Inorg. Chem Inorg. Chem. Front Dalton Trans New J. Chem Inorg. Chem. Front New J. Chem Inorg. Chem Polyhedron Angew. Chem. Int. Ed Angew. Chem Chem. Eur. J Inorg. Chem Inorg. Chem Inorg. Chem. Front
– volume: 1207 2019 48 4 47 46 46 54
  start-page: 127735 4592 2735 39 17349 3369 11806 153
  year: 2020 2019 2019 2018 2018 2017 2017 2015
  end-page: 4596 2740 17356 3380 11816 160
  publication-title: J. Mol. Struct Eur. J. Inorg. Chem Dalton Trans Magnetochemistry Dalton Trans Dalton Trans Dalton Trans Inorg. Chem
– volume: 48 47 2018 3 52
  start-page: 12644 6199 333 97 8342
  year: 2019 2018 2018 2016 2013
  end-page: 12655 339 103 8348
  publication-title: Dalton Trans Dalton Trans Eur. J. Inorg. Chem Inorg. Chem. Front Inorg. Chem
– volume: 548 362 9 55 128
  start-page: 439 1400 8492 16071 16305
  year: 2017 2018 2018 2016 2016
  end-page: 442 1403 8503 16074
  publication-title: Nature Science Chem. Sci Angew. Chem. Int. Ed Angew. Chem
– volume: 43 466 2013 155 6 20 394 14 41 38 45 48 43 41 24 4 140 130 54 1197 54 2016 8
  start-page: 4067 599 4329 375 3058 10695 770 1728 14651 4716 6405 558 5498 13582 4320 1465 2995 40 8489 11307 666 10136 2774 15480
  year: 2019 2017 2013 2018 2016 2014 2013 2011 2012 2014 2016 2019 2004 2012 2018 2017 2018 2017 2009 2015 2019 2018 2016 2018
  end-page: 4074 603 4335 381 3067 10702 775 1731 14656 4721 6417 565 5500 13600 4327 1471 3007 46 8492 11313 671 10139 2782 15486
  publication-title: New J. Chem Inorg. Chim. Acta Eur. J. Inorg. Chem Polyhedron RSC Adv Chem. Eur. J Inorg. Chim. Acta Inorg. Chem. Commun Dalton Trans New J. Chem Dalton Trans Dalton Trans Inorg. Chem Dalton Trans Chem. Eur. J Inorg. Chem. Front J. Am. Chem. Soc Polyhedron Dalton Trans Inorg. Chem J. Mol. Struct Chem. Commun Eur. J. Inorg. Chem RSC Adv
– volume: 296
  start-page: 24
  year: 2015
  end-page: 44
  publication-title: Coord. Chem. Rev
– volume: 55 80
  start-page: 11448 014430
  year: 1997 2009
  end-page: 11456 014430
  publication-title: Phys. Rev. B Phys. Rev. B
– volume: 46 5 6
  start-page: 8252 432 705
  year: 2017 2018 2019
  end-page: 8258 437 714
  publication-title: Dalton Trans Inorg. Chem. Front Inorg. Chem. Front
– volume: 42 44 44 250 5 50 54 22 52 56 482 44 141 15 142 46 59 7
  start-page: 5274 6939 6949 2501 1857 3409 878 4396 10316 7371 10795 5239 813 660 18211 10541 3970 13668 687 4164
  year: 2003 2005 2005 2006 2006 2014 2007 2014 2015 2016 2016 2017 2018 2018 2019 2013 2020 2017 2020 2019
  end-page: 5281 6948 6958 2510 1859 3417 888 4415 10322 7375 10798 5252 820 666 18220 10549 3979 13672 694 4172
