Paley–Wiener theorem for line bundles over compact symmetric spaces and new estimates for the Heckman–Opdam hypergeometric functions

Paley–Wiener type theorems describe the image of a given space of functions, often compactly supported functions, under an integral transform, usually a Fourier transform on a group or homogeneous space. In this article we proved a Paley–Wiener theorem for smooth sections f of homogeneous line bundl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten Jg. 291; H. 14-15; S. 2204 - 2228
Hauptverfasser: Ho, Vivian M., Ólafsson, Gestur
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Weinheim Wiley Subscription Services, Inc 01.10.2018
Schlagworte:
ISSN:0025-584X, 1522-2616
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Paley–Wiener type theorems describe the image of a given space of functions, often compactly supported functions, under an integral transform, usually a Fourier transform on a group or homogeneous space. In this article we proved a Paley–Wiener theorem for smooth sections f of homogeneous line bundles on a compact Riemannian symmetric space U/K. It characterizes f with small support in terms of holomorphic extendability and exponential growth of their χ‐spherical Fourier transforms, where χ is a character of K. An important tool in our proof is a generalization of Opdam's estimate for the hypergeometric functions associated to multiplicity functions that are not necessarily positive. At the same time the radius of the domain where this estimate is valid is increased. This is done in an appendix.
AbstractList Paley–Wiener type theorems describe the image of a given space of functions, often compactly supported functions, under an integral transform, usually a Fourier transform on a group or homogeneous space. In this article we proved a Paley–Wiener theorem for smooth sections f of homogeneous line bundles on a compact Riemannian symmetric space U/K. It characterizes f with small support in terms of holomorphic extendability and exponential growth of their χ‐spherical Fourier transforms, where χ is a character of K. An important tool in our proof is a generalization of Opdam's estimate for the hypergeometric functions associated to multiplicity functions that are not necessarily positive. At the same time the radius of the domain where this estimate is valid is increased. This is done in an appendix.
Paley–Wiener type theorems describe the image of a given space of functions, often compactly supported functions, under an integral transform, usually a Fourier transform on a group or homogeneous space. In this article we proved a Paley–Wiener theorem for smooth sections f of homogeneous line bundles on a compact Riemannian symmetric space . It characterizes f with small support in terms of holomorphic extendability and exponential growth of their χ‐spherical Fourier transforms, where χ is a character of K . An important tool in our proof is a generalization of Opdam's estimate for the hypergeometric functions associated to multiplicity functions that are not necessarily positive. At the same time the radius of the domain where this estimate is valid is increased. This is done in an appendix.
Author Ho, Vivian M.
Ólafsson, Gestur
Author_xml – sequence: 1
  givenname: Vivian M.
  surname: Ho
  fullname: Ho, Vivian M.
  organization: Louisiana State University
– sequence: 2
  givenname: Gestur
  surname: Ólafsson
  fullname: Ólafsson, Gestur
  email: olafsson@math.lsu.edu
  organization: Louisiana State University
BookMark eNqFkU9LwzAYxoMouE2vngOeO_NvaXscQ50wnQdFbyVL37rONqlJ59jNo3e_oZ_EjA0FQTyF5H1-z_vwpIv2jTWA0AklfUoIO6uVUX1GqCSEimQPdeiAsYhJKvdRJwgG0SARj4eo6_2CEJKmseyg91tVwfrz7eOhBAMOt3OwDmpcWIer0gCeLU1egcf2NUy1rRulW-zXdQ2tKzX24R6myuTYwAqDb8tateFlYxDM8Bj0c0gWNkybXNV4vm7APYHd8cXS6La0xh-hg0JVHo53Zw_dX5zfjcbRZHp5NRpOIs0TnkSqoEJxRpRgDHgs-QCoKoiIgeoiT1IyA2C54CBmBdE5SbngNNZcklikQie8h063vo2zL8uQN1vYpTNhZcZo6C6WTMqgEluVdtZ7B0Wmy1ZtgrZOlVVGSbbpPNt0nn13HrD-L6xxoQ-3_htIt8CqDN_wjzq7Ht4Mf9gvJPCbQw
