30 Li+‐Accommodating Covalent Organic Frameworks as Ultralong Cyclable High‐Capacity Li‐Ion Battery Electrodes

Covalent organic frameworks (COFs) have attracted considerable attention as a facile and versatile design platform for advanced energy storage materials owing to their structural diversity, ordered porous structures, and chemical stability. In this study, a redox‐active COF (TP–OH–COF) that can acco...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials Vol. 32; no. 9
Main Authors: Zhai, Lipeng, Li, Gaojie, Yang, Xiubei, Park, Sodam, Han, Diandian, Mi, Liwei, Wang, Yanjie, Li, Zhongping, Lee, Sang‐Young
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 01.02.2022
Subjects:
ISSN:1616-301X, 1616-3028
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Covalent organic frameworks (COFs) have attracted considerable attention as a facile and versatile design platform for advanced energy storage materials owing to their structural diversity, ordered porous structures, and chemical stability. In this study, a redox‐active COF (TP–OH–COF) that can accommodate 30 Li+ ions is synthesized for potential use as an ultralong cyclable high‐capacity lithium‐ion battery electrode material. The TP–OH–COF is synthesized using triformylpholoroglucinol and 2,5‐diaminohydroquinone dihydrochloride under solvothermal conditions. The accommodation of such exceptional Li+ ion content in the TP–OH–COF is achieved by alternately tethering redox‐active hydroxyl and carbonyl sites on the pore walls. Owing to this unique chemical/structural feature, the TP–OH–COF delivers a high specific capacity of 764.1 mAh g–1, and capacity retention of 63% after 8000 cycles at a fast current density of 5.0 A g–1. A redox‐active COF with alternate tethering of redox‐active hydroxyl and carbonyl sites on the pore walls is demonstrated as an organic‐based, ultralong cyclable high‐capacity LIB anode material. This COF electrode accommodated 30 Li+ ions owing to its unique framework structure and materials chemistry, which has never been reported in previous studies on COF‐based electrode materials.
AbstractList Covalent organic frameworks (COFs) have attracted considerable attention as a facile and versatile design platform for advanced energy storage materials owing to their structural diversity, ordered porous structures, and chemical stability. In this study, a redox‐active COF (TP–OH–COF) that can accommodate 30 Li + ions is synthesized for potential use as an ultralong cyclable high‐capacity lithium‐ion battery electrode material. The TP–OH–COF is synthesized using triformylpholoroglucinol and 2,5‐diaminohydroquinone dihydrochloride under solvothermal conditions. The accommodation of such exceptional Li + ion content in the TP–OH–COF is achieved by alternately tethering redox‐active hydroxyl and carbonyl sites on the pore walls. Owing to this unique chemical/structural feature, the TP–OH–COF delivers a high specific capacity of 764.1 mAh g –1 , and capacity retention of 63% after 8000 cycles at a fast current density of 5.0 A g –1 .
Covalent organic frameworks (COFs) have attracted considerable attention as a facile and versatile design platform for advanced energy storage materials owing to their structural diversity, ordered porous structures, and chemical stability. In this study, a redox‐active COF (TP–OH–COF) that can accommodate 30 Li+ ions is synthesized for potential use as an ultralong cyclable high‐capacity lithium‐ion battery electrode material. The TP–OH–COF is synthesized using triformylpholoroglucinol and 2,5‐diaminohydroquinone dihydrochloride under solvothermal conditions. The accommodation of such exceptional Li+ ion content in the TP–OH–COF is achieved by alternately tethering redox‐active hydroxyl and carbonyl sites on the pore walls. Owing to this unique chemical/structural feature, the TP–OH–COF delivers a high specific capacity of 764.1 mAh g–1, and capacity retention of 63% after 8000 cycles at a fast current density of 5.0 A g–1. A redox‐active COF with alternate tethering of redox‐active hydroxyl and carbonyl sites on the pore walls is demonstrated as an organic‐based, ultralong cyclable high‐capacity LIB anode material. This COF electrode accommodated 30 Li+ ions owing to its unique framework structure and materials chemistry, which has never been reported in previous studies on COF‐based electrode materials.