  publication-title: Inorg. Chem Inorg. Chem Inorg. Chem Coord. Chem. Rev Chem. Commun Chem. Sci Dalton Trans Chem. Commun Inorg. Chem Chem. Eur. J Chem. Commun Inorg. Chem Inorg. Chim. Acta Russ. J. Coord. Chem J. Am. Chem. Soc CrystEngComm J. Am. Chem. Soc Dalton Trans Inorg. Chem J. Mater. Chem. C
– volume: 2
  start-page: 2078
  year: 2011
  end-page: 2085
  publication-title: Chem. Sci
– volume: 102
  start-page: 2369
  year: 2002
  end-page: 2387
  publication-title: Chem. Rev
– volume: 48
  start-page: 3467
  year: 2009
  end-page: 3479
  publication-title: Inorg. Chem
– volume: 136 3 43
  start-page: 8003 828 6752
  year: 2014 2016 2014
  end-page: 8010 835 6761
  publication-title: J. Am. Chem. Soc Inorg. Chem. Front Dalton Trans
– volume: 49 48 355 38
  start-page: 2886 2535 133 1248
  year: 2020 2019 2018 2009
  end-page: 2915 2565 149 1256
  publication-title: Chem. Soc. Rev Chem. Soc. Rev Coord. Chem. Rev Chem. Soc. Rev
– volume: 4
  start-page: 2551
  year: 2013
  publication-title: Nat. Commun
– volume: 51 50 123 40 8 19 19 7
  start-page: 12565 11852 12054 3336 194 1672 1678 179
  year: 2012 2011 2011 2011 2009 2009 2009 2008
  end-page: 12574 11858 3355 197 1677 1684 186
  publication-title: Inorg. Chem Angew. Chem. Int. Ed Angew. Chem Chem. Soc. Rev Nat. Mater J. Mater. Chem J. Mater. Chem Nat. Mater
– volume: 18 18 45 55 2
  start-page: 4004 2484 8790 3865 38 3561
  year: 2018 2012 2016 2016 2016 2017
  end-page: 4016 8794 3871 3569
  publication-title: Cryst. Growth Des Chem. Eur. J Dalton Trans Inorg. Chem Magnetochemistry Eur. J. Inorg. Chem
– ident: e_1_2_7_14_2
  doi: 10.1002/chem.201902420
– ident: e_1_2_7_10_8
  doi: 10.1039/C4CC00339J
– ident: e_1_2_7_4_3
  doi: 10.1016/j.ccr.2017.08.001
– ident: e_1_2_7_10_10
  doi: 10.1002/chem.201601244
– ident: e_1_2_7_20_2
  doi: 10.1103/PhysRevB.80.014430
– ident: e_1_2_7_3_3
  doi: 10.1016/j.ccr.2018.02.019
– ident: e_1_2_7_3_2
  doi: 10.1039/C7CS00266A
– ident: e_1_2_7_7_1
  doi: 10.1021/cr010303r
– ident: e_1_2_7_17_1
  doi: 10.1039/c1sc00513h
– ident: e_1_2_7_19_3
  doi: 10.1039/C5DT01487E
– ident: e_1_2_7_19_13
  doi: 10.1039/c3tc00925d
– ident: e_1_2_7_6_2
  doi: 10.1126/science.aav0652
– ident: e_1_2_7_14_1
  doi: 10.1039/c3sc22300k
– ident: e_1_2_7_10_3
  doi: 10.1021/ic050650
– ident: e_1_2_7_15_3
  doi: 10.1021/ja2017009
– ident: e_1_2_7_18_7
  doi: 10.1016/j.ica.2012.10.001
– ident: e_1_2_7_9_3
  doi: 10.1039/C9DT00073A
– ident: e_1_2_7_18_23
  doi: 10.1039/C8CC04565H
– ident: e_1_2_7_5_3
  doi: 10.1002/ange.201100818
– ident: e_1_2_7_19_7
  doi: 10.1039/C6DT02537D
– ident: e_1_2_7_10_7
  doi: 10.1039/B616016F
– ident: e_1_2_7_10_14