CitedBy_id crossref_primary_10_1093_imrn_rnab146
crossref_primary_10_1002_mana_202000546
Cites_doi 10.1016/S0019-3577(05)80034-5
10.1007/BF01344014
10.1090/surv/039
10.32917/hmj/1206137444
10.1007/BF01388969
10.1016/j.jfa.2012.03.006
10.1007/s00041-010-9122-9
10.7146/math.scand.a-15179
10.1017/S1474748007000114
10.1090/S0002-9904-1973-13127-1
10.1023/B:ACAP.0000024203.22722.ec
10.24033/asens.1602
10.1016/S0019-3577(05)80033-3
10.1007/BF02392967
10.1016/j.aim.2007.11.021
10.2307/2373170
10.4007/annals.2006.164.879
10.1090/conm/544/10748
10.1090/conm/650/13043
10.1007/BF02392487
10.2307/1970758
10.1006/jfan.1994.1052
10.7146/math.scand.a-12059
10.1016/0022-1236(79)90008-9
10.1007/s12220-013-9467-9
10.1006/jfan.2000.3682
10.1016/j.matpur.2004.02.002
10.2307/2372772
10.1090/surv/083
10.1090/conm/278/04601
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
DOI 10.1002/mana.201600148
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1522-2616
EndPage 2228
ExternalDocumentID 10_1002_mana_201600148
MANA201600148
Genre article
GrantInformation_xml – fundername: National Science Foundation
  funderid: DMS‐1101337
GroupedDBID --Z
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
V8K
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
YNT
YQT
ZY4
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
O8X
ID FETCH-LOGICAL-c3838-af14a320a422e37635e1af047e1cfd890bee2d43e4bf0cd0934317c3607494c83
IEDL.DBID DRFUL
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446455400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-584X
IngestDate Fri Jul 25 12:22:21 EDT 2025
Sat Nov 29 03:35:08 EST 2025
Tue Nov 18 20:57:48 EST 2025
Wed Jan 22 16:44:42 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14-15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3838-af14a320a422e37635e1af047e1cfd890bee2d43e4bf0cd0934317c3607494c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2116076266
PQPubID 1016385
PageCount 25
ParticipantIDs proquest_journals_2116076266
crossref_citationtrail_10_1002_mana_201600148
crossref_primary_10_1002_mana_201600148
wiley_primary_10_1002_mana_201600148_MANA201600148
PublicationCentury 2000
PublicationDate October 2018
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: October 2018
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Mathematische Nachrichten
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2012; 262
2004; 83
2010; 16
2004; 81
1973; 79
1983; 150
2008
1964; 86
2014; 24
1994
1979; 31
1995; 175
1978
2011; 544
2001; 179
2001; 278
1966; 165
1994; 121
1971; 93
1987; 64
2011; 109
1990; 23
1986; 83
1990
2000
1984; 54
2008; 218
1988; 67
2007; 6
2006; 164
2015
1958; 80
2005; 16
1973; 3
1983; 107
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_38_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
Opdam E. M. (e_1_2_9_26_1) 1988; 67
e_1_2_9_37_1
e_1_2_9_18_1
Hörmander L. (e_1_2_9_23_1) 1990
Opdam E. M. (e_1_2_9_25_1) 1988; 67
Rais M. (e_1_2_9_35_1) 1983; 107
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
Helgason S. (e_1_2_9_19_1) 1978
e_1_2_9_24_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
Heckman G. J. (e_1_2_9_14_1) 1987; 64
Heckman G. J. (e_1_2_9_15_1) 1987; 64
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
Heckman G. J. (e_1_2_9_16_1) 1994
References_xml – start-page: 143
  year: 2015
  end-page: 155
– volume: 6
  start-page: 557
  year: 2007
  end-page: 577
  article-title: A Paley–Wiener theorem for distributions on reductive symmetric spaces
  publication-title: J. Inst. Math. Jussieu
– volume: 16
  start-page: 609
  year: 2010
  end-page: 628
  article-title: Fourier series on compact symmetric spaces: ‐finite functions of small support
  publication-title: J. Fourier Anal. Appl.
