30 Li+‐Accommodating Covalent Organic Frameworks as Ultralong Cyclable High‐Capacity Li‐Ion Battery Electrodes
Covalent organic frameworks (COFs) have attracted considerable attention as a facile and versatile design platform for advanced energy storage materials owing to their structural diversity, ordered porous structures, and chemical stability. In this study, a redox‐active COF (TP–OH–COF) that can acco...
Saved in:
| Published in: | Advanced functional materials Vol. 32; no. 9 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken
Wiley Subscription Services, Inc
01.02.2022
|
| Subjects: | |
| ISSN: | 1616-301X, 1616-3028 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Covalent organic frameworks (COFs) have attracted considerable attention as a facile and versatile design platform for advanced energy storage materials owing to their structural diversity, ordered porous structures, and chemical stability. In this study, a redox‐active COF (TP–OH–COF) that can accommodate 30 Li+ ions is synthesized for potential use as an ultralong cyclable high‐capacity lithium‐ion battery electrode material. The TP–OH–COF is synthesized using triformylpholoroglucinol and 2,5‐diaminohydroquinone dihydrochloride under solvothermal conditions. The accommodation of such exceptional Li+ ion content in the TP–OH–COF is achieved by alternately tethering redox‐active hydroxyl and carbonyl sites on the pore walls. Owing to this unique chemical/structural feature, the TP–OH–COF delivers a high specific capacity of 764.1 mAh g–1, and capacity retention of 63% after 8000 cycles at a fast current density of 5.0 A g–1.
A redox‐active COF with alternate tethering of redox‐active hydroxyl and carbonyl sites on the pore walls is demonstrated as an organic‐based, ultralong cyclable high‐capacity LIB anode material. This COF electrode accommodated 30 Li+ ions owing to its unique framework structure and materials chemistry, which has never been reported in previous studies on COF‐based electrode materials. |
|---|---|
| AbstractList | Covalent organic frameworks (COFs) have attracted considerable attention as a facile and versatile design platform for advanced energy storage materials owing to their structural diversity, ordered porous structures, and chemical stability. In this study, a redox‐active COF (TP–OH–COF) that can accommodate 30 Li + ions is synthesized for potential use as an ultralong cyclable high‐capacity lithium‐ion battery electrode material. The TP–OH–COF is synthesized using triformylpholoroglucinol and 2,5‐diaminohydroquinone dihydrochloride under solvothermal conditions. The accommodation of such exceptional Li + ion content in the TP–OH–COF is achieved by alternately tethering redox‐active hydroxyl and carbonyl sites on the pore walls. Owing to this unique chemical/structural feature, the TP–OH–COF delivers a high specific capacity of 764.1 mAh g –1 , and capacity retention of 63% after 8000 cycles at a fast current density of 5.0 A g –1 . Covalent organic frameworks (COFs) have attracted considerable attention as a facile and versatile design platform for advanced energy storage materials owing to their structural diversity, ordered porous structures, and chemical stability. In this study, a redox‐active COF (TP–OH–COF) that can accommodate 30 Li+ ions is synthesized for potential use as an ultralong cyclable high‐capacity lithium‐ion battery electrode material. The TP–OH–COF is synthesized using triformylpholoroglucinol and 2,5‐diaminohydroquinone dihydrochloride under solvothermal conditions. The accommodation of such exceptional Li+ ion content in the TP–OH–COF is achieved by alternately tethering redox‐active hydroxyl and carbonyl sites on the pore walls. Owing to this unique chemical/structural feature, the TP–OH–COF delivers a high specific capacity of 764.1 mAh g–1, and capacity retention of 63% after 8000 cycles at a fast current density of 5.0 A g–1. A redox‐active COF with alternate tethering of redox‐active hydroxyl and carbonyl sites on the pore walls is demonstrated as an organic‐based, ultralong cyclable high‐capacity LIB anode material. This COF electrode accommodated 30 Li+ ions owing to its unique framework structure and materials chemistry, which has never been reported in previous studies on COF‐based electrode materials. |