  doi: 10.1134/S1070328418110064
– ident: e_1_2_7_8_2
  doi: 10.1002/chem.201103816
– ident: e_1_2_7_2_4
  doi: 10.1016/j.ccr.2014.10.013
– ident: e_1_2_7_18_14
  doi: 10.1039/c2dt31400b
– ident: e_1_2_7_21_1
  doi: 10.1021/ic801630z
– ident: e_1_2_7_19_1
  doi: 10.1002/asia.201800511
– ident: e_1_2_7_8_4
  doi: 10.1021/acs.inorgchem.5b02971
– ident: e_1_2_7_25_7
  doi: 10.1039/C7QI00727B
– ident: e_1_2_7_3_7
  doi: 10.1021/cr400018q
– ident: e_1_2_7_18_6
  doi: 10.1002/chem.201402255
– ident: e_1_2_7_18_19
  doi: 10.1016/j.poly.2017.03.021
– ident: e_1_2_7_4_4
  doi: 10.1039/b807083k
– ident: e_1_2_7_8_5
  doi: 10.3390/magnetochemistry2040038
– ident: e_1_2_7_25_1
  doi: 10.1021/ic301115b
– ident: e_1_2_7_10_15
  doi: 10.1021/jacs.9b09103
– ident: e_1_2_7_24_3
  doi: 10.1039/c4dt00168k
– ident: e_1_2_7_18_12
  doi: 10.1039/C8DT03809K
– ident: e_1_2_7_22_3
  doi: 10.1039/C8QI01346B
– ident: e_1_2_7_8_6
  doi: 10.1002/ejic.201700537
– ident: e_1_2_7_18_2
  doi: 10.1016/j.ica.2017.06.019
– ident: e_1_2_7_18_4
  doi: 10.1016/j.poly.2018.08.058
– ident: e_1_2_7_15_1
  doi: 10.1016/j.poly.2018.07.027
– ident: e_1_2_7_10_19
  doi: 10.1021/acs.inorgchem.9b02948
– ident: e_1_2_7_18_11
  doi: 10.1039/C5DT04948B
– ident: e_1_2_7_25_11
  doi: 10.1002/anie.201205938
– ident: e_1_2_7_4_1
  doi: 10.1039/C8CS00986D
– ident: e_1_2_7_6_1
  doi: 10.1038/nature23447
– ident: e_1_2_7_9_1
  doi: 10.1016/j.molstruc.2020.127735
– ident: e_1_2_7_19_6
  doi: 10.1039/C7DT03438E
– ident: e_1_2_7_22_1
  doi: 10.1039/C7DT01121K
– ident: e_1_2_7_25_3
  doi: 10.1021/acs.inorgchem.5b01318
– ident: e_1_2_7_25_2
  doi: 10.1039/D0SC01197E
– ident: e_1_2_7_2_2
  doi: 10.1016/j.ccr.2019.213153
– ident: e_1_2_7_6_4
  doi: 10.1002/anie.201609685
– ident: e_1_2_7_19_10
  doi: 10.3390/magnetochemistry2040043
– ident: e_1_2_7_10_1
  doi: 10.1021/ic034051j
– ident: e_1_2_7_10_17
  doi: 10.1021/jacs.9b13147
– ident: e_1_2_7_18_17
  doi: 10.1021/jacs.7b12667
– ident: e_1_2_7_18_16
  doi: 10.1039/C7QI00332C
– ident: e_1_2_7_18_3
  doi: 10.1002/ejic.201300524
– ident: e_1_2_7_3_1
  doi: 10.1021/acs.chemrev.9b00103
– ident: e_1_2_7_3_4
  doi: 10.1016/j.ccr.2016.12.017
– ident: e_1_2_7_25_9
  doi: 10.1021/acs.inorgchem.8b01688
– ident: e_1_2_7_3_5
  doi: 10.1016/j.ccr.2017.03.015
– ident: e_1_2_7_10_16
  doi: 10.1039/c3ce41704b
– ident: e_1_2_7_10_20
  doi: 10.1039/C8TC06630B
– ident: e_1_2_7_19_12
  doi: 10.1002/ejoc.201501015
– ident: e_1_2_7_19_9
  doi: 10.1002/ange.201611345
– ident: e_1_2_7_19_4
  doi: 10.1039/c2dt32785f
– year: 2020
  ident: e_1_2_7_25_16
  publication-title: Inorg. Chem. Front
– ident: e_1_2_7_18_20
