Paley–Wiener theorem for line bundles over compact symmetric spaces and new estimates for the Heckman–Opdam hypergeometric functions
Paley–Wiener type theorems describe the image of a given space of functions, often compactly supported functions, under an integral transform, usually a Fourier transform on a group or homogeneous space. In this article we proved a Paley–Wiener theorem for smooth sections f of homogeneous line bundl...
Gespeichert in:
| Veröffentlicht in: | Mathematische Nachrichten Jg. 291; H. 14-15; S. 2204 - 2228 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Weinheim
Wiley Subscription Services, Inc
01.10.2018
|
| Schlagworte: | |
| ISSN: | 0025-584X, 1522-2616 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Paley–Wiener type theorems describe the image of a given space of functions, often compactly supported functions, under an integral transform, usually a Fourier transform on a group or homogeneous space. In this article we proved a Paley–Wiener theorem for smooth sections f of homogeneous line bundles on a compact Riemannian symmetric space U/K. It characterizes f with small support in terms of holomorphic extendability and exponential growth of their χ‐spherical Fourier transforms, where χ is a character of K. An important tool in our proof is a generalization of Opdam's estimate for the hypergeometric functions associated to multiplicity functions that are not necessarily positive. At the same time the radius of the domain where this estimate is valid is increased. This is done in an appendix. |
|---|---|
| AbstractList | Paley–Wiener type theorems describe the image of a given space of functions, often compactly supported functions, under an integral transform, usually a Fourier transform on a group or homogeneous space. In this article we proved a Paley–Wiener theorem for smooth sections f of homogeneous line bundles on a compact Riemannian symmetric space U/K. It characterizes f with small support in terms of holomorphic extendability and exponential growth of their χ‐spherical Fourier transforms, where χ is a character of K. An important tool in our proof is a generalization of Opdam's estimate for the hypergeometric functions associated to multiplicity functions that are not necessarily positive. At the same time the radius of the domain where this estimate is valid is increased. This is done in an appendix. Paley–Wiener type theorems describe the image of a given space of functions, often compactly supported functions, under an integral transform, usually a Fourier transform on a group or homogeneous space. In this article we proved a Paley–Wiener theorem for smooth sections f of homogeneous line bundles on a compact Riemannian symmetric space . It characterizes f with small support in terms of holomorphic extendability and exponential growth of their χ‐spherical Fourier transforms, where χ is a character of K . An important tool in our proof is a generalization of Opdam's estimate for the hypergeometric functions associated to multiplicity functions that are not necessarily positive. At the same time the radius of the domain where this estimate is valid is increased. This is done in an appendix. |
| Author | Ho, Vivian M. Ólafsson, Gestur |