Author Han, Diandian
Mi, Liwei
Yang, Xiubei
Park, Sodam
Wang, Yanjie
Li, Zhongping
Zhai, Lipeng
Lee, Sang‐Young
Li, Gaojie
Author_xml – sequence: 1
  givenname: Lipeng
  surname: Zhai
  fullname: Zhai, Lipeng
  organization: Zhongyuan University of Technology
– sequence: 2
  givenname: Gaojie
  surname: Li
  fullname: Li, Gaojie
  organization: Zhongyuan University of Technology
– sequence: 3
  givenname: Xiubei
  surname: Yang
  fullname: Yang, Xiubei
  organization: Zhongyuan University of Technology
– sequence: 4
  givenname: Sodam
  surname: Park
  fullname: Park, Sodam
  organization: Yonsei University
– sequence: 5
  givenname: Diandian
  surname: Han
  fullname: Han, Diandian
  organization: Zhongyuan University of Technology
– sequence: 6
  givenname: Liwei
  surname: Mi
  fullname: Mi, Liwei
  email: liwei_mi@zut.edu.cn, mlwzzu@163.com
  organization: Zhongyuan University of Technology
– sequence: 7
  givenname: Yanjie
  surname: Wang
  fullname: Wang, Yanjie
  organization: Zhongyuan University of Technology
– sequence: 8
  givenname: Zhongping
  orcidid: 0000-0002-0146-5526
  surname: Li
  fullname: Li, Zhongping
  email: lizhongping2021@yonsei.ac.kr
  organization: Yonsei University
– sequence: 9
  givenname: Sang‐Young
  orcidid: 0000-0001-7153-0517
  surname: Lee
  fullname: Lee, Sang‐Young
  email: syleek@yonsei.ac.kr
  organization: Yonsei University
BookMark eNqFkM1KAzEUhYNU0Fa3rgMupTWZZJqZZa2tLVTcWHA33EkzdWpmUpPUMjsfwWf0SUypVBDE1f3hfOdyTxu1alMrhC4o6VFComtYFFUvIhEliUiTI3RK-7TfZSRKWoeePp2gtnMrQqgQjJ8izwielVef7x8DKU1VmQX4sl7ioXkDrWqPH-wS6lLisYVKbY19cRgcnmtvQZudsJEacq3wpFw-B5shrEGWvgmuYZqaGt-A98o2eKSV9NYslDtDxwVop86_awfNx6PH4aQ7e7ibDgezrmQJS7qUAMuBcqEKXgDpxyxPo9AkStAkF5DTFFT4Wi54wbgIqyLmDHLJRZrGsWAddLn3XVvzulHOZyuzsXU4mUV9RhMu4pQGVW-vktY4Z1WRrW1ZgW0ySrJdstku2eyQbAD4LyA8HGIzdQil1H9j6R7bllo1_xzJBrfj-x_2C084k8I
CitedBy_id crossref_primary_10_1002_smm2_1309
crossref_primary_10_1016_j_apmt_2024_102561
crossref_primary_10_1016_j_cej_2023_142434
crossref_primary_10_1039_D2NJ02032G
crossref_primary_10_3390_batteries9080391
crossref_primary_10_1002_ange_202422851
crossref_primary_10_1002_smll_202204613
crossref_primary_10_1002_cssc_202301118
crossref_primary_10_1002_cssc_202300872
crossref_primary_10_1016_j_cej_2024_154743
crossref_primary_10_1039_D3PY00495C
crossref_primary_10_1016_j_tsep_2023_101677
crossref_primary_10_1002_wcms_1660
crossref_primary_10_1016_j_ensm_2025_104038
crossref_primary_10_1002_eom2_12221
crossref_primary_10_1002_smll_202500961
crossref_primary_10_1016_j_jallcom_2023_168955
crossref_primary_10_1002_ange_202311460
crossref_primary_10_1016_j_cej_2022_138344
crossref_primary_10_1007_s40843_023_2545_y
crossref_primary_10_1016_j_chempr_2022_09_015
crossref_primary_10_1039_D1CS00983D
crossref_primary_10_1002_adfm_202212466
crossref_primary_10_1002_marc_202200803
crossref_primary_10_1002_sstr_202200126
crossref_primary_10_1002_aenm_202200057
crossref_primary_10_3390_molecules29122899
crossref_primary_10_1002_adfm_202308706
crossref_primary_10_1002_ange_202412452
crossref_primary_10_1002_ece2_58
crossref_primary_10_1007_s10008_024_05860_3
crossref_primary_10_1007_s40843_023_2626_0
crossref_primary_10_1016_j_cej_2023_143941
crossref_primary_10_1039_D2SC03980J
crossref_primary_10_1002_aenm_202301918
crossref_primary_10_1002_anie_202311460
crossref_primary_10_3390_polym14224804
crossref_primary_10_1021_acsaem_5c01195
crossref_primary_10_1039_D3RA07655E
crossref_primary_10_1007_s12274_022_5366_3
crossref_primary_10_1002_admi_202300628
crossref_primary_10_1002_smll_202301574
crossref_primary_10_1002_anie_202302143
crossref_primary_10_1002_slct_202202468
crossref_primary_10_1016_j_cej_2025_163043
crossref_primary_10_1002_adfm_202211950