  doi: 10.1039/b908639k
– ident: e_1_2_7_18_15
  doi: 10.1002/chem.201705378
– ident: e_1_2_7_14_3
  doi: 10.1021/acs.inorgchem.5b01209
– ident: e_1_2_7_23_1
  doi: 10.1038/ncomms3551
– ident: e_1_2_7_25_10
  doi: 10.1016/j.poly.2019.114113
– ident: e_1_2_7_20_1
  doi: 10.1103/PhysRevB.55.11448
– ident: e_1_2_7_18_13
  doi: 10.1021/ic049348b
– ident: e_1_2_7_2_6
  doi: 10.1039/B905604C
– ident: e_1_2_7_5_2
  doi: 10.1002/anie.201100818
– ident: e_1_2_7_25_5
  doi: 10.1039/C5DT03897A
– ident: e_1_2_7_18_10
  doi: 10.1039/C4NJ00627E
– ident: e_1_2_7_18_21
  doi: 10.1021/acs.inorgchem.5b01915
– ident: e_1_2_7_9_2
  doi: 10.1002/ejic.201900976
– ident: e_1_2_7_19_8
  doi: 10.1002/anie.201611345
– ident: e_1_2_7_18_24
  doi: 10.1002/ejic.201600152
– ident: e_1_2_7_22_2
  doi: 10.1039/C7QI00663B
– ident: e_1_2_7_10_13
  doi: 10.1016/j.ica.2018.07.029
– ident: e_1_2_7_19_2
  doi: 10.1016/j.ica.2018.11.006
– ident: e_1_2_7_10_5
  doi: 10.1039/B601344A
– ident: e_1_2_7_10_6
  doi: 10.1039/C4SC00809J
– ident: e_1_2_7_6_3
  doi: 10.1039/C8SC03907K
– ident: e_1_2_7_25_12
  doi: 10.1002/ange.201205938
– ident: e_1_2_7_10_12
  doi: 10.1021/acs.inorgchem.7b00369
– ident: e_1_2_7_9_8
  doi: 10.1021/ic501952b
– ident: e_1_2_7_8_3
  doi: 10.1039/C6DT01082B
– ident: e_1_2_7_11_1
  doi: 10.1016/j.ccr.2015.03.012
– ident: e_1_2_7_16_1
  doi: 10.1021/ja029629n
– ident: e_1_2_7_10_2
  doi: 10.1021/ic050648i
– ident: e_1_2_7_9_5
  doi: 10.1039/C8DT03613F
– ident: e_1_2_7_15_2
  doi: 10.3390/magnetochemistry2040041
– ident: e_1_2_7_18_1
  doi: 10.1039/C8NJ05777J
– ident: e_1_2_7_13_2
  doi: 10.1039/C8DT00624E
– ident: e_1_2_7_18_8
  doi: 10.1016/j.inoche.2011.07.016
– ident: e_1_2_7_9_7
  doi: 10.1039/C7DT02175E
– ident: e_1_2_7_24_4
– ident: e_1_2_7_5_4
  doi: 10.1039/c1cs15047b
– ident: e_1_2_7_15_4
  doi: 10.1002/chem.201503635
– ident: e_1_2_7_25_4
  doi: 10.1039/C5QI00087D
– ident: e_1_2_7_18_25
  doi: 10.1039/C8RA02546K
– ident: e_1_2_7_19_5
  doi: 10.3390/magnetochemistry4040045
– ident: e_1_2_7_13_5
  doi: 10.1021/ic400430q
– ident: e_1_2_7_19_11
  doi: 10.1021/ja305163t
– ident: e_1_2_7_13_1
  doi: 10.1039/C9DT02260K
– ident: e_1_2_7_18_18
– ident: e_1_2_7_25_15
  doi: 10.1021/ic00112a019
– ident: e_1_2_7_5_6
  doi: 10.1039/B810634G
– volume-title: 50 Years of Structure and Bonding – The Anniversary Volume. Structure and Bonding
  year: 2016
  ident: e_1_2_7_3_6
– ident: e_1_2_7_5_7
  doi: 10.1039/b819594n
– ident: e_1_2_7_10_18
  doi: 10.1039/C7DT02239E
– ident: e_1_2_7_18_9
  doi: 10.1039/c2dt31806g
– ident: e_1_2_7_9_6
  doi: 10.1039/C6DT04895A
– ident: e_1_2_7_24_1
  doi: 10.1021/ja5022552
– ident: e_1_2_7_14_4