| Author | Han, Diandian Mi, Liwei Yang, Xiubei Park, Sodam Wang, Yanjie Li, Zhongping Zhai, Lipeng Lee, Sang‐Young Li, Gaojie |
| Author_xml | – sequence: 1 givenname: Lipeng surname: Zhai fullname: Zhai, Lipeng organization: Zhongyuan University of Technology – sequence: 2 givenname: Gaojie surname: Li fullname: Li, Gaojie organization: Zhongyuan University of Technology – sequence: 3 givenname: Xiubei surname: Yang fullname: Yang, Xiubei organization: Zhongyuan University of Technology – sequence: 4 givenname: Sodam surname: Park fullname: Park, Sodam organization: Yonsei University – sequence: 5 givenname: Diandian surname: Han fullname: Han, Diandian organization: Zhongyuan University of Technology – sequence: 6 givenname: Liwei surname: Mi fullname: Mi, Liwei email: liwei_mi@zut.edu.cn, mlwzzu@163.com organization: Zhongyuan University of Technology – sequence: 7 givenname: Yanjie surname: Wang fullname: Wang, Yanjie organization: Zhongyuan University of Technology – sequence: 8 givenname: Zhongping orcidid: 0000-0002-0146-5526 surname: Li fullname: Li, Zhongping email: lizhongping2021@yonsei.ac.kr organization: Yonsei University – sequence: 9 givenname: Sang‐Young orcidid: 0000-0001-7153-0517 surname: Lee fullname: Lee, Sang‐Young email: syleek@yonsei.ac.kr organization: Yonsei University |
| BookMark | eNqFkM1KAzEUhYNU0Fa3rgMupTWZZJqZZa2tLVTcWHA33EkzdWpmUpPUMjsfwWf0SUypVBDE1f3hfOdyTxu1alMrhC4o6VFComtYFFUvIhEliUiTI3RK-7TfZSRKWoeePp2gtnMrQqgQjJ8izwielVef7x8DKU1VmQX4sl7ioXkDrWqPH-wS6lLisYVKbY19cRgcnmtvQZudsJEacq3wpFw-B5shrEGWvgmuYZqaGt-A98o2eKSV9NYslDtDxwVop86_awfNx6PH4aQ7e7ibDgezrmQJS7qUAMuBcqEKXgDpxyxPo9AkStAkF5DTFFT4Wi54wbgIqyLmDHLJRZrGsWAddLn3XVvzulHOZyuzsXU4mUV9RhMu4pQGVW-vktY4Z1WRrW1ZgW0ySrJdstku2eyQbAD4LyA8HGIzdQil1H9j6R7bllo1_xzJBrfj-x_2C084k8I |
| CitedBy_id | crossref_primary_10_1002_smm2_1309 crossref_primary_10_1016_j_apmt_2024_102561 crossref_primary_10_1016_j_cej_2023_142434 crossref_primary_10_1039_D2NJ02032G crossref_primary_10_3390_batteries9080391 crossref_primary_10_1002_ange_202422851 crossref_primary_10_1002_smll_202204613 crossref_primary_10_1002_cssc_202301118 crossref_primary_10_1002_cssc_202300872 crossref_primary_10_1016_j_cej_2024_154743 crossref_primary_10_1039_D3PY00495C crossref_primary_10_1016_j_tsep_2023_101677 crossref_primary_10_1002_wcms_1660 crossref_primary_10_1016_j_ensm_2025_104038 crossref_primary_10_1002_eom2_12221 crossref_primary_10_1002_smll_202500961 crossref_primary_10_1016_j_jallcom_2023_168955 crossref_primary_10_1002_ange_202311460 crossref_primary_10_1016_j_cej_2022_138344 crossref_primary_10_1007_s40843_023_2545_y crossref_primary_10_1016_j_chempr_2022_09_015 crossref_primary_10_1039_D1CS00983D crossref_primary_10_1002_adfm_202212466 crossref_primary_10_1002_marc_202200803 crossref_primary_10_1002_sstr_202200126 crossref_primary_10_1002_aenm_202200057 crossref_primary_10_3390_molecules29122899 crossref_primary_10_1002_adfm_202308706 crossref_primary_10_1002_ange_202412452 crossref_primary_10_1002_ece2_58 crossref_primary_10_1007_s10008_024_05860_3 crossref_primary_10_1007_s40843_023_2626_0 crossref_primary_10_1016_j_cej_2023_143941 crossref_primary_10_1039_D2SC03980J crossref_primary_10_1002_aenm_202301918 crossref_primary_10_1002_anie_202311460 crossref_primary_10_3390_polym14224804 crossref_primary_10_1021_acsaem_5c01195 crossref_primary_10_1039_D3RA07655E crossref_primary_10_1007_s12274_022_5366_3 crossref_primary_10_1002_admi_202300628 crossref_primary_10_1002_smll_202301574 crossref_primary_10_1002_anie_202302143 crossref_primary_10_1002_slct_202202468 crossref_primary_10_1016_j_cej_2025_163043 crossref_primary_10_1002_adfm_202211950 crossref_primary_10_1002_anie_202412452 