crossref_primary_10_1002_anie_202412452
crossref_primary_10_1016_j_cej_2023_145310
crossref_primary_10_1016_j_colsurfa_2022_130496
crossref_primary_10_1002_marc_202200393
crossref_primary_10_1002_smtd_202300687
crossref_primary_10_1016_j_apmt_2025_102694
crossref_primary_10_1016_j_progpolymsci_2025_102012
crossref_primary_10_1002_anie_202422851
crossref_primary_10_1007_s11426_022_1391_0
crossref_primary_10_1002_aenm_202402247
crossref_primary_10_1039_D4NR01092B
crossref_primary_10_1039_D4EE02777A
crossref_primary_10_1016_j_desal_2022_115976
crossref_primary_10_3389_fchem_2022_1055649
crossref_primary_10_1002_ange_202302143
crossref_primary_10_1002_ange_202414770
crossref_primary_10_1016_j_cej_2022_140283
Cites_doi 10.1021/jacs.9b03467
10.1021/acsenergylett.0c00069
10.1039/C8TA07008C
10.1021/acsami.0c08984
10.1002/anie.201915234
10.1021/ja412807w
10.1021/jacs.7b02648
10.1021/acsenergylett.9b02668
10.1038/s41557-019-0238-5
10.1021/jacs.9b08147
10.1002/adma.201800561
10.1039/D0CS00017E
10.1002/adma.202002038
10.1002/adma.201705430
10.1038/s41565-019-0465-3
10.1039/D0CC00454E
10.1021/acs.chemrev.9b00482
10.1038/s41467-018-02889-7
10.1016/j.chempr.2018.01.003
10.1002/aenm.201904199
10.1039/C5CC04772B
10.1039/D0CS00199F
10.1021/jacs.7b08753
10.1126/science.1120411
10.1039/C5EE02589C
10.1021/ja507852t
10.1126/science.aal1585
10.1021/acsnano.7b01152
10.1002/adma.201901640
10.1021/acs.chemrev.8b00422
10.1002/aenm.201902428
10.1039/C9CC09846A
10.1038/s41570-020-0160-9
10.1002/anie.201904291
10.1039/C9TA13384D
10.1002/aenm.201702170
10.1021/acs.chemrev.6b00558
10.1021/acs.chemrev.9b00550
10.1002/anie.201812685
10.1021/acsenergylett.9b02280
10.1002/anie.201710841
10.1039/C9CS00827F
10.1002/aenm.201600671
10.1002/aenm.201301651
10.1021/acs.chemmater.6b04178
10.1039/C6CS00173D
10.1039/C7EE01473B
10.1021/acsenergylett.0c01545
10.1002/adma.201703373
10.1002/anie.201909554
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202108798
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202108798
ADFM202108798
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21671205; U1804126; 21771164; 52103277; U1804129
– fundername: Key Projects of Science and Technology of Henan Province
  funderid: 212102210208; 212102210182
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAMMB
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
O8X
1OB
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3838-10a3ba147ef4fa0653b92fa08e718b7ab19aeadfcd4f3478b7f543abc47995573
IEDL.DBID DRFUL
ISICitedReferencesCount 85
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000719134200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1616-301X
IngestDate Wed Aug 13 09:40:39 EDT 2025
Tue Nov 18 21:43:27 EST 2025
Sat Nov 29 07:21:21 EST 2025
Wed Jan 22 16:27:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3838-10a3ba147ef4fa0653b92fa08e718b7ab19aeadfcd4f3478b7f543abc47995573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7153-0517
0000-0002-0146-5526
PQID 2631847591
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_2631847591
crossref_primary_10_1002_adfm_202108798
crossref_citationtrail_10_1002_adfm_202108798
wiley_primary_10_1002_adfm_202108798_ADFM202108798
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 4
2019; 31
2015; 51
2020; 120
2005; 310
2019; 11
2020; 142
2019; 14
2019; 58
2020; 59
2020; 56
2017; 29
2020; 12
2020; 10
2020; 32
2019; 141
2015; 8
2017; 355
2014; 136
2017; 117
2017; 139
2020; 8
2018; 6
2016; 6
2018; 9
2018; 8
2020; 5
2020; 4
2014; 4
2018; 4
2018; 118
2017; 11
2017; 10
2020; 49
2019
2018; 30
2016; 45
2018; 57
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 127
  year: 2020
  publication-title: Nat. Rev. Chem.