  doi: 10.1039/C7DT02717F
– ident: e_1_2_7_18_5
  doi: 10.1039/C5RA21991D
– ident: e_1_2_7_25_6
  doi: 10.1039/C5NJ01724F
– ident: e_1_2_7_4_2
  doi: 10.1039/C8CS00337H
– ident: e_1_2_7_8_1
  doi: 10.1021/acs.cgd.8b00358
– ident: e_1_2_7_25_13
  doi: 10.1002/chem.201601457
– ident: e_1_2_7_25_14
  doi: 10.1021/ic051089i
– ident: e_1_2_7_13_4
  doi: 10.1039/C5QI00224A
– ident: e_1_2_7_16_2
  doi: 10.1039/C4DT03941F
– ident: e_1_2_7_10_4
  doi: 10.1016/j.ccr.2006.03.021
– ident: e_1_2_7_10_11
  doi: 10.1039/C6CC05337H
– ident: e_1_2_7_2_1
  doi: 10.1016/j.ccr.2020.213299
– ident: e_1_2_7_5_8
  doi: 10.1038/nmat2133
– ident: e_1_2_7_2_5
  doi: 10.1039/c3sc22126a
– ident: e_1_2_7_25_8
  doi: 10.1039/D0NJ00533A
– ident: e_1_2_7_2_3
  doi: 10.1016/j.trechm.2019.05.012
– ident: e_1_2_7_5_1
  doi: 10.1021/ic302068c
– ident: e_1_2_7_13_3
  doi: 10.1002/ejic.201701106
– ident: e_1_2_7_6_5
  doi: 10.1002/ange.201609685
– ident: e_1_2_7_24_2
  doi: 10.1039/C6QI00028B
– ident: e_1_2_7_18_22
  doi: 10.1016/j.molstruc.2019.07.092
– ident: e_1_2_7_10_9
  doi: 10.1021/acs.inorgchem.5b01763
– ident: e_1_2_7_12_1
– ident: e_1_2_7_9_4
  doi: 10.3390/magnetochemistry4030039
– ident: e_1_2_7_5_5
  doi: 10.1038/nmat2374
– ident: e_1_2_7_16_3
  doi: 10.1021/acs.inorgchem.5b00432
SSID ssj0003036
Score 2.4258482
Snippet Slow relaxation of magnetization has been studied for a series of stable isomorphic 3D‐polynuclear Ln‐Co complexes comprising hexadentate [Co(CN)6]3– linkers,...
Slow relaxation of magnetization has been studied for a series of stable isomorphic 3D‐polynuclear Ln‐Co complexes comprising hexadentate [Co(CN) 6 ] 3–...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4380
SubjectTerms Cyanometallate‐bridged complexes
Demagnetization
Dysprosium
Erbium
Inorganic chemistry
Lanthanides
Magnetic properties
Magnets
Single‐ion magnets
Single‐molecule magnets
Virtual reality
Ytterbium
Title Unexpected Supremacy of Non‐Dysprosium Single‐Ion Magnets within a Series of Isomorphic Lanthanide Cyanocobaltate(III) Complexes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejic.202000798
https://www.proquest.com/docview/2468997107
Volume 2020
WOSCitedRecordID wos000588446400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-0682
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003036
  issn: 1434-1948