– volume: 81
  start-page: 275
  year: 2004
  end-page: 309
  article-title: Paley–Wiener theorems for the Θ‐spherical transform: an overview
  publication-title: Acta Appl. Math.
– volume: 262
  start-page: 4851
  year: 2012
  end-page: 4890
  article-title: Ramanujan's master theorem for Riemannian symmetric spaces
  publication-title: J. Funct. Anal.
– volume: 278
  start-page: 131
  year: 2001
  end-page: 136
  article-title: A Paley–Wiener theorem for central functions on compact Lie groups
  publication-title: Contemp. Math.
– volume: 218
  start-page: 202
  year: 2008
  end-page: 215
  article-title: A local Paley–Wiener theorem for compact symmetric spaces
  publication-title: Adv. Math.
– volume: 150
  start-page: 1
  year: 1983
  end-page: 89
  article-title: A Paley–Wiener theorem for real reductive groups
  publication-title: Acta Math.
– volume: 54
  start-page: 279
  year: 1984
  end-page: 294
  article-title: One‐dimensional ‐types in finite dimensional representations of semisimple Lie groups: a generalization of Helgason's theorem
  publication-title: Math. Scand.
– volume: 86
  start-page: 358
  year: 1964
  end-page: 378
  article-title: Compactifications of symmetric spaces II: the Cartan domains
  publication-title: Amer. J. Math.
– year: 2000
– volume: 165
  start-page: 297
  year: 1966
  end-page: 308
  article-title: An analogue of the Paley–Wiener theorem for the Fourier transform on certain symmetric spaces
  publication-title: Math. Ann.
– volume: 16
  start-page: 393
  issue: 3‐4
  year: 2005
  end-page: 428
  article-title: The Paley–Wiener theorem and the local Huygens' principle for compact symmetric spaces: the even multiplicity case
  publication-title: Indag. Math. (N.S.)
– volume: 83
  start-page: 403
  year: 1986
  end-page: 404
  article-title: On the Paley–Wiener theorem
  publication-title: Invent. Math.
– volume: 64
  start-page: 329
  year: 1987
  end-page: 352
  article-title: Root systems and hypergeometric functions I
  publication-title: Comp. Math.
– volume: 79
  start-page: 129
  year: 1973
  end-page: 132
  article-title: Paley–Wiener theorems and surjectivity of invariant differential operators on symmetric spaces and Lie groups
  publication-title: Bull. Amer. Math. Soc.
– year: 1990
– year: 1994
– volume: 175
  start-page: 75
  year: 1995
  end-page: 121
  article-title: Harmonic analysis for certain representations of graded Hecke algebras
  publication-title: Acta Math.
– volume: 107
  start-page: 93
  year: 1983
  end-page: 111
  article-title: Groupes linéaries compacts et fonctions
  publication-title: Bull. Sci. Math.
– volume: 83
  start-page: 869
  year: 2004
  end-page: 927
  article-title: A Paley–Wiener theorem for the Θ‐hypergeometric transform: the even multiplicity case
  publication-title: J. Math. Pures Appl.
– volume: 64
  start-page: 353
  year: 1987
  end-page: 373
  article-title: Root systems and hypergeometric functions II
  publication-title: Comp. Math.
– volume: 109
  start-page: 93
  year: 2011
  end-page: 113
  article-title: Fourier transforms of spherical distributions on compact symmetric spaces
  publication-title: Math. Scand.
– volume: 24
  start-page: 1
  year: 2014
  end-page: 31
  article-title: The Paley–Wiener theorem and limits of symmetric spaces
  publication-title: J. Geom. Anal.
– volume: 164
  start-page: 879
  year: 2006
  end-page: 909
  article-title: A Paley–Wiener theorem for reductive symmetric spaces
  publication-title: Ann. of Math. (2)
– volume: 23
  start-page: 193
  year: 1990
  end-page: 228
  article-title: Le théorème de Paley–Wiener invariant pour les groupes de Lie réductifs II
  publication-title: Ann. Sci. École Norm. Sup.
– volume: 80
  start-page: 553
  year: 1958
  end-page: 613
  article-title: Spherical functions on a semisimple Lie group, I‐II
  publication-title: Amer. J. Math.
– volume: 121
  start-page: 330
  year: 1994
  end-page: 388
  article-title: The Plancherel formula for spherical functions with one dimensional ‐type on a simply connected simple Lie group of hermitian type
  publication-title: J. Funct. Anal.
– volume: 3
  start-page: 109
  year: 1973
  end-page: 120
  article-title: The Paley–Wiener theorem for distributions on symmetric spaces
  publication-title: Hiroshima Math. J.
– volume: 67
  start-page: 21
  year: 1988
  end-page: 49
  article-title: Root systems and hypergeometric functions III
  publication-title: Comp. Math.
– year: 2008
– volume: 31
  start-page: 341
  year: 1979
  end-page: 354
  article-title: Paley–Wiener theorem for singular support of ‐finite distributions on symmetric spaces
  publication-title: J. Funct. Anal.
– volume: 16
  start-page: 429
  year: 2005
  end-page: 442
  article-title: The Paley–Wiener theorem for the Jacobi transform and the local Huygens' principle for root systems with even multiplicities
  publication-title: Indag. Math. (N.S.)
– year: 1978
– volume: 544
  start-page: 55
  year: 2011
  end-page: 83
  article-title: Paley–Wiener theorems with respect to the spectral parameter. New developments in Lie theory and its applications
  publication-title: Contemp. Math.
– volume: 67
  start-page: 191
  year: 1988
  end-page: 209
  article-title: Root systems and hypergeometric functions IV
  publication-title: Comp. Math.
– volume: 93
  start-page: 150
  year: 1971
  end-page: 165
  article-title: On the Plancherel formula and the Paley–Wiener theorem for spherical functions on semisimple Lie groups
  publication-title: Ann. of Math. (2)
– volume: 179
  start-page: 66
  year: 2001
  end-page: 119
  article-title: Paley–Wiener theorems for hyperbolic spaces
  publication-title: J. Funct. Anal.
– ident: e_1_2_9_5_1
  doi: 10.1016/S0019-3577(05)80034-5
– ident: e_1_2_9_17_1
  doi: 10.1007/BF01344014
– ident: e_1_2_9_21_1
  doi: 10.1090/surv/039
– ident: e_1_2_9_10_1
  doi: 10.32917/hmj/1206137444
– ident: e_1_2_9_7_1
  doi: 10.1007/BF01388969
– ident: e_1_2_9_30_1
  doi: 10.1016/j.jfa.2012.03.006
– volume: 67
  start-page: 21
  year: 1988
  ident: e_1_2_9_25_1
  article-title: Root systems and hypergeometric functions III
  publication-title: Comp. Math.
– ident: e_1_2_9_32_1
  doi: 10.1007/s00041-010-9122-9
– ident: e_1_2_9_33_1
  doi: 10.7146/math.scand.a-15179
– ident: e_1_2_9_39_1
  doi: 10.1017/S1474748007000114
– ident: e_1_2_9_18_1
  doi: 10.1090/S0002-9904-1973-13127-1
– ident: e_1_2_9_29_1
  doi: 10.1023/B:ACAP.0000024203.22722.ec
– ident: e_1_2_9_6_1
  doi: 10.24033/asens.1602
– volume: 64
  start-page: 353
  year: 1987
  ident: e_1_2_9_14_1
  article-title: Root systems and hypergeometric functions II
  publication-title: Comp. Math.
– ident: e_1_2_9_4_1
  doi: 10.1016/S0019-3577(05)80033-3
– ident: e_1_2_9_3_1
  doi: 10.1007/BF02392967
– ident: e_1_2_9_31_1
  doi: 10.1016/j.aim.2007.11.021
– volume: 67
  start-page: 191
  year: 1988
  ident: e_1_2_9_26_1
  article-title: Root systems and hypergeometric functions IV
  publication-title: Comp. Math.
– ident: e_1_2_9_24_1
  doi: 10.2307/2373170
– ident: e_1_2_9_38_1
  doi: 10.4007/annals.2006.164.879
– ident: e_1_2_9_9_1
  doi: 10.1090/conm/544/10748
– volume-title: Harmonic analysis and special functions on symmetric spaces
  year: 1994
  ident: e_1_2_9_16_1
– ident: e_1_2_9_22_1
  doi: 10.1090/conm/650/13043
– ident: e_1_2_9_27_1
  doi: 10.1007/BF02392487
– ident: e_1_2_9_11_1
  doi: 10.2307/1970758
– ident: e_1_2_9_37_1
  doi: 10.1006/jfan.1994.1052
– volume-title: The analysis of linear partial differential operators I, distribution theory and Fourier analysis
  year: 1990
  ident: e_1_2_9_23_1
– ident: e_1_2_9_36_1
  doi: 10.7146/math.scand.a-12059
– ident: e_1_2_9_8_1
  doi: 10.1016/0022-1236(79)90008-9
– ident: e_1_2_9_34_1
  doi: 10.1007/s12220-013-9467-9
– ident: e_1_2_9_2_1
  doi: 10.1006/jfan.2000.3682
– ident: e_1_2_9_28_1
  doi: 10.1016/j.matpur.2004.02.002
– ident: e_1_2_9_13_1
  doi: 10.2307/2372772
– volume: 64
  start-page: 329
  year: 1987
  ident: e_1_2_9_15_1
  article-title: Root systems and hypergeometric functions I
  publication-title: Comp. Math.
– ident: e_1_2_9_20_1
  doi: 10.1090/surv/083
– ident: e_1_2_9_12_1
  doi: 10.1090/conm/278/04601
– volume: 107
  start-page: 93
  year: 1983
  ident: e_1_2_9_35_1
  article-title: Groupes linéaries compacts et fonctions
  publication-title: Bull. Sci. Math.
– volume-title: Differential geometry, Lie groups, and symmetric spaces
  year: 1978
  ident: e_1_2_9_19_1
SSID ssj0009976
Score 2.1826775
Snippet Paley–Wiener type theorems describe the image of a given space of functions, often compactly supported functions, under an integral transform, usually a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2204
SubjectTerms 43A85; Secondary: 22E46
43A90
53C35
Bundles
Fourier transform
Fourier transforms
hypergeometric function
Hypergeometric functions
Integral transforms
Paley–Wiener theorem
Primary: 33C67
symmetric space
Theorems
Title Paley–Wiener theorem for line bundles over compact symmetric spaces and new estimates for the Heckman–Opdam hypergeometric functions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmana.201600148
https://www.proquest.com/docview/2116076266
Volume 291
WOSCitedRecordID wos000446455400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2616
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009976
  issn: 0025-584X
  databaseCode: DRFUL
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09b9swED2kTod2SNKPIE6dgEOBTkIkipHJMUhjeHBSo2habwJJUU2QyDYsu0C3jtnzD_NLckfJcjwUBZpNAsQjwTvevROO7wA-IgJGLas8SEQ3C4RN4kCrDLMUhLIyNFo5363h-6B7cSFHIzV8cou_4odofrjRyfD-mg64NuXRijSUqjupNIsitpAvYJOj8R63YPPz197lYEW8q3yDOd-2FYPtaEncGPKjdQnrgWmFNp9iVh90etvPX-4ObNWAk51UFvIGNtz4Lbw-b9hay3dwNySw-PDn_sc1kVCz6nJjwRDPMpqYmQVRMZSMyj2Zr1q3c1b-Lgpqx2UZOiX0NkyPM4YgnRFvR0EQ1gtAYazv7A2uDGf4Ms10wa4w-Z39dJN6PMVWb_7v4bJ39u20H9QdGgKLma0MdB4JHfNQC84duapjF-k8FF0X2TyTKjTO8UzETpg8tFmoYsIrNk4QuChhZbwLrfFk7PaAxYnSmhsTuRxTVmllHrnEZDI2QjohRRuCpXpSW9OXUxeN27QiXuYp7XDa7HAbPjXfTyvijr9-2VlqO60PcJliXoyLxGwvaQP3ev2HlJQ6MDRv-_8z6AO8wueKbTfqQGs-W7gDeGl_za_L2WFt2I_zAvyC
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB61CVLpgfIoIiWUPSBxsurH4uweKyAKwkmrqoHcrPV63UatkyhOKvXWY-_9h_wSZtaOQw4ICfVoa1_amdn5ZjX7DcAHRMAoZZk5Ie-kDtdh4CiZYpSCUFa4iZLGVmv4EXUGAzEaydMqm5DewpT8EPWFG1mGPa_JwOlC-mjNGkrpnZSbRS6bi21octQlVPLml7PuMFoz70pbYc7WbUVvO1oxN7r-0eYIm55pDTf_BK3W63T3HmG9z-FZBTnZcakjL2DLTF7Cbr_may1ewf0pwcVfdw8_x0RDzcrnjTlDRMtoZpYsiYyhYJTwyWzeul6w4jbPqSCXZngs4XnD1CRlCNMZMXfkBGLtADgY6xl9hSvDGU5mqcrZJYa_8wszrfqTd7UGsA_D7tfzzz2nqtHgaIxthaMyj6vAdxX3fUOH1SfjqczlHePpLBXSTYzxUx4YnmSuTl0ZEGLRQYjQRXItgtfQmEwn5g2wIJRK-UnimQyDVqFF5pkwSUWQcGG44C1wVvKJdUVgTnU0ruOSetmPaYfjeodb8LFuPyupO_7asr0Sd1yZcBFjZIyLxHgvbIFvBfuPUWKqwVB_HfxPp_ew0zvvR3H0bfD9LTzF_yX3rteGxmK-NO_gib5ZjIv5YaXlvwEOxQCB
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Rb9MwED6xbkLwAGwwUSjgB6Q9RUtik9qPiK4qopQKsdG3yLEdNm3pqqadtDceed8_3C_hzknT7QFNQntMFJ8tn-_uu-j8HcB7RMCoZZUHiejaQJiEB1pZzFIQysow08r5bg1Hw-5oJCcTNa6rCekuTMUP0fxwI8vw_poM3M1svr9mDaXyTqrNopAt5AZsCuok04LN3vf-4XDNvKt8hznftxWj7WTF3BjG-7cl3I5Ma7h5E7T6qNN_eg_rfQZPasjJPlZnZBseuOkOPP7a8LWWz-HPmODi9e-rnydEQ82q640FQ0TLaGaWLYmMoWRU8Ml83bpZsPKyKKghl2HoltDfMD21DGE6I-aOgkCsF4DC2MCZU1wZzvBtZnXBjjH9nf9y5_V4iq7eAF7AYf_gx6dBUPdoCAzmtjLQeSQ0j0Mt4tiRs_rgIp2Housik1upwsy52AruRJaHxoaKE2IxPEHoooSRfBda0_OpewmMJ0rrOMsil2PSKo3MI5dkVvJMSCekaEOw0k9qagJz6qNxllbUy3FKO5w2O9yGveb7WUXd8c8vOyt1p7UJlylmxrhIzPeSNsResXdISakHQ_P06n8GvYOH414_HX4efXkNj_B1Rb0bdaC1mC_dG9gyF4uTcv62PuR_AZk4_-0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Paley%E2%80%93Wiener+theorem+for+line+bundles+over+compact+symmetric+spaces+and+new+estimates+for+the+Heckman%E2%80%93Opdam+hypergeometric+functions&rft.jtitle=Mathematische+Nachrichten&rft.au=Ho%2C+Vivian+M&rft.au=%C3%93lafsson%2C+Gestur&rft.date=2018-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0025-584X&rft.eissn=1522-2616&rft.volume=291&rft.issue=14-15&rft.spage=2204&rft.epage=2228&rft_id=info:doi/10.1002%2Fmana.201600148&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-584X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-584X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-584X&client=summon