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 139
  start-page: 4258
  year: 2017
  publication-title: J. Am. Chem. Soc.
– year: 2019
  publication-title: Adv. Energy Mater.
– volume: 45
  start-page: 6345
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 51
  year: 2015
  publication-title: Chem. Commun.
– volume: 49
  start-page: 3565
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 3459
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 120
  start-page: 6490
  year: 2020
  publication-title: Chem. Rev.
– volume: 4
  start-page: 2757
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 4198
  year: 2017
  publication-title: ACS Nano
– volume: 14
  start-page: 705
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 49
  start-page: 2852
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 57
  start-page: 2096
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 49
  start-page: 708
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 4
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 3160
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 310
  start-page: 1166
  year: 2005
  publication-title: Science
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 117
  start-page: 6225
  year: 2017
  publication-title: Chem. Rev.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 11
  start-page: 587
  year: 2019
  publication-title: Nat. Chem.
– volume: 56
  start-page: 2747
  year: 2020
  publication-title: Chem. Commun.
– volume: 29
  start-page: 2074
  year: 2017
  publication-title: Chem. Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 5
  start-page: 3140
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 141
  start-page: 9623
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 576
  year: 2018
  publication-title: Nat. Commun.
– volume: 118
  year: 2018
  publication-title: Chem. Rev.
– volume: 120
  start-page: 8814
  year: 2020
  publication-title: Chem. Rev.
– volume: 5
  start-page: 1022
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 4
  start-page: 972
  year: 2018
  publication-title: Chem
– volume: 59
  start-page: 5050
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 56
  start-page: 5437
  year: 2020
  publication-title: Chem. Commun.
– volume: 5
  start-page: 922
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 10
  start-page: 2334
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 136
  start-page: 5039
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 849
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 59
  start-page: 4557
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 355
  start-page: 923
  year: 2017
  publication-title: Science
– volume: 142
  start-page: 16
  year: 2020
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_7_42_1
  doi: 10.1021/jacs.9b03467
– ident: e_1_2_7_18_1
  doi: 10.1021/acsenergylett.0c00069
– ident: e_1_2_7_35_1