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLagQ2KX8VsUBvIBCThEa-y0do6oW0VQqRCj0m6R_eyMoNaZ6naitx32B-xv5C_hOU2z7YCQ4JZEtmX583vve1b8PULe2IInRgkW6ZgnEYaAfiRNT0UGOMR9CwVAjfRYTCby5CT9cuMW_0Yfoj1wC5ZR--tg4Er7g2vRUPujDBKE4aqJSOVdssNw8yYdsnP4dTQdt944uOj6hhFOBRN2uRVu7LGD2yPcDkzXbPMmZ62DzujB_0_3IdlrCCf9sNkhj8gd6x6T-8Ntnbcn5HLqgsw_IPWkx6uzhZ0rWNOqoJPK_bq4Olx7nKUvV3N6jGFuZvFbVjn6WZ06u_Q0HOSWjioaztmsDx0zX80rxK8EOkbgvitXGkuHa-UqCPIjgd--y7LsPQ3eaGZ_Wv-UTEdH34Yfo6Y2QwSY08oIYqEFB8X6qmd1qOHDFcSKmXSgeWJjDpjYJYpD3xQIQQypQFsXEOtaUIfzZ6TjKmefE6qkRd4oFR-gb7A8lUaYhGkoCqn1wJguibbA5NAIl4f6GbN8I7nM8rC2ebu2XfK2bX-2kez4Y8v9Lc55Y7o-Z8kAc1AkXqJLWI3oX0bJjz5lw_btxb90ekl2w3P4TSbm-6SzXKzsK3IPzpelX7xutvRvmYT6EA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pb9MwFLegQ9ou_EcrDPABCThEa-Kkdo6oW7VAViG2SrtFzrMDQa0zNS2iNw58AD4jn4T30jRjB4SEONqyLcs_v7-yf4-xF7YQodEy8HJfhB6agMhTZqA9AwL8yEIB0CCdyslEXVzE79vXhPQXZsMP0SXcSDIafU0CTgnpwyvWUPu5JA5C-msiY3WT7YR4l6Ie2zn6MJ6mnTomHd18McK9YMSutsyNg-Dw-grXLdOVu_m709pYnfGd_7Dfu-x263LyN5s7co_dsO4-2x1tK709YN-njoj-AZ1Pfra6XNi5hjWvCj6p3M9vP47WNW6zLldzfoaGbmaxL6kcP9UfnV3WnFK5peOaU6bN1jQxqat5hQiWwFOE7pN2pbF8tNauAiIgIQ_3VZIkrznpo5n9auuHbDo-Ph-deG11Bg8wqlUe-DKXAnQQ6YHNqYqP0ODrwMTDXITWF4ChXagFRKZADHyIJUq7BD9vKHWEeMR6rnJ2n3GtLHqOSoshagcrYmWkCYMcikLl-dCYPvO2yGTQUpdTBY1ZtiFdDjI626w72z572Y2_3JB2_HHkwRborBXeOgvCIUah6HrJPgsaSP-ySnb8Nhl1rcf_Muk52z05P02zNJm8e8L2qJ8ezfjigPWWi5V9ym7Bl2VZL5619_sXk_b-AA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVgF7Fc-F5RWMAHJOAQbRMnsXNE7VYESrViqbS3yBlPIKh1qqZF9MaBH8Bv5JcwTtMse0BIiGOs2LL8PDNvLPsNY8-wEKHRMvByX4QehYDIU6avPQMC_AihAGiQHsvJRJ2fJ6ftbUL3FmarD9EduDnLaPy1M3BcmOL4QjUUP5dOg9C9NZGJusr2wyiJyTb3h-9H03Hnjp2Pbp4Y0VwoY1c75cZ-cHx5hMuR6YJu_k5am6gzuvUf5nub3WwpJ3-13SN32BW0d9nBYFfp7R77PrVO6B-IfPKz9WKJcw0bXhV8Utmf334MNzVNsy7Xc35GgW6G1JZWlr_THy2uau6OckvLNXcnbVi7jmldzStCsAQ-Jug-aVsa5IONthU4ARLHcF-kafqSO380w69Y32fT0cmHwWuvrc7gAWW1ygNf5lKADiLdx9xV8REafB2YJM5FiL4ASu1CLSAyBWHgQyLJ2iX4eSOpI8Qh27OVxQeMa4XEHJUWMXkHFIky0oRBDkWh8jw2pse8HTIZtNLlroLGLNuKLgeZW9usW9see979v9iKdvzxz6Md0FlrvHUWhDFloUS9ZI8FDaR_GSU7eZMOuq-H_9LpKbt-Ohxl43Ty9hG74ZrdnRlfHLG91XKNj9k1-LIq6-WTdnv_AiHe_Xs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unexpected+Supremacy+of+Non%E2%80%90Dysprosium+Single%E2%80%90Ion+Magnets+within+a+Series+of+Isomorphic+Lanthanide+Cyanocobaltate%28III%29+Complexes&rft.jtitle=European+journal+of+inorganic+chemistry&rft.au=Babeshkin%2C+Konstantin+A.&rft.au=Gavrikov%2C+Andrey+V.&rft.au=Petrosyants%2C+Svetlana+P.&rft.au=Ilyukhin%2C+Andrey+B.&rft.date=2020-12-13&rft.issn=1434-1948&rft.eissn=1099-0682&rft.volume=2020&rft.issue=46&rft.spage=4380&rft.epage=4390&rft_id=info:doi/10.1002%2Fejic.202000798&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ejic_202000798
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-1948&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-1948&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-1948&client=summon