Unexpected Supremacy of Non‐Dysprosium Single‐Ion Magnets within a Series of Isomorphic Lanthanide Cyanocobaltate(III) Complexes
Slow relaxation of magnetization has been studied for a series of stable isomorphic 3D‐polynuclear Ln‐Co complexes comprising hexadentate [Co(CN)6]3– linkers, namely {[Ln(H2O)2][Co(CN)6]·2H2O}n where Ln = Tb (1), Dy (2), Er (3) and Yb (4). While 1 and 4 behave as field‐induced single‐ion magnets (SI...
Saved in:
| Published in: | European journal of inorganic chemistry Vol. 2020; no. 46; pp. 4380 - 4390 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Weinheim
Wiley Subscription Services, Inc
13.12.2020
|
| Subjects: | |
| ISSN: | 1434-1948, 1099-0682 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Slow relaxation of magnetization has been studied for a series of stable isomorphic 3D‐polynuclear Ln‐Co complexes comprising hexadentate [Co(CN)6]3– linkers, namely {[Ln(H2O)2][Co(CN)6]·2H2O}n where Ln = Tb (1), Dy (2), Er (3) and Yb (4). While 1 and 4 behave as field‐induced single‐ion magnets (SIMs), compounds 2 and 3 undergo rapid demagnetization even under magnetic fields up to 5000 Oe. The effective anisotropic energy barrier of 4 was estimated as 63 K (5000 Oe) which, to the best of our knowledge, is the highest value among Yb‐based SIMs. The obtained data are discussed in scope of the configuration of the Ln environment, i.e. accounting its composition and geometry as well as mutual arrangement of chemically unequal donating centers. Thus, the studied series of complexes represents very rare case when SIM performance of non‐dysprosium complexes far surpasses that of isomorphic Dy derivative.
A study of Ln cyanocobaltates(III) as single‐ion magnets (SIMs) revealed drastic supremacy of Tb and Yb derivatives over Dy one which is still a rare case among a particular series of isomorphic complexes. Moreover, Δeff/kB value for Yb derivative is the highest one among both mononuclear SIMs and polynuclear single‐molecule magnets (SMMs) formed by that lanthanide. |
|---|---|
| AbstractList | Slow relaxation of magnetization has been studied for a series of stable isomorphic 3D‐polynuclear Ln‐Co complexes comprising hexadentate [Co(CN)6]3– linkers, namely {[Ln(H2O)2][Co(CN)6]·2H2O}n where Ln = Tb (1), Dy (2), Er (3) and Yb (4). While 1 and 4 behave as field‐induced single‐ion magnets (SIMs), compounds 2 and 3 undergo rapid demagnetization even under magnetic fields up to 5000 Oe. The effective anisotropic energy barrier of 4 was estimated as 63 K (5000 Oe) which, to the best of our knowledge, is the highest value among Yb‐based SIMs. The obtained data are discussed in scope of the configuration of the Ln environment, i.e. accounting its composition and geometry as well as mutual arrangement of chemically unequal donating centers. Thus, the studied series of complexes represents very rare case when SIM performance of non‐dysprosium complexes far surpasses that of isomorphic Dy derivative. Slow relaxation of magnetization has been studied for a series of stable isomorphic 3D‐polynuclear Ln‐Co complexes comprising hexadentate [Co(CN)6]3– linkers, namely {[Ln(H2O)2][Co(CN)6]·2H2O}n where Ln = Tb (1), Dy (2), Er (3) and Yb (4). While 1 and 4 behave as field‐induced single‐ion magnets (SIMs), compounds 2 and 3 undergo rapid demagnetization even under magnetic fields up to 5000 Oe. The effective anisotropic energy barrier of 4 was estimated as 63 K (5000 Oe) which, to the best of our knowledge, is the highest value among Yb‐based SIMs. The obtained data are discussed in scope of the configuration of the Ln environment, i.e. accounting its composition and geometry as well as mutual arrangement of chemically unequal donating centers. Thus, the studied series of complexes represents very rare case when SIM performance of non‐dysprosium complexes far surpasses that of isomorphic Dy derivative. A study of Ln cyanocobaltates(III) as single‐ion magnets (SIMs) revealed drastic supremacy of Tb and Yb derivatives over Dy one which is still a rare case among a particular series of isomorphic complexes. Moreover, Δeff/kB value for Yb