| Author_xml | – sequence: 1 givenname: Vivian M. surname: Ho fullname: Ho, Vivian M. organization: Louisiana State University – sequence: 2 givenname: Gestur surname: Ólafsson fullname: Ólafsson, Gestur email: olafsson@math.lsu.edu organization: Louisiana State University |
| BookMark | eNqFkU9LwzAYxoMouE2vngOeO_NvaXscQ50wnQdFbyVL37rONqlJ59jNo3e_oZ_EjA0FQTyF5H1-z_vwpIv2jTWA0AklfUoIO6uVUX1GqCSEimQPdeiAsYhJKvdRJwgG0SARj4eo6_2CEJKmseyg91tVwfrz7eOhBAMOt3OwDmpcWIer0gCeLU1egcf2NUy1rRulW-zXdQ2tKzX24R6myuTYwAqDb8tateFlYxDM8Bj0c0gWNkybXNV4vm7APYHd8cXS6La0xh-hg0JVHo53Zw_dX5zfjcbRZHp5NRpOIs0TnkSqoEJxRpRgDHgs-QCoKoiIgeoiT1IyA2C54CBmBdE5SbngNNZcklikQie8h063vo2zL8uQN1vYpTNhZcZo6C6WTMqgEluVdtZ7B0Wmy1ZtgrZOlVVGSbbpPNt0nn13HrD-L6xxoQ-3_htIt8CqDN_wjzq7Ht4Mf9gvJPCbQw |
| CitedBy_id | crossref_primary_10_1093_imrn_rnab146 crossref_primary_10_1002_mana_202000546 |
| Cites_doi | 10.1016/S0019-3577(05)80034-5 10.1007/BF01344014 10.1090/surv/039 10.32917/hmj/1206137444 10.1007/BF01388969 10.1016/j.jfa.2012.03.006 10.1007/s00041-010-9122-9 10.7146/math.scand.a-15179 10.1017/S1474748007000114 10.1090/S0002-9904-1973-13127-1 10.1023/B:ACAP.0000024203.22722.ec 10.24033/asens.1602 10.1016/S0019-3577(05)80033-3 10.1007/BF02392967 10.1016/j.aim.2007.11.021 10.2307/2373170 10.4007/annals.2006.164.879 10.1090/conm/544/10748 10.1090/conm/650/13043 10.1007/BF02392487 10.2307/1970758 10.1006/jfan.1994.1052 10.7146/math.scand.a-12059 10.1016/0022-1236(79)90008-9 10.1007/s12220-013-9467-9 10.1006/jfan.2000.3682 10.1016/j.matpur.2004.02.002 10.2307/2372772 10.1090/surv/083 10.1090/conm/278/04601 |
| ContentType | Journal Article |
| Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | AAYXX CITATION |
| DOI | 10.1002/mana.201600148 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1522-2616 |
| EndPage | 2228 |
| ExternalDocumentID | 10_1002_mana_201600148 MANA201600148 |
| Genre | article |
| GrantInformation_xml | – fundername: National Science Foundation funderid: DMS‐1101337 |
| GroupedDBID | --Z -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OHT OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TN5 UB1 V2E V8K W8V W99 WBKPD WIB WIH WIK WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XPP XV2 YNT YQT ZY4 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE AMVHM CITATION O8X |
| ID | FETCH-LOGICAL-c3838-af14a320a422e37635e1af047e1cfd890bee2d43e4bf0cd0934317c3607494c83 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446455400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-584X |
| IngestDate | Fri Jul 25 12:22:21 EDT 2025 Sat Nov 29 03:35:08 EST 2025 Tue Nov 18 20:57:48 EST 2025 Wed Jan 22 16:44:42 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14-15 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3838-af14a320a422e37635e1af047e1cfd890bee2d43e4bf0cd0934317c3607494c83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2116076266 |
| PQPubID | 1016385 |
| PageCount | 25 |
| ParticipantIDs | proquest_journals_2116076266 crossref_citationtrail_10_1002_mana_201600148 crossref_primary_10_1002_mana_201600148 wiley_primary_10_1002_mana_201600148_MANA201600148 |
| PublicationCentury | 2000 |
