Paley–Wiener theorem for line bundles over compact symmetric spaces and new estimates for the Heckman–Opdam hypergeometric functions

Paley–Wiener type theorems describe the image of a given space of functions, often compactly supported functions, under an integral transform, usually a Fourier transform on a group or homogeneous space. In this article we proved a Paley–Wiener theorem for smooth sections f of homogeneous line bundl...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematische Nachrichten Ročník 291; číslo 14-15; s. 2204 - 2228
Hlavní autori: Ho, Vivian M., Ólafsson, Gestur
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Weinheim Wiley Subscription Services, Inc 01.10.2018
Predmet:
ISSN:0025-584X, 1522-2616
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Paley–Wiener type theorems describe the image of a given space of functions, often compactly supported functions, under an integral transform, usually a Fourier transform on a group or homogeneous space. In this article we proved a Paley–Wiener theorem for smooth sections f of homogeneous line bundles on a compact Riemannian symmetric space U/K. It characterizes f with small support in terms of holomorphic extendability and exponential growth of their χ‐spherical Fourier transforms, where χ is a character of K. An important tool in our proof is a generalization of Opdam's estimate for the hypergeometric functions associated to multiplicity functions that are not necessarily positive. At the same time the radius of the domain where this estimate is valid is increased. This is done in an appendix.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.201600148