derivative is the highest one among both mononuclear SIMs and polynuclear single‐molecule magnets (SMMs) formed by that lanthanide. Slow relaxation of magnetization has been studied for a series of stable isomorphic 3D‐polynuclear Ln‐Co complexes comprising hexadentate [Co(CN) 6 ] 3– linkers, namely {[Ln(H 2 O) 2 ][Co(CN) 6 ] · 2H 2 O} n where Ln = Tb ( 1 ), Dy ( 2 ), Er ( 3 ) and Yb ( 4 ). While 1 and 4 behave as field‐induced single‐ion magnets (SIMs), compounds 2 and 3 undergo rapid demagnetization even under magnetic fields up to 5000 Oe. The effective anisotropic energy barrier of 4 was estimated as 63 K (5000 Oe) which, to the best of our knowledge, is the highest value among Yb‐based SIMs. The obtained data are discussed in scope of the configuration of the Ln environment, i.e. accounting its composition and geometry as well as mutual arrangement of chemically unequal donating centers. Thus, the studied series of complexes represents very rare case when SIM performance of non‐dysprosium complexes far surpasses that of isomorphic Dy derivative. |
| Author | Belova, Ekaterina V. Petrosyants, Svetlana P. Babeshkin, Konstantin A. Ilyukhin, Andrey B. Efimov, Nikolay N. Gavrikov, Andrey V. |
| Author_xml | – sequence: 1 givenname: Konstantin A. surname: Babeshkin fullname: Babeshkin, Konstantin A. organization: Russian Academy of Sciences – sequence: 2 givenname: Andrey V. surname: Gavrikov fullname: Gavrikov, Andrey V. email: penguin1990@yandex.ru organization: Russian Academy of Sciences – sequence: 3 givenname: Svetlana P. surname: Petrosyants fullname: Petrosyants, Svetlana P. organization: Russian Academy of Sciences – sequence: 4 givenname: Andrey B. surname: Ilyukhin fullname: Ilyukhin, Andrey B. organization: Russian Academy of Sciences – sequence: 5 givenname: Ekaterina V. surname: Belova fullname: Belova, Ekaterina V. organization: Lomonosov Moscow State University – sequence: 6 givenname: Nikolay N. orcidid: 0000-0003-4651-7948 surname: Efimov fullname: Efimov, Nikolay N. email: nnefimov@narod.ru organization: Russian Academy of Sciences |
| BookMark | eNqFkE9P2zAYhy1UJCjsytnSLtshxf-axMcpYyyowKHjHDnuW-oqsTM7VZvbDnyAfUY-Ca6KQJo0cbJlPc_7-vcbo5F1FhC6oGRCCWGXsDZ6wggjhGQyP0KnlEiZkDRno3gXXCRUivwEjUNYR4YTnp6ipwcLuw50Dws833QeWqUH7Jb4ztnnP3-_D6HzLphNi-fGPjYQ30pn8a16tNAHvDX9ylis8By8gbAXy-Ba57uV0XimbL9S1iwAF4OyTrtaNb3q4UtZll9x4dqugR2Ec3S8VE2AT6_nGXr4cfWr-JnM7q_L4tss0TzneaJpVmdcKzZVBGoylSlXmiq2kGnNBVCuJRNCcT1dLGM6qmVGZZppWhOWccH5Gfp8mBsz_d5A6Ku123gbV1ZMpLmMPMkiJQ6UjsmDh2WlTfy0cbb3yjQVJdW-72rfd_XWd9Qm_2idN63yw_8FeRC2poHhA7q6uimLd_cFctiYLQ |
| CitedBy_id | crossref_primary_10_1002_ange_202306372 crossref_primary_10_1016_j_jmmm_2024_172650 crossref_primary_10_1002_anie_202306372 crossref_primary_10_1039_D2DT00766E crossref_primary_10_1134_S1070328422090056 crossref_primary_10_1039_D5TC00871A crossref_primary_10_1016_j_poly_2024_116858 crossref_primary_10_1016_j_mencom_2023_01_013 crossref_primary_10_1134_S1070328423601413 crossref_primary_10_1039_D5DT00749F crossref_primary_10_3390_app11167510 crossref_primary_10_1016_j_poly_2021_115118 crossref_primary_10_1016_j_poly_2024_117114 |
| Cites_doi | 10.1002/chem.201902420 10.1039/C4CC00339J 10.1016/j.ccr.2017.08.001 10.1002/chem.201601244 10.1103/PhysRevB.80.014430 10.1016/j.ccr.2018.02.019 10.1039/C7CS00266A 10.1021/cr010303r 10.1039/c1sc00513h 10.1039/C5DT01487E 10.1039/c3tc00925d 10.1126/science.aav0652 10.1039/c3sc22300k 10.1021/ic050650 10.1021/ja2017009 10.1016/j.ica.2012.10.001 10.1039/C9DT00073A 10.1039/C8CC04565H 10.1002/ange.201100818 10.1039/C6DT02537D 10.1039/B616016F 10.1134/S1070328418110064 10.1002/chem.201103816 10.1016/j.ccr.2014.10.013 10.1039/c2dt31400b 10.1021/ic801630z 10.1002/asia.201800511 10.1021/acs.inorgchem.5b02971 10.1039/C7QI00727B 10.1021/cr400018q 10.1002/chem.201402255 10.1016/j.poly.2017.03.021 10.1039/b807083k 10.3390/magnetochemistry2040038 10.1021/ic301115b 10.1021/jacs.9b09103 10.1039/c4dt00168k 10.1039/C8DT03809K 10.1039/C8QI01346B 10.1002/ejic.201700537 10.1016/j.ica.2017.06.019 10.1016/j.poly.2018.08.058 10.1016/j.poly.2018.07.027 10.1021/acs.inorgchem.9b02948 