  doi: 10.1039/C8TA07008C
– ident: e_1_2_7_43_1
  doi: 10.1021/acsami.0c08984
– ident: e_1_2_7_44_1
  doi: 10.1002/anie.201915234
– ident: e_1_2_7_23_1
  doi: 10.1021/ja412807w
– ident: e_1_2_7_50_1
  doi: 10.1021/jacs.7b02648
– ident: e_1_2_7_8_1
  doi: 10.1021/acsenergylett.9b02668
– ident: e_1_2_7_32_1
  doi: 10.1038/s41557-019-0238-5
– ident: e_1_2_7_37_1
  doi: 10.1021/jacs.9b08147
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.201800561
– ident: e_1_2_7_29_1
  doi: 10.1039/D0CS00017E
– ident: e_1_2_7_38_1
  doi: 10.1002/adma.202002038
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.201705430
– ident: e_1_2_7_15_1
  doi: 10.1038/s41565-019-0465-3
– ident: e_1_2_7_46_1
  doi: 10.1039/D0CC00454E
– ident: e_1_2_7_24_1
  doi: 10.1021/acs.chemrev.9b00482
– ident: e_1_2_7_51_1
  doi: 10.1038/s41467-018-02889-7
– ident: e_1_2_7_5_1
  doi: 10.1016/j.chempr.2018.01.003
– ident: e_1_2_7_33_1
  doi: 10.1002/aenm.201904199
– ident: e_1_2_7_20_1
  doi: 10.1039/C5CC04772B
– ident: e_1_2_7_30_1
  doi: 10.1039/D0CS00199F
– ident: e_1_2_7_26_1
  doi: 10.1021/jacs.7b08753
– ident: e_1_2_7_27_1
  doi: 10.1126/science.1120411
– ident: e_1_2_7_17_1
  doi: 10.1039/C5EE02589C
– ident: e_1_2_7_19_1
  doi: 10.1021/ja507852t
– ident: e_1_2_7_31_1
  doi: 10.1126/science.aal1585
– ident: e_1_2_7_9_1
  doi: 10.1021/acsnano.7b01152
– ident: e_1_2_7_39_1
  doi: 10.1002/adma.201901640
– ident: e_1_2_7_11_1
  doi: 10.1021/acs.chemrev.8b00422
– ident: e_1_2_7_48_1
  doi: 10.1002/aenm.201902428
– ident: e_1_2_7_22_1
  doi: 10.1039/C9CC09846A
– ident: e_1_2_7_14_1
  doi: 10.1038/s41570-020-0160-9
– ident: e_1_2_7_40_1
  doi: 10.1002/anie.201904291
– ident: e_1_2_7_36_1
  doi: 10.1039/C9TA13384D
– ident: e_1_2_7_3_1
  doi: 10.1002/aenm.201702170
– ident: e_1_2_7_1_1
  doi: 10.1021/acs.chemrev.6b00558
– ident: e_1_2_7_28_1
  doi: 10.1021/acs.chemrev.9b00550
– ident: e_1_2_7_41_1
  doi: 10.1002/anie.201812685
– ident: e_1_2_7_7_1
  doi: 10.1021/acsenergylett.9b02280
– ident: e_1_2_7_47_1
  doi: 10.1038/s41467-018-02889-7
– ident: e_1_2_7_13_1
  doi: 10.1002/anie.201710841
– ident: e_1_2_7_34_1
  doi: 10.1039/C9CS00827F
– ident: e_1_2_7_2_1
  doi: 10.1002/aenm.201600671
– ident: e_1_2_7_16_1
  doi: 10.1002/aenm.201301651
– ident: e_1_2_7_49_1
  doi: 10.1021/acs.chemmater.6b04178
– ident: e_1_2_7_12_1
  doi: 10.1039/C6CS00173D
– ident: e_1_2_7_21_1
  doi: 10.1039/C7EE01473B
– ident: e_1_2_7_6_1
  doi: 10.1021/acsenergylett.0c01545
– ident: e_1_2_7_25_1
  doi: 10.1002/adma.201703373
– ident: e_1_2_7_45_1
  doi: 10.1002/anie.201909554
SSID ssj0017734
Score 2.6190557
Snippet Covalent organic frameworks (COFs) have attracted considerable attention as a facile and versatile design platform for advanced energy storage materials owing...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Carbonyls
Chemical synthesis
covalent organic frameworks
Electrode materials
Energy storage