| PublicationDate | October 2018 |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: October 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Mathematische Nachrichten |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2012; 262 2004; 83 2010; 16 2004; 81 1973; 79 1983; 150 2008 1964; 86 2014; 24 1994 1979; 31 1995; 175 1978 2011; 544 2001; 179 2001; 278 1966; 165 1994; 121 1971; 93 1987; 64 2011; 109 1990; 23 1986; 83 1990 2000 1984; 54 2008; 218 1988; 67 2007; 6 2006; 164 2015 1958; 80 2005; 16 1973; 3 1983; 107 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_38_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 Opdam E. M. (e_1_2_9_26_1) 1988; 67 e_1_2_9_37_1 e_1_2_9_18_1 Hörmander L. (e_1_2_9_23_1) 1990 Opdam E. M. (e_1_2_9_25_1) 1988; 67 Rais M. (e_1_2_9_35_1) 1983; 107 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 Helgason S. (e_1_2_9_19_1) 1978 e_1_2_9_24_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 Heckman G. J. (e_1_2_9_14_1) 1987; 64 Heckman G. J. (e_1_2_9_15_1) 1987; 64 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 Heckman G. J. (e_1_2_9_16_1) 1994 |
| References_xml | – start-page: 143 year: 2015 end-page: 155 – volume: 6 start-page: 557 year: 2007 end-page: 577 article-title: A Paley–Wiener theorem for distributions on reductive symmetric spaces publication-title: J. Inst. Math. Jussieu – volume: 16 start-page: 609 year: 2010 end-page: 628 article-title: Fourier series on compact symmetric spaces: ‐finite functions of small support publication-title: J. Fourier Anal. Appl. – volume: 81 start-page: 275 year: 2004 end-page: 309 article-title: Paley–Wiener theorems for the Θ‐spherical transform: an overview publication-title: Acta Appl. Math. – volume: 262 start-page: 4851 year: 2012 end-page: 4890 article-title: Ramanujan's master theorem for Riemannian symmetric spaces publication-title: J. Funct. Anal. – volume: 278 start-page: 131 year: 2001 end-page: 136 article-title: A Paley–Wiener theorem for central functions on compact Lie groups publication-title: Contemp. Math. – volume: 218 start-page: 202 year: 2008 end-page: 215 article-title: A local Paley–Wiener theorem for compact symmetric spaces publication-title: Adv. Math. – volume: 150 start-page: 1 year: 1983 end-page: 89 article-title: A Paley–Wiener theorem for real reductive groups publication-title: Acta Math. – volume: 54 start-page: 279 year: 1984 end-page: 294 article-title: One‐dimensional ‐types in finite dimensional representations of semisimple Lie groups: a generalization of Helgason's theorem publication-title: Math. Scand. – volume: 86 start-page: 358 year: 1964 end-page: 378 article-title: Compactifications of symmetric spaces II: the Cartan domains publication-title: Amer. J. Math. – year: 2000 – volume: 165 start-page: 297 year: 1966 end-page: 308 article-title: An analogue of the Paley–Wiener theorem for the Fourier transform on certain symmetric spaces publication-title: Math. Ann. – volume: 16 start-page: 393 issue: 3‐4 year: 2005 end-page: 428 article-title: The Paley–Wiener theorem and the local Huygens' principle for compact symmetric spaces: the even multiplicity case publication-title: Indag. Math. (N.S.) – volume: 83 start-page: 403 year: 1986 end-page: 404 article-title: On the Paley–Wiener theorem publication-title: Invent. Math. – volume: 64 start-page: 329 year: 1987 end-page: 352 article-title: Root systems and hypergeometric functions I publication-title: Comp. Math. – volume: 79 start-page: 129 year: 1973 end-page: 132 article-title: Paley–Wiener theorems and surjectivity of invariant differential operators on symmetric spaces and Lie groups publication-title: Bull. Amer. Math. Soc. – year: 1990 – year: 1994 – volume: 175 start-page: 75 year: 1995 end-page: 121 article-title: Harmonic analysis for certain representations of graded Hecke algebras publication-title: Acta Math. – volume: 107 start-page: 93 year: 1983 end-page: 111 article-title: Groupes linéaries compacts et fonctions publication-title: Bull. Sci. Math. – volume: 83 start-page: 869 year: 2004 end-page: 927 article-title: A Paley–Wiener theorem for the Θ‐hypergeometric transform: the even multiplicity case publication-title: J. Math. Pures Appl. – volume: 64 start-page: 353 year: 1987 end-page: 373 article-title: Root systems and hypergeometric functions II publication-title: Comp. Math. – volume: 109 start-page: 93 year: 2011 end-page: 113 article-title: Fourier transforms of spherical distributions on compact symmetric spaces publication-title: Math. Scand. – volume: 24 start-page: 1 year: 2014 end-page: 31 article-title: The Paley–Wiener theorem and limits of symmetric spaces publication-title: J. Geom. Anal. – volume: 164 start-page: 879 year: 2006 end-page: 909 article-title: A Paley–Wiener theorem for reductive symmetric spaces publication-title: Ann. of Math. (2) – volume: 23 start-page: 193 year: 1990 end-page: 228 article-title: Le théorème de Paley–Wiener invariant pour les groupes de Lie réductifs II publication-title: Ann. Sci. École Norm. Sup. – volume: 80 start-page: 553 year: 1958 end-page: 613 article-title: Spherical functions on a semisimple Lie group, I‐II publication-title: Amer. J. Math. – volume: 121 start-page: 330 year: 1994 end-page: 388 article-title: The Plancherel formula for spherical functions with one dimensional ‐type on a simply connected simple Lie group of hermitian type publication-title: J. Funct. Anal. – volume: 3 start-page: 109 year: 1973 end-page: 120 article-title: The Paley–Wiener theorem for distributions on symmetric spaces publication-title: Hiroshima Math. J. – volume: 67 start-page: 21 year: 1988 end-page: 49 article-title: Root systems and hypergeometric functions III publication-title: Comp. Math. – year: 2008 – volume: 31 start-page: 341 year: 1979 end-page: 354 article-title: Paley–Wiener theorem for singular support of ‐finite distributions on symmetric spaces publication-title: J. Funct. Anal. – volume: 16 start-page: 429 year: 2005 end-page: 442 article-title: The Paley–Wiener theorem for the Jacobi transform and the local Huygens' principle for root systems with even multiplicities publication-title: Indag. Math. (N.S.) – year: 1978 – volume: 544 start-page: 55 year: 2011 end-page: 83 article-title: Paley–Wiener theorems with respect to the spectral parameter. New developments in Lie theory and its applications publication-title: Contemp. Math. – volume: 67 start-page: 191 year: 1988 end-page: 209 article-title: Root systems and hypergeometric functions IV publication-title: Comp. Math. – volume: 93 start-page: 150 year: 1971 end-page: 165 article-title: On the Plancherel formula and the Paley–Wiener theorem for spherical functions on semisimple Lie groups publication-title: Ann. of Math. (2) – volume: 179 start-page: 66 year: 2001 end-page: 119 article-title: Paley–Wiener theorems for hyperbolic spaces publication-title: J. Funct. Anal. – ident: e_1_2_9_5_1 doi: 10.1016/S0019-3577(05)80034-5 – ident: e_1_2_9_17_1 doi: 10.1007/BF01344014 – ident: e_1_2_9_21_1 doi: 10.1090/surv/039 – ident: e_1_2_9_10_1 doi: 10.32917/hmj/1206137444 – ident: e_1_2_9_7_1 doi: 10.1007/BF01388969 – ident: e_1_2_9_30_1 doi: 10.1016/j.jfa.2012.03.006 – volume: 67 start-page: 21 year: 1988 ident: e_1_2_9_25_1 article-title: Root systems and hypergeometric functions III publication-title: Comp. Math. – ident: e_1_2_9_32_1 doi: 10.1007/s00041-010-9122-9 – ident: e_1_2_9_33_1 doi: 10.7146/math.scand.a-15179 – ident: e_1_2_9_39_1 doi: 10.1017/S1474748007000114 – ident: e_1_2_9_18_1 doi: 10.1090/S0002-9904-1973-13127-1 – ident: e_1_2_9_29_1 doi: 10.1023/B:ACAP.0000024203.22722.ec – ident: e_1_2_9_6_1 doi: 10.24033/asens.1602 – volume: 64 start-page: 353 year: 1987 ident: e_1_2_9_14_1 article-title: Root systems and hypergeometric functions II publication-title: Comp. Math. – ident: e_1_2_9_4_1 doi: 10.1016/S0019-3577(05)80033-3 – ident: e_1_2_9_3_1 doi: 10.1007/BF02392967 – ident: e_1_2_9_31_1 doi: 10.1016/j.aim.2007.11.021 – volume: 67 start-page: 191 year: 1988 ident: e_1_2_9_26_1 article-title: Root systems and hypergeometric functions IV publication-title: Comp. Math. – ident: e_1_2_9_24_1 doi: 10.2307/2373170 – ident: e_1_2_9_38_1 doi: 10.4007/annals.2006.164.879 – ident: e_1_2_9_9_1 doi: 10.1090/conm/544/10748 – volume-title: Harmonic analysis and special functions on symmetric spaces year: 1994 ident: e_1_2_9_16_1 – ident: e_1_2_9_22_1 doi: 10.1090/conm/650/13043 – ident: e_1_2_9_27_1 doi: 10.1007/BF02392487 – ident: e_1_2_9_11_1 doi: 10.2307/1970758 – ident: e_1_2_9_37_1 doi: 10.1006/jfan.1994.1052 – volume-title: The analysis of linear partial differential operators I, distribution theory and Fourier analysis year: 1990 ident: e_1_2_9_23_1 – ident: e_1_2_9_36_1 doi: 10.7146/math.scand.a-12059 – ident: e_1_2_9_8_1 doi: 10.1016/0022-1236(79)90008-9 – ident: e_1_2_9_34_1 doi: 10.1007/s12220-013-9467-9 – ident: e_1_2_9_2_1 doi: 10.1006/jfan.2000.3682 – ident: e_1_2_9_28_1 doi: 10.1016/j.matpur.2004.02.002 – ident: e_1_2_9_13_1 doi: 10.2307/2372772 – volume: 64 start-page: 329 year: 1987 ident: e_1_2_9_15_1 article-title: Root systems and hypergeometric functions I publication-title: Comp. Math. – ident: e_1_2_9_20_1 doi: 10.1090/surv/083 – ident: e_1_2_9_12_1 doi: 10.1090/conm/278/04601 – volume: 107 start-page: 93 year: 1983 ident: e_1_2_9_35_1 article-title: Groupes linéaries compacts et fonctions publication-title: Bull. Sci. Math. – volume-title: Differential geometry, Lie groups, and symmetric spaces year: 1978 ident: e_1_2_9_19_1 |
| SSID | ssj0009976 |
| Score | 2.1826775 |
| Snippet | Paley–Wiener type theorems describe the image of a given space of functions, often compactly supported functions, under an integral transform, usually a... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2204 |
| SubjectTerms | 43A85; Secondary: 22E46 43A90 53C35 Bundles Fourier transform Fourier transforms hypergeometric function Hypergeometric functions Integral transforms Paley–Wiener theorem Primary: 33C67 symmetric space Theorems |
| Title | Paley–Wiener theorem for line bundles over compact symmetric spaces and new estimates for the Heckman–Opdam hypergeometric functions |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmana.201600148 https://www.proquest.com/docview/2116076266 |
| Volume | 291 |
| WOSCitedRecordID | wos000446455400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1522-2616 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009976 issn: 0025-584X databaseCode: DRFUL dateStart: 20000101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09b9swED2kTod2SNKPIE6dgEOBTkIkipHJMUhjeHBSo2habwJJUU2QyDYsu0C3jtnzD_NLckfJcjwUBZpNAsQjwTvevROO7wA-IgJGLas8SEQ3C4RN4kCrDLMUhLIyNFo5363h-6B7cSFHIzV8cou_4odofrjRyfD-mg64NuXRijSUqjupNIsitpAvYJOj8R63YPPz197lYEW8q3yDOd-2FYPtaEncGPKjdQnrgWmFNp9iVh90etvPX-4ObNWAk51UFvIGNtz4Lbw-b9hay3dwNySw-PDn_sc1kVCz6nJjwRDPMpqYmQVRMZSMyj2Zr1q3c1b-Lgpqx2UZOiX0NkyPM4YgnRFvR0EQ1gtAYazv7A2uDGf4Ms10wa4w-Z39dJN6PMVWb_7v4bJ39u20H9QdGgKLma0MdB4JHfNQC84duapjF-k8FF0X2TyTKjTO8UzETpg8tFmoYsIrNk4QuChhZbwLrfFk7PaAxYnSmhsTuRxTVmllHrnEZDI2QjohRRuCpXpSW9OXUxeN27QiXuYp7XDa7HAbPjXfTyvijr9-2VlqO60PcJliXoyLxGwvaQP3ev2HlJQ6MDRv-_8z6AO8wueKbTfqQGs-W7gDeGl_za_L2WFt2I_zAvyC |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB61CVLpgfIoIiWUPSBxsurH4uweKyAKwkmrqoHcrPV63UatkyhOKvXWY-_9h_wSZtaOQw4ICfVoa1_amdn5ZjX7DcAHRMAoZZk5Ie-kDtdh4CiZYpSCUFa4iZLGVmv4EXUGAzEaydMqm5DewpT8EPWFG1mGPa_JwOlC-mjNGkrpnZSbRS6bi21octQlVPLml7PuMFoz70pbYc7WbUVvO1oxN7r-0eYIm55pDTf_BK3W63T3HmG9z-FZBTnZcakjL2DLTF7Cbr_may1ewf0pwcVfdw8_x0RDzcrnjTlDRMtoZpYsiYyhYJTwyWzeul6w4jbPqSCXZngs4XnD1CRlCNMZMXfkBGLtADgY6xl9hSvDGU5mqcrZJYa_8wszrfqTd7UGsA_D7tfzzz2nqtHgaIxthaMyj6vAdxX3fUOH1SfjqczlHePpLBXSTYzxUx4YnmSuTl0ZEGLRQYjQRXItgtfQmEwn5g2wIJRK-UnimQyDVqFF5pkwSUWQcGG44C1wVvKJdUVgTnU0ruOSetmPaYfjeodb8LFuPyupO_7asr0Sd1yZcBFjZIyLxHgvbIFvBfuPUWKqwVB_HfxPp_ew0zvvR3H0bfD9LTzF_yX3rteGxmK-NO_gib5ZjIv5YaXlvwEOxQCB |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Rb9MwED6xbkLwAGwwUSjgB6Q9RUtik9qPiK4qopQKsdG3yLEdNm3pqqadtDceed8_3C_hzknT7QFNQntMFJ8tn-_uu-j8HcB7RMCoZZUHiejaQJiEB1pZzFIQysow08r5bg1Hw-5oJCcTNa6rCekuTMUP0fxwI8vw_poM3M1svr9mDaXyTqrNopAt5AZsCuok04LN3vf-4XDNvKt8hznftxWj7WTF3BjG-7cl3I5Ma7h5E7T6qNN_eg_rfQZPasjJPlZnZBseuOkOPP7a8LWWz-HPmODi9e-rnydEQ82q640FQ0TLaGaWLYmMoWRU8Ml83bpZsPKyKKghl2HoltDfMD21DGE6I-aOgkCsF4DC2MCZU1wZzvBtZnXBjjH9nf9y5_V4iq7eAF7AYf_gx6dBUPdoCAzmtjLQeSQ0j0Mt4tiRs_rgIp2Housik1upwsy52AruRJaHxoaKE2IxPEHoooSRfBda0_OpewmMJ0rrOMsil2PSKo3MI5dkVvJMSCekaEOw0k9qagJz6qNxllbUy3FKO5w2O9yGveb7WUXd8c8vOyt1p7UJlylmxrhIzPeSNsResXdISakHQ_P06n8GvYOH414_HX4efXkNj_B1Rb0bdaC1mC_dG9gyF4uTcv62PuR_AZk4_-0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Paley%E2%80%93Wiener+theorem+for+line+bundles+over+compact+symmetric+spaces+and+new+estimates+for+the+Heckman%E2%80%93Opdam+hypergeometric+functions&rft.jtitle=Mathematische+Nachrichten&rft.au=Ho%2C+Vivian+M&rft.au=%C3%93lafsson%2C+Gestur&rft.date=2018-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0025-584X&rft.eissn=1522-2616&rft.volume=291&rft.issue=14-15&rft.spage=2204&rft.epage=2228&rft_id=info:doi/10.1002%2Fmana.201600148&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-584X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-584X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-584X&client=summon |