10.1039/C5DT04948B 10.1002/anie.201205938 10.1039/C8CS00986D 10.1038/nature23447 10.1016/j.molstruc.2020.127735 10.1039/C7DT03438E 10.1039/C7DT01121K 10.1021/acs.inorgchem.5b01318 10.1039/D0SC01197E 10.1016/j.ccr.2019.213153 10.1002/anie.201609685 10.3390/magnetochemistry2040043 10.1021/ic034051j 10.1021/jacs.9b13147 10.1021/jacs.7b12667 10.1039/C7QI00332C 10.1002/ejic.201300524 10.1021/acs.chemrev.9b00103 10.1016/j.ccr.2016.12.017 10.1021/acs.inorgchem.8b01688 10.1016/j.ccr.2017.03.015 10.1039/c3ce41704b 10.1039/C8TC06630B 10.1002/ejoc.201501015 10.1002/ange.201611345 10.1039/c2dt32785f 10.1039/b908639k 10.1002/chem.201705378 10.1021/acs.inorgchem.5b01209 10.1038/ncomms3551 10.1016/j.poly.2019.114113 10.1103/PhysRevB.55.11448 10.1021/ic049348b 10.1039/B905604C 10.1002/anie.201100818 10.1039/C5DT03897A 10.1039/C4NJ00627E 10.1021/acs.inorgchem.5b01915 10.1002/ejic.201900976 10.1002/anie.201611345 10.1002/ejic.201600152 10.1039/C7QI00663B 10.1016/j.ica.2018.07.029 10.1016/j.ica.2018.11.006 10.1039/B601344A 10.1039/C4SC00809J 10.1039/C8SC03907K 10.1002/ange.201205938 10.1021/acs.inorgchem.7b00369 10.1021/ic501952b 10.1039/C6DT01082B 10.1016/j.ccr.2015.03.012 10.1021/ja029629n 10.1021/ic050648i 10.1039/C8DT03613F 10.3390/magnetochemistry2040041 10.1039/C8NJ05777J 10.1039/C8DT00624E 10.1016/j.inoche.2011.07.016 10.1039/C7DT02175E 10.1039/c1cs15047b 10.1002/chem.201503635 10.1039/C5QI00087D 10.1039/C8RA02546K 10.3390/magnetochemistry4040045 10.1021/ic400430q 10.1021/ja305163t 10.1039/C9DT02260K 10.1021/ic00112a019 10.1039/B810634G 10.1039/b819594n 10.1039/C7DT02239E 10.1039/c2dt31806g 10.1039/C6DT04895A 10.1021/ja5022552 10.1039/C7DT02717F 10.1039/C5RA21991D 10.1039/C5NJ01724F 10.1039/C8CS00337H 10.1021/acs.cgd.8b00358 10.1002/chem.201601457 10.1021/ic051089i 10.1039/C5QI00224A 10.1039/C4DT03941F 10.1016/j.ccr.2006.03.021 10.1039/C6CC05337H 10.1016/j.ccr.2020.213299 10.1038/nmat2133 10.1039/c3sc22126a 10.1039/D0NJ00533A 10.1016/j.trechm.2019.05.012 10.1021/ic302068c 10.1002/ejic.201701106 10.1002/ange.201609685 10.1039/C6QI00028B 10.1016/j.molstruc.2019.07.092 10.1021/acs.inorgchem.5b01763 10.3390/magnetochemistry4030039 10.1038/nmat2374 10.1021/acs.inorgchem.5b00432 |
| ContentType | Journal Article |
| Copyright | 2020 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2020 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/ejic.202000798 |
| DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1099-0682 |
| EndPage | 4390 |
| ExternalDocumentID | 10_1002_ejic_202000798 EJIC202000798 |
| Genre | article |
| GrantInformation_xml | – fundername: Russian Science Foundation funderid: 16‐13‐10407 – fundername: Russian Foundation for Basic Research funderid: 18‐33‐20155 |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABLJU ABPVW ACAHQ ACCFJ ACCZN ACNCT ACPOU ACSCC ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 F5P G-S G.N GNP GODZA HBH HGLYW HHY HHZ HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 UPT V2E W8V W99 WBFHL WBKPD WH7 WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION O8X 1OB 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c3838-c17b73ca25a0eb05963ac1a2d96b34e13c9244a3c5df3031c971967c1b0273433 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000588446400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1434-1948 |
| IngestDate | Wed Aug 13 04:57:31 EDT 2025 Sat Nov 29 07:19:00 EST 2025 Tue Nov 18 22:35:32 EST 2025 Wed Jan 22 16:31:06 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 46 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3838-c17b73ca25a0eb05963ac1a2d96b34e13c9244a3c5df3031c971967c1b0273433 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4651-7948 |
| PQID | 2468997107 |
| PQPubID | 2030176 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2468997107 crossref_citationtrail_10_1002_ejic_202000798 crossref_primary_10_1002_ejic_202000798 wiley_primary_10_1002_ejic_202000798_EJIC202000798 |
| PublicationCentury | 2000 |
| PublicationDate | December 13, 2020 |
| PublicationDateYYYYMMDD | 2020-12-13 |