high capacity
Lithium-ion batteries
Materials science
redox‐active carbonyl sites
Tethering
Title 30 Li+‐Accommodating Covalent Organic Frameworks as Ultralong Cyclable High‐Capacity Li‐Ion Battery Electrodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202108798
https://www.proquest.com/docview/2631847591
Volume 32
WOSCitedRecordID wos000719134200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB609aAH32J9sQfBg4Tmsc0mR2kbFKqIWOkt7G6yIpRUTBW8-RP8jf4SZ5I01oMIesuGyRB2Z3Zmdme-ATjGkKPjGKMsgvawuO8YK7Ql6pXQvs_9JLWLbPe7gbi6Ckaj8Hquir_Eh6gP3Egziv2aFFyqvP0FGioTQ5XkGLIEIgwWoemi8PIGNHs30XBQ3yQIUd4s-w7leDmjGXCj7ba_c_humL68zXmftTA60dr_f3cdViuHk52VErIBC2m2CStzMIRbMPVsNng4_Xh7p94RKJhU8pDds-4ExRCNEisLNjWLZplcOZM5G47plGRChK96TCVYjLJGkE0XLbBG9x654uhikrESxvOV9cuuO0mab8Mw6t92z62qG4OlMYolDFjpKelwkRpuJEHaqtDFhyBF86aEVE4oUSyNTrjxuMBXpsM9qTQnzLmO8HagkU2ydBeYnQhbKoXRlCS8ehlwdNO40h3D6WJYtcCaLUWsK6hy6pgxjkuQZTem2Yzr2WzBSU3_WIJ0_Eh5MFvZuFLWPHZ93NgI99BpgVus4S9c4rNedFmP9v7y0T4su1RIUeR_H0Bj-vScHsKSfpk-5E9HlRB_AjzP9Hc
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-RAEC7cGWHXg667Ljs-dvsg7GEJ5tFJJ0cZDSPGYZEZmVvo7qRFGDJiZgVv_gR_o7_EqiQTnYMI4i0dOkXorup6dNVXAPvocviOMcoiaA-LB46xIluiXAkdBDzIcrvKdr9IxHAYTibRvyabkGphanyINuBGklGd1yTgFJA-eEYNlZmhUnL0WUIRhZ-gy5GX_A50j87jcdJeJQhRXy0HDiV5OZMFcqPtHixTWNZMz-bmS6O10jrxxgf871dYb0xOdljzyCas5MU3WHsBRPgd5p7Nkqu_j_cP1D0CWZOKHopL1p8hI6JaYnXJpmbxIperZLJk4ynFSWY08U5PqQiLUd4IkumjDtZo4CNVHJ3MClYDed6x47rvTpaXWzCOj0f9gdX0Y7A0-rGEAis9JR0ucsONJFBbFbn4EOao4JSQyokkMqbRGTceF_jK-NyTSnNCnfOF9wM6xazIfwKzM2FLpdCfkoRYL0OOhhpX2jecroZVD6zFXqS6ASunnhnTtIZZdlNazbRdzR78aedf1zAdr87cXWxt2ohrmboBHm2EfOj0wK028Q0q6eFRfNaOtt_z0W_4PBidJWlyMjzdgS8ulVVU2eC70Jnf_M_3YFXfzq_Km18NRz8B45b4Zw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS-wwEB68Ifqg53jB9XbycMAHKfaSNu2j7FoU10XElX0rSdrIwtIVuwq--RP8jf4SZ9pu1QcRxLemTIeSzGRmkplvAP5jyOE7xiiLoD0sHjjGimyJeiV0EPAgzewy2_2mK3q9cDCILutsQqqFqfAhmgM30oxyvyYFz-5Sc_SOGipTQ6XkGLOEIgpnYZ77UYC6Od-5ivvd5ipBiOpqOXAoycsZTJEbbffoM4fPlund3fzotJZWJ179hf_9Ayu1y8mOKxn5CzNZvgbLH4AI12Hi2aw7PHx9fqHuESiaVPSQ37L2GAURzRKrSjY1i6e5XAWTBeuP6JxkTIRPekRFWIzyRpBNG22wRgcfueLobJyzCsjziZ1UfXfSrNiAfnxy3T616n4MlsY4llBgpaekw0VmuJEEaqsiFx_CDA2cElI5kUTBNDrlxuMCXxmfe1JpTqhzvvA2YS4f59kWMDsVtlQK4ylJiPUy5OiocaV9w-lqWLXAmq5FomuwcuqZMUoqmGU3odlMmtlswUFDf1fBdHxJuTtd2qRW1yJxA9zaCPnQaYFbLuI3XJLjTnzRjLZ_8tE_WLzsxEn3rHe-A0suVVWUyeC7MDe5f8j2YEE_TobF_X4t0G95U_fi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=30+Li%2B%E2%80%90Accommodating+Covalent+Organic+Frameworks+as+Ultralong+Cyclable+High%E2%80%90Capacity+Li%E2%80%90Ion+Battery+Electrodes&rft.jtitle=Advanced+functional+materials&rft.au=Zhai%2C+Lipeng&rft.au=Li%2C+Gaojie&rft.au=Yang%2C+Xiubei&rft.au=Park%2C+Sodam&rft.date=2022-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202108798&rft.externalDBID=10.1002%252Fadfm.202108798&rft.externalDocID=ADFM202108798
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon