Paley–Wiener theorem for line bundles over compact symmetric spaces and new estimates for the Heckman–Opdam hypergeometric functions
Paley–Wiener type theorems describe the image of a given space of functions, often compactly supported functions, under an integral transform, usually a Fourier transform on a group or homogeneous space. In this article we proved a Paley–Wiener theorem for smooth sections f of homogeneous line bundl...
Uloženo v:
| Vydáno v: | Mathematische Nachrichten Ročník 291; číslo 14-15; s. 2204 - 2228 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Weinheim
Wiley Subscription Services, Inc
01.10.2018
|
| Témata: | |
| ISSN: | 0025-584X, 1522-2616 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Paley–Wiener type theorems describe the image of a given space of functions, often compactly supported functions, under an integral transform, usually a Fourier transform on a group or homogeneous space. In this article we proved a Paley–Wiener theorem for smooth sections f of homogeneous line bundles on a compact Riemannian symmetric space U/K. It characterizes f with small support in terms of holomorphic extendability and exponential growth of their χ‐spherical Fourier transforms, where χ is a character of K. An important tool in our proof is a generalization of Opdam's estimate for the hypergeometric functions associated to multiplicity functions that are not necessarily positive. At the same time the radius of the domain where this estimate is valid is increased. This is done in an appendix. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0025-584X 1522-2616 |
| DOI: | 10.1002/mana.201600148 |