| PublicationDate_xml | – month: 12 year: 2020 text: December 13, 2020 day: 13 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | European journal of inorganic chemistry |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2020 2019 2018 2009; 49 48 355 38 2020 2019 2019 2018 2018 2017 2017 2015; 1207 2019 48 4 47 46 46 54 2013 2019 2015 2017; 4 25 54 46 2018 2016 2011 2015; 154 2 133 21 2003 2015 2015; 125 44 54 2013; 4 2018 2012 2016 2016 2016 2017; 18 18 45 55 2 2011; 2 2012 2011 2011 2011 2009 2009 2009 2008; 51 50 123 40 8 19 19 7 2020 2020 2019 2015 2013 2010; 415 406 1 293 4 39 1997 2009; 55 80 2002; 102 2017 2018 2019; 46 5 6 2019 2018 2018 2017 2017 2016 2013; 119 47 363 346 346 172 113 2015; 296 2019 2018 2018 2016 2013; 48 47 2018 3 52 2019 2017 2013 2018 2016 2014 2013 2011 2012 2014 2016 2019 2004 2012 2018 2017 2018 2017 2009 2015 2019 2018 2016 2018; 43 466 2013 155 6 20 394 14 41 38 45 48 43 41 24 4 140 130 54 1197 54 2016 8 2003 2005 2005 2006 2006 2014 2007 2014 2015 2016 2016 2017 2018 2018 2019 2013 2020 2017 2020 2019; 42 44 44 250 5 50 54 22 52 56 482 44 141 15 142 46 59 7 2017 2018 2018 2016 2016; 548 362 9 55 128 2018 2019 2015 2013 2018 2017 2016 2017 2017 2016 2012 2015 2013; 13 486 44 42 4 46 45 56 129 2 134 2015 1 2009; 48 2014 2016 2014; 136 3 43 2012 2020 2015 2015 2016 2015 2018 2020 2018 2019 2013 2013 2016 2006 1995 2020; 51 11 54 2 45 39 5 44 57 173 52 125 22 45 34 e_1_2_7_3_4 e_1_2_7_19_9 e_1_2_7_3_3 e_1_2_7_19_8 e_1_2_7_3_2 e_1_2_7_19_7 e_1_2_7_3_1 e_1_2_7_19_6 e_1_2_7_19_5 e_1_2_7_3_7 e_1_2_7_19_4 e_1_2_7_19_3 e_1_2_7_3_5 e_1_2_7_7_1 e_1_2_7_19_2 e_1_2_7_19_1 e_1_2_7_15_4 e_1_2_7_15_3 e_1_2_7_15_2 e_1_2_7_15_1 e_1_2_7_10_20 e_1_2_7_11_1 e_1_2_7_10_19 e_1_2_7_10_18 e_1_2_7_10_17 e_1_2_7_10_16 e_1_2_7_10_15 e_1_2_7_18_21 e_1_2_7_10_14 e_1_2_7_18_22 e_1_2_7_10_13 e_1_2_7_10_12 e_1_2_7_18_20 e_1_2_7_10_11 e_1_2_7_18_25 e_1_2_7_10_10 e_1_2_7_18_23 e_1_2_7_18_24 e_1_2_7_23_1 e_1_2_7_18_18 e_1_2_7_18_19 e_1_2_7_18_16 e_1_2_7_18_17 Fondo M. (e_1_2_7_25_16) 2020 Clérac R. (e_1_2_7_3_6) 2016 e_1_2_7_4_3 e_1_2_7_4_2 e_1_2_7_4_1 e_1_2_7_8_3 e_1_2_7_8_2 e_1_2_7_8_1 e_1_2_7_4_4 e_1_2_7_18_10 e_1_2_7_16_3 e_1_2_7_18_11 e_1_2_7_16_2 e_1_2_7_16_1 e_1_2_7_18_14 e_1_2_7_18_15 e_1_2_7_18_12 e_1_2_7_12_1 e_1_2_7_18_13 e_1_2_7_8_6 e_1_2_7_8_5 e_1_2_7_8_4 e_1_2_7_24_4 e_1_2_7_24_3 e_1_2_7_24_2 e_1_2_7_24_1 e_1_2_7_20_2 e_1_2_7_20_1 e_1_2_7_5_2 e_1_2_7_5_1 e_1_2_7_5_6 e_1_2_7_9_2 e_1_2_7_5_5 e_1_2_7_9_1 e_1_2_7_5_4 e_1_2_7_5_3 e_1_2_7_13_5 e_1_2_7_17_1 e_1_2_7_13_4 e_1_2_7_13_3 e_1_2_7_13_2 e_1_2_7_13_1 e_1_2_7_9_6 e_1_2_7_9_5 e_1_2_7_5_8 e_1_2_7_9_4 e_1_2_7_5_7 e_1_2_7_9_3 e_1_2_7_9_8 e_1_2_7_9_7 e_1_2_7_25_9 e_1_2_7_25_8 e_1_2_7_25_7 e_1_2_7_25_6 e_1_2_7_25_5 e_1_2_7_25_4 e_1_2_7_25_3 e_1_2_7_25_2 e_1_2_7_25_1 e_1_2_7_21_1 e_1_2_7_2_5 e_1_2_7_6_1 e_1_2_7_2_4 e_1_2_7_18_9 e_1_2_7_2_3 e_1_2_7_18_8 e_1_2_7_2_2 e_1_2_7_18_7 e_1_2_7_6_5 e_1_2_7_18_6 e_1_2_7_6_4 e_1_2_7_18_5 e_1_2_7_6_3 e_1_2_7_18_4 e_1_2_7_2_6 e_1_2_7_6_2 e_1_2_7_18_3 e_1_2_7_18_2 e_1_2_7_10_9 e_1_2_7_18_1 e_1_2_7_10_8 e_1_2_7_14_4 e_1_2_7_10_7 e_1_2_7_14_3 e_1_2_7_2_1 e_1_2_7_10_6 e_1_2_7_14_2 e_1_2_7_10_5 e_1_2_7_14_1 e_1_2_7_10_4 e_1_2_7_10_3 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_25_15 e_1_2_7_25_14 e_1_2_7_25_13 e_1_2_7_25_12 e_1_2_7_25_11 e_1_2_7_25_10 e_1_2_7_19_12 e_1_2_7_19_11 e_1_2_7_19_10 e_1_2_7_22_3 e_1_2_7_19_13 e_1_2_7_22_2 e_1_2_7_22_1 |
| References_xml | – volume: 154 2 133 21 start-page: 54 41 8830 18563 year: 2018 2016 2011 2015 end-page: 64 8833 18565 publication-title: Polyhedron Magnetochemistry J. Am. Chem. Soc Chem. Eur. J – volume: 125 44 54 start-page: 8694 6118 6736 year: 2003 2015 2015 end-page: 8695 6125 6743 publication-title: J. Am. Chem. Soc Dalton Trans Inorg. Chem – volume: 13 486 44 42 4 46 45 56 129 2 134 2015 1 start-page: 2060 499 13890 1987 45 17000 15114 1830 1856 43(1 14982 7036 2935 year: 2018 2019 2015 2013 2018 2017 2016 2017 2017 2016 2012 2015 2013 end-page: 2068 505 13896 1990 17009 15121 1834 1860 12 14990 7042 2942 publication-title: Chem. Asian J Inorg. Chim. Acta Dalton Trans Dalton Trans Magnetochemistry Dalton Trans Dalton Trans Angew. Chem. Int. Ed Angew. Chem Magnetochemistry J. Am. Chem. Soc Eur. J. Org. Chem J. Mater. Chem. C – volume: 415 406 1 293 4 39 start-page: 213299 213153 751 19 1939 189 year: 2020 2020 2019 2015 2013 2010 end-page: 762 47 1949 227 publication-title: Coord. Chem. Rev Coord. Chem. Rev Trends Chem Coord. Chem. Rev Chem. Sci Chem. Soc. Rev – volume: 4 25 54 46 start-page: 1719 11820 7600 14812 year: 2013 2019 2015 2017 end-page: 1730 11825 7606 14825 publication-title: Chem. Sci Chem. Eur. J Inorg. Chem Dalton Trans – volume: 119 47 363 346 346 172 113 start-page: 8479 2431 57 150 216 5110 year: 2019 2018 2018 2017 2017 2016 2013 end-page: 8505 2453 70 175 239 5148 publication-title: Chem. Rev Chem. Soc. Rev Coord. Chem. Rev Coord. Chem. Rev Coord. Chem. Rev Chem. Rev – volume: 51 11 54 2 45 39 5 44 57 173 52 125 22 45 34 start-page: 8538 3936 7667 1105 2974 8650 605 7270 13225 114113 350 368 14548 1299 2068 year: 2012 2020 2015 2015 2016 2015 2018 2020 2018 2019 2013 2013 2016 2006 1995 2020 end-page: 8544 3951 7669 1117 2982 8657 618 7276 13234 354 14559 1304 2076 publication-title: Inorg. Chem Chem. Sci Inorg. Chem Inorg. Chem. Front Dalton Trans New J. Chem Inorg. Chem. Front New J. Chem Inorg. Chem Polyhedron Angew. Chem. Int. Ed Angew. Chem Chem. Eur. J Inorg. Chem Inorg. Chem Inorg. Chem. Front – volume: 1207 2019 48 4 47 46 46 54 start-page: 127735 4592 2735 39 17349 3369 11806 153 year: 2020 2019 2019 2018 2018 2017 2017 2015 end-page: 4596 2740 17356 3380 11816 160 publication-title: J. Mol. Struct Eur. J. Inorg. Chem Dalton Trans Magnetochemistry Dalton Trans Dalton Trans Dalton Trans Inorg. Chem – volume: 48 47 2018 3 52 start-page: 12644 6199 333 97 8342 year: 2019 2018 2018 2016 2013 end-page: 12655 339 103 8348 publication-title: Dalton Trans Dalton Trans Eur. J. Inorg. Chem Inorg. Chem. Front Inorg. Chem – volume: 548 362 9 55 128 start-page: 439 1400 8492 16071 16305 year: 2017 2018 2018 2016 2016 end-page: 442 1403 8503 16074 publication-title: Nature Science Chem. Sci Angew. Chem. Int. Ed Angew. Chem – volume: 43 466 2013 155 6 20 394 14 41 38 45 48 43 41 24 4 140 130 54 1197 54 2016 8 start-page: 4067 599 4329 375 3058 10695 770 1728 14651 4716 6405 558 5498 13582 4320 1465 2995 40 8489 11307 666 10136 2774 15480 year: 2019 2017 2013 2018 2016 2014 2013 2011 2012 2014 2016 2019 2004 2012 2018 2017 2018 2017 2009 2015 2019 2018 2016 2018 end-page: 4074 603 4335 381 3067 10702 775 1731 14656 4721 6417 565 5500 13600 4327 1471 3007 46 8492 11313 671 10139 2782 15486 publication-title: New J. Chem Inorg. Chim. Acta Eur. J. Inorg. Chem Polyhedron RSC Adv Chem. Eur. J Inorg. Chim. Acta Inorg. Chem. Commun Dalton Trans New J. Chem Dalton Trans Dalton Trans Inorg. Chem Dalton Trans Chem. Eur. J Inorg. Chem. Front J. Am. Chem. Soc Polyhedron Dalton Trans Inorg. Chem J. Mol. Struct Chem. Commun Eur. J. Inorg. Chem RSC Adv – volume: 296 start-page: 24 year: 2015 end-page: 44 publication-title: Coord. Chem. Rev – volume: 55 80 start-page: 11448 014430 year: 1997 2009 end-page: 11456 014430 publication-title: Phys. Rev. B Phys. Rev. B – volume: 46 5 6 start-page: 8252 432 705 year: 2017 2018 2019 end-page: 8258 437 714 publication-title: Dalton Trans Inorg. Chem. Front Inorg. Chem. Front – volume: 42 44 44 250 5 50 54 22 52 56 482 44 141 15 142 46 59 7 start-page: 5274 6939 6949 2501 1857 3409 878 4396 10316 7371 10795 5239 813 660 18211 10541 3970 13668 687 4164 year: 2003 2005 2005 2006 2006 2014 2007 2014 2015 2016 2016 2017 2018 2018 2019 2013 2020 2017 2020 2019 end-page: 5281 6948 6958 2510 1859 3417 888 4415 10322 7375 10798 5252 820 666 18220 10549 3979 13672 694 4172 publication-title: Inorg. Chem Inorg. Chem Inorg. Chem Coord. Chem. Rev Chem. Commun Chem. Sci Dalton Trans Chem. Commun Inorg. Chem Chem. Eur. J Chem. Commun Inorg. Chem Inorg. Chim. Acta Russ. J. Coord. Chem J. Am. Chem. Soc CrystEngComm J. Am. Chem. Soc Dalton Trans Inorg. Chem J. Mater. Chem. C – volume: 2 start-page: 2078 year: 2011 end-page: 2085 publication-title: Chem. Sci – volume: 102 start-page: 2369 year: 2002 end-page: 2387 publication-title: Chem. Rev – volume: 48 start-page: 3467 year: 2009 end-page: 3479 publication-title: Inorg. Chem – volume: 136 3 43 start-page: 8003 828 6752 year: 2014 2016 2014 end-page: 8010 835 6761 publication-title: J. Am. Chem. Soc Inorg. Chem. Front Dalton Trans – volume: 49 48 355 38 start-page: 2886 2535 133 1248 year: 2020 2019 2018 2009 end-page: 2915 2565 149 1256 publication-title: Chem. Soc. Rev Chem. Soc. Rev Coord. Chem. Rev Chem. Soc. Rev – volume: 4 start-page: 2551 year: 2013 publication-title: Nat. Commun – volume: 51 50 123 40 8 19 19 7 start-page: 12565 11852 12054 3336 194 1672 1678 179 year: 2012 2011 2011 2011 2009 2009 2009 2008 end-page: 12574 11858 3355 197 1677 1684 186 publication-title: Inorg. Chem Angew. Chem. Int. Ed Angew. Chem Chem. Soc. Rev Nat. Mater J. Mater. Chem J. Mater. Chem Nat. Mater – volume: 18 18 45 55 2 start-page: 4004 2484 8790 3865 38 3561 year: 2018 2012 2016 2016 2016 2017 end-page: 4016 8794 3871 3569 publication-title: Cryst. Growth Des Chem. Eur. J Dalton Trans Inorg. Chem Magnetochemistry Eur. J. Inorg. Chem – ident: e_1_2_7_14_2 doi: 10.1002/chem.201902420 – ident: e_1_2_7_10_8 doi: 10.1039/C4CC00339J – ident: e_1_2_7_4_3 doi: 10.1016/j.ccr.2017.08.001 – ident: e_1_2_7_10_10 doi: 10.1002/chem.201601244 – ident: e_1_2_7_20_2 doi: 10.1103/PhysRevB.80.014430 – ident: e_1_2_7_3_3 doi: 10.1016/j.ccr.2018.02.019 – ident: e_1_2_7_3_2 doi: 10.1039/C7CS00266A – ident: e_1_2_7_7_1 doi: 10.1021/cr010303r – ident: e_1_2_7_17_1 doi: 10.1039/c1sc00513h – ident: e_1_2_7_19_3 doi: 10.1039/C5DT01487E – ident: e_1_2_7_19_13 doi: 10.1039/c3tc00925d – ident: e_1_2_7_6_2 doi: 10.1126/science.aav0652 – ident: e_1_2_7_14_1 doi: 10.1039/c3sc22300k – ident: e_1_2_7_10_3 doi: 10.1021/ic050650 – ident: e_1_2_7_15_3 doi: 10.1021/ja2017009 – ident: e_1_2_7_18_7 doi: 10.1016/j.ica.2012.10.001 – ident: e_1_2_7_9_3 doi: 10.1039/C9DT00073A – ident: e_1_2_7_18_23 doi: 10.1039/C8CC04565H – ident: e_1_2_7_5_3 doi: 10.1002/ange.201100818 – ident: e_1_2_7_19_7 doi: 10.1039/C6DT02537D – ident: e_1_2_7_10_7 doi: 10.1039/B616016F – ident: e_1_2_7_10_14 doi: 10.1134/S1070328418110064 – ident: e_1_2_7_8_2 doi: 10.1002/chem.201103816 – ident: e_1_2_7_2_4 doi: 10.1016/j.ccr.2014.10.013 – ident: e_1_2_7_18_14 doi: 10.1039/c2dt31400b – ident: e_1_2_7_21_1 doi: 10.1021/ic801630z – ident: e_1_2_7_19_1 doi: 10.1002/asia.201800511 – ident: e_1_2_7_8_4 doi: 10.1021/acs.inorgchem.5b02971 – ident: e_1_2_7_25_7 doi: 10.1039/C7QI00727B – ident: e_1_2_7_3_7 doi: 10.1021/cr400018q – ident: e_1_2_7_18_6 doi: 10.1002/chem.201402255 – ident: e_1_2_7_18_19 doi: 10.1016/j.poly.2017.03.021 – ident: e_1_2_7_4_4 doi: 10.1039/b807083k – ident: e_1_2_7_8_5 doi: 10.3390/magnetochemistry2040038 – ident: e_1_2_7_25_1 doi: 10.1021/ic301115b – ident: e_1_2_7_10_15 doi: 10.1021/jacs.9b09103 – ident: e_1_2_7_24_3 doi: 10.1039/c4dt00168k – ident: e_1_2_7_18_12 doi: 10.1039/C8DT03809K – ident: e_1_2_7_22_3 doi: 10.1039/C8QI01346B – ident: e_1_2_7_8_6 doi: 10.1002/ejic.201700537 – ident: e_1_2_7_18_2 doi: 10.1016/j.ica.2017.06.019 – ident: e_1_2_7_18_4 doi: 10.1016/j.poly.2018.08.058 – ident: e_1_2_7_15_1 doi: 10.1016/j.poly.2018.07.027 – ident: e_1_2_7_10_19 doi: 10.1021/acs.inorgchem.9b02948 – ident: e_1_2_7_18_11 doi: 10.1039/C5DT04948B – ident: e_1_2_7_25_11 doi: 10.1002/anie.201205938 – ident: e_1_2_7_4_1 doi: 10.1039/C8CS00986D – ident: e_1_2_7_6_1 doi: 10.1038/nature23447 – ident: e_1_2_7_9_1 doi: 10.1016/j.molstruc.2020.127735 – ident: e_1_2_7_19_6 doi: 10.1039/C7DT03438E – ident: e_1_2_7_22_1 doi: 10.1039/C7DT01121K – ident: e_1_2_7_25_3 doi: 10.1021/acs.inorgchem.5b01318 – ident: e_1_2_7_25_2 doi: 10.1039/D0SC01197E – ident: e_1_2_7_2_2 doi: 10.1016/j.ccr.2019.213153 – ident: e_1_2_7_6_4 doi: 10.1002/anie.201609685 – ident: e_1_2_7_19_10 doi: 10.3390/magnetochemistry2040043 – ident: e_1_2_7_10_1 doi: 10.1021/ic034051j – ident: e_1_2_7_10_17 doi: 10.1021/jacs.9b13147 – ident: e_1_2_7_18_17 doi: 10.1021/jacs.7b12667 – ident: e_1_2_7_18_16 doi: 10.1039/C7QI00332C – ident: e_1_2_7_18_3 doi: 10.1002/ejic.201300524 – ident: e_1_2_7_3_1 doi: 10.1021/acs.chemrev.9b00103 – ident: e_1_2_7_3_4 doi: 10.1016/j.ccr.2016.12.017 – ident: e_1_2_7_25_9 doi: 10.1021/acs.inorgchem.8b01688 – ident: e_1_2_7_3_5 doi: 10.1016/j.ccr.2017.03.015 – ident: e_1_2_7_10_16 doi: 10.1039/c3ce41704b – ident: e_1_2_7_10_20 doi: 10.1039/C8TC06630B – ident: e_1_2_7_19_12 doi: 10.1002/ejoc.201501015 – ident: e_1_2_7_19_9 doi: 10.1002/ange.201611345 – ident: e_1_2_7_19_4 doi: 10.1039/c2dt32785f – year: 2020 ident: e_1_2_7_25_16 publication-title: Inorg. Chem. Front – ident: e_1_2_7_18_20 doi: 10.1039/b908639k – ident: e_1_2_7_18_15 doi: 10.1002/chem.201705378 – ident: e_1_2_7_14_3 doi: 10.1021/acs.inorgchem.5b01209 – ident: e_1_2_7_23_1 doi: 10.1038/ncomms3551 – ident: e_1_2_7_25_10 doi: 10.1016/j.poly.2019.114113 – ident: e_1_2_7_20_1 doi: 10.1103/PhysRevB.55.11448 – ident: e_1_2_7_18_13 doi: 10.1021/ic049348b – ident: e_1_2_7_2_6 doi: 10.1039/B905604C – ident: e_1_2_7_5_2 doi: 10.1002/anie.201100818 – ident: e_1_2_7_25_5 doi: 10.1039/C5DT03897A – ident: e_1_2_7_18_10 doi: 10.1039/C4NJ00627E – ident: e_1_2_7_18_21 doi: 10.1021/acs.inorgchem.5b01915 – ident: e_1_2_7_9_2 doi: 10.1002/ejic.201900976 – ident: e_1_2_7_19_8 doi: 10.1002/anie.201611345 – ident: e_1_2_7_18_24 doi: 10.1002/ejic.201600152 – ident: e_1_2_7_22_2 doi: 10.1039/C7QI00663B – ident: e_1_2_7_10_13 doi: 10.1016/j.ica.2018.07.029 – ident: e_1_2_7_19_2 doi: 10.1016/j.ica.2018.11.006 – ident: e_1_2_7_10_5 doi: 10.1039/B601344A – ident: e_1_2_7_10_6 doi: 10.1039/C4SC00809J – ident: e_1_2_7_6_3 doi: 10.1039/C8SC03907K – ident: e_1_2_7_25_12 doi: 10.1002/ange.201205938 – ident: e_1_2_7_10_12 doi: 10.1021/acs.inorgchem.7b00369 – ident: e_1_2_7_9_8 doi: 10.1021/ic501952b – ident: e_1_2_7_8_3 doi: 10.1039/C6DT01082B – ident: e_1_2_7_11_1 doi: 10.1016/j.ccr.2015.03.012 – ident: e_1_2_7_16_1 doi: 10.1021/ja029629n – ident: e_1_2_7_10_2 doi: 10.1021/ic050648i – ident: e_1_2_7_9_5 doi: 10.1039/C8DT03613F – ident: e_1_2_7_15_2 doi: 10.3390/magnetochemistry2040041 – ident: e_1_2_7_18_1 doi: 10.1039/C8NJ05777J – ident: e_1_2_7_13_2 doi: 10.1039/C8DT00624E – ident: e_1_2_7_18_8 doi: 10.1016/j.inoche.2011.07.016 – ident: e_1_2_7_9_7 doi: 10.1039/C7DT02175E – ident: e_1_2_7_24_4 – ident: e_1_2_7_5_4 doi: 10.1039/c1cs15047b – ident: e_1_2_7_15_4 doi: 10.1002/chem.201503635 – ident: e_1_2_7_25_4 doi: 10.1039/C5QI00087D – ident: e_1_2_7_18_25 doi: 10.1039/C8RA02546K – ident: e_1_2_7_19_5 doi: 10.3390/magnetochemistry4040045 – ident: e_1_2_7_13_5 doi: 10.1021/ic400430q – ident: e_1_2_7_19_11 doi: 10.1021/ja305163t – ident: e_1_2_7_13_1 doi: 10.1039/C9DT02260K – ident: e_1_2_7_18_18 – ident: e_1_2_7_25_15 doi: 10.1021/ic00112a019 – ident: e_1_2_7_5_6 doi: 10.1039/B810634G – volume-title: 50 Years of Structure and Bonding – The Anniversary Volume. Structure and Bonding year: 2016 ident: e_1_2_7_3_6 – ident: e_1_2_7_5_7 doi: 10.1039/b819594n – ident: e_1_2_7_10_18 doi: 10.1039/C7DT02239E – ident: e_1_2_7_18_9 doi: 10.1039/c2dt31806g – ident: e_1_2_7_9_6 doi: 10.1039/C6DT04895A – ident: e_1_2_7_24_1 doi: 10.1021/ja5022552 – ident: e_1_2_7_14_4 doi: 10.1039/C7DT02717F – ident: e_1_2_7_18_5 doi: 10.1039/C5RA21991D – ident: e_1_2_7_25_6 doi: 10.1039/C5NJ01724F – ident: e_1_2_7_4_2 doi: 10.1039/C8CS00337H – ident: e_1_2_7_8_1 doi: 10.1021/acs.cgd.8b00358 – ident: e_1_2_7_25_13 doi: 10.1002/chem.201601457 – ident: e_1_2_7_25_14 doi: 10.1021/ic051089i – ident: e_1_2_7_13_4 doi: 10.1039/C5QI00224A – ident: e_1_2_7_16_2 doi: 10.1039/C4DT03941F – ident: e_1_2_7_10_4 doi: 10.1016/j.ccr.2006.03.021 – ident: e_1_2_7_10_11 doi: 10.1039/C6CC05337H – ident: e_1_2_7_2_1 doi: 10.1016/j.ccr.2020.213299 – ident: e_1_2_7_5_8 doi: 10.1038/nmat2133 – ident: e_1_2_7_2_5 doi: 10.1039/c3sc22126a – ident: e_1_2_7_25_8 doi: 10.1039/D0NJ00533A – ident: e_1_2_7_2_3 doi: 10.1016/j.trechm.2019.05.012 – ident: e_1_2_7_5_1 doi: 10.1021/ic302068c – ident: e_1_2_7_13_3 doi: 10.1002/ejic.201701106 – ident: e_1_2_7_6_5 doi: 10.1002/ange.201609685 – ident: e_1_2_7_24_2 doi: 10.1039/C6QI00028B – ident: e_1_2_7_18_22 doi: 10.1016/j.molstruc.2019.07.092 – ident: e_1_2_7_10_9 doi: 10.1021/acs.inorgchem.5b01763 – ident: e_1_2_7_12_1 – ident: e_1_2_7_9_4 doi: 10.3390/magnetochemistry4030039 – ident: e_1_2_7_5_5 doi: 10.1038/nmat2374 – ident: e_1_2_7_16_3 doi: 10.1021/acs.inorgchem.5b00432 |
| SSID | ssj0003036 |
| Score | 2.4258482 |
| Snippet | Slow relaxation of magnetization has been studied for a series of stable isomorphic 3D‐polynuclear Ln‐Co complexes comprising hexadentate [Co(CN)6]3– linkers,... Slow relaxation of magnetization has been studied for a series of stable isomorphic 3D‐polynuclear Ln‐Co complexes comprising hexadentate [Co(CN) 6 ] 3–... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4380 |
| SubjectTerms | Cyanometallate‐bridged complexes Demagnetization Dysprosium Erbium Inorganic chemistry Lanthanides Magnetic properties Magnets Single‐ion magnets Single‐molecule magnets Virtual reality Ytterbium |
| Title | Unexpected Supremacy of Non‐Dysprosium Single‐Ion Magnets within a Series of Isomorphic Lanthanide Cyanocobaltate(III) Complexes |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejic.202000798 https://www.proquest.com/docview/2468997107 |
| Volume | 2020 |
| WOSCitedRecordID | wos000588446400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-0682 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003036 issn: 1434-1948 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLagQ2KX8VsUBvIBCThEa-y0do6oW0VQqRCj0m6R_eyMoNaZ6naitx32B-xv5C_hOU2z7YCQ4JZEtmX583vve1b8PULe2IInRgkW6ZgnEYaAfiRNT0UGOMR9CwVAjfRYTCby5CT9cuMW_0Yfoj1wC5ZR--tg4Er7g2vRUPujDBKE4aqJSOVdssNw8yYdsnP4dTQdt944uOj6hhFOBRN2uRVu7LGD2yPcDkzXbPMmZ62DzujB_0_3IdlrCCf9sNkhj8gd6x6T-8Ntnbcn5HLqgsw_IPWkx6uzhZ0rWNOqoJPK_bq4Olx7nKUvV3N6jGFuZvFbVjn6WZ06u_Q0HOSWjioaztmsDx0zX80rxK8EOkbgvitXGkuHa-UqCPIjgd--y7LsPQ3eaGZ_Wv-UTEdH34Yfo6Y2QwSY08oIYqEFB8X6qmd1qOHDFcSKmXSgeWJjDpjYJYpD3xQIQQypQFsXEOtaUIfzZ6TjKmefE6qkRd4oFR-gb7A8lUaYhGkoCqn1wJguibbA5NAIl4f6GbN8I7nM8rC2ebu2XfK2bX-2kez4Y8v9Lc55Y7o-Z8kAc1AkXqJLWI3oX0bJjz5lw_btxb90ekl2w3P4TSbm-6SzXKzsK3IPzpelX7xutvRvmYT6EA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pb9MwFLegQ9ou_EcrDPABCThEa-Kkdo6oW7VAViG2SrtFzrMDQa0zNS2iNw58AD4jn4T30jRjB4SEONqyLcs_v7-yf4-xF7YQodEy8HJfhB6agMhTZqA9AwL8yEIB0CCdyslEXVzE79vXhPQXZsMP0SXcSDIafU0CTgnpwyvWUPu5JA5C-msiY3WT7YR4l6Ie2zn6MJ6mnTomHd18McK9YMSutsyNg-Dw-grXLdOVu_m709pYnfGd_7Dfu-x263LyN5s7co_dsO4-2x1tK709YN-njoj-AZ1Pfra6XNi5hjWvCj6p3M9vP47WNW6zLldzfoaGbmaxL6kcP9UfnV3WnFK5peOaU6bN1jQxqat5hQiWwFOE7pN2pbF8tNauAiIgIQ_3VZIkrznpo5n9auuHbDo-Ph-deG11Bg8wqlUe-DKXAnQQ6YHNqYqP0ODrwMTDXITWF4ChXagFRKZADHyIJUq7BD9vKHWEeMR6rnJ2n3GtLHqOSoshagcrYmWkCYMcikLl-dCYPvO2yGTQUpdTBY1ZtiFdDjI626w72z572Y2_3JB2_HHkwRborBXeOgvCIUah6HrJPgsaSP-ySnb8Nhl1rcf_Muk52z05P02zNJm8e8L2qJ8ezfjigPWWi5V9ym7Bl2VZL5619_sXk_b-AA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVgF7Fc-F5RWMAHJOAQbRMnsXNE7VYESrViqbS3yBlPIKh1qqZF9MaBH8Bv5JcwTtMse0BIiGOs2LL8PDNvLPsNY8-wEKHRMvByX4QehYDIU6avPQMC_AihAGiQHsvJRJ2fJ6ftbUL3FmarD9EduDnLaPy1M3BcmOL4QjUUP5dOg9C9NZGJusr2wyiJyTb3h-9H03Hnjp2Pbp4Y0VwoY1c75cZ-cHx5hMuR6YJu_k5am6gzuvUf5nub3WwpJ3-13SN32BW0d9nBYFfp7R77PrVO6B-IfPKz9WKJcw0bXhV8Utmf334MNzVNsy7Xc35GgW6G1JZWlr_THy2uau6OckvLNXcnbVi7jmldzStCsAQ-Jug-aVsa5IONthU4ARLHcF-kafqSO380w69Y32fT0cmHwWuvrc7gAWW1ygNf5lKADiLdx9xV8REafB2YJM5FiL4ASu1CLSAyBWHgQyLJ2iX4eSOpI8Qh27OVxQeMa4XEHJUWMXkHFIky0oRBDkWh8jw2pse8HTIZtNLlroLGLNuKLgeZW9usW9see979v9iKdvzxz6Md0FlrvHUWhDFloUS9ZI8FDaR_GSU7eZMOuq-H_9LpKbt-Ohxl43Ty9hG74ZrdnRlfHLG91XKNj9k1-LIq6-WTdnv_AiHe_Xs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unexpected+Supremacy+of+Non%E2%80%90Dysprosium+Single%E2%80%90Ion+Magnets+within+a+Series+of+Isomorphic+Lanthanide+Cyanocobaltate%28III%29+Complexes&rft.jtitle=European+journal+of+inorganic+chemistry&rft.au=Babeshkin%2C+Konstantin+A.&rft.au=Gavrikov%2C+Andrey+V.&rft.au=Petrosyants%2C+Svetlana+P.&rft.au=Ilyukhin%2C+Andrey+B.&rft.date=2020-12-13&rft.issn=1434-1948&rft.eissn=1099-0682&rft.volume=2020&rft.issue=46&rft.spage=4380&rft.epage=4390&rft_id=info:doi/10.1002%2Fejic.202000798&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ejic_202000798 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-1948&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-1948&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-1948&client=summon |