crossref_primary_10_1016_j_cej_2023_145310 crossref_primary_10_1016_j_colsurfa_2022_130496 crossref_primary_10_1002_marc_202200393 crossref_primary_10_1002_smtd_202300687 crossref_primary_10_1016_j_apmt_2025_102694 crossref_primary_10_1016_j_progpolymsci_2025_102012 crossref_primary_10_1002_anie_202422851 crossref_primary_10_1007_s11426_022_1391_0 crossref_primary_10_1002_aenm_202402247 crossref_primary_10_1039_D4NR01092B crossref_primary_10_1039_D4EE02777A crossref_primary_10_1016_j_desal_2022_115976 crossref_primary_10_3389_fchem_2022_1055649 crossref_primary_10_1002_ange_202302143 crossref_primary_10_1002_ange_202414770 crossref_primary_10_1016_j_cej_2022_140283 |
| Cites_doi | 10.1021/jacs.9b03467 10.1021/acsenergylett.0c00069 10.1039/C8TA07008C 10.1021/acsami.0c08984 10.1002/anie.201915234 10.1021/ja412807w 10.1021/jacs.7b02648 10.1021/acsenergylett.9b02668 10.1038/s41557-019-0238-5 10.1021/jacs.9b08147 10.1002/adma.201800561 10.1039/D0CS00017E 10.1002/adma.202002038 10.1002/adma.201705430 10.1038/s41565-019-0465-3 10.1039/D0CC00454E 10.1021/acs.chemrev.9b00482 10.1038/s41467-018-02889-7 10.1016/j.chempr.2018.01.003 10.1002/aenm.201904199 10.1039/C5CC04772B 10.1039/D0CS00199F 10.1021/jacs.7b08753 10.1126/science.1120411 10.1039/C5EE02589C 10.1021/ja507852t 10.1126/science.aal1585 10.1021/acsnano.7b01152 10.1002/adma.201901640 10.1021/acs.chemrev.8b00422 10.1002/aenm.201902428 10.1039/C9CC09846A 10.1038/s41570-020-0160-9 10.1002/anie.201904291 10.1039/C9TA13384D 10.1002/aenm.201702170 10.1021/acs.chemrev.6b00558 10.1021/acs.chemrev.9b00550 10.1002/anie.201812685 10.1021/acsenergylett.9b02280 10.1002/anie.201710841 10.1039/C9CS00827F 10.1002/aenm.201600671 10.1002/aenm.201301651 10.1021/acs.chemmater.6b04178 10.1039/C6CS00173D 10.1039/C7EE01473B 10.1021/acsenergylett.0c01545 10.1002/adma.201703373 10.1002/anie.201909554 |
| ContentType | Journal Article |
| Copyright | 2021 Wiley‐VCH GmbH 2022 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2022 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/adfm.202108798 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | CrossRef Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1616-3028 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_adfm_202108798 ADFM202108798 |
| Genre | article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21671205; U1804126; 21771164; 52103277; U1804129 – fundername: Key Projects of Science and Technology of Henan Province funderid: 212102210208; 212102210182 |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAMMB AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 O8X 1OB 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c3838-10a3ba147ef4fa0653b92fa08e718b7ab19aeadfcd4f3478b7f543abc47995573 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 85 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000719134200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1616-301X |
| IngestDate | Wed Aug 13 09:40:39 EDT 2025 Tue Nov 18 21:43:27 EST 2025 Sat Nov 29 07:21:21 EST 2025 Wed Jan 22 16:27:05 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3838-10a3ba147ef4fa0653b92fa08e718b7ab19aeadfcd4f3478b7f543abc47995573 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7153-0517 0000-0002-0146-5526 |
| PQID | 2631847591 |
| PQPubID | 2045204 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_2631847591 crossref_primary_10_1002_adfm_202108798 crossref_citationtrail_10_1002_adfm_202108798 wiley_primary_10_1002_adfm_202108798_ADFM202108798 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Advanced functional materials |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2019; 4 2019; 31 2015; 51 2020; 120 2005; 310 2019; 11 2020; 142 2019; 14 2019; 58 2020; 59 2020; 56 2017; 29 2020; 12 2020; 10 2020; 32 2019; 141 2015; 8 2017; 355 2014; 136 2017; 117 2017; 139 2020; 8 2018; 6 2016; 6 2018; 9 2018; 8 2020; 5 2020; 4 2014; 4 2018; 4 2018; 118 2017; 11 2017; 10 2020; 49 2019 2018; 30 2016; 45 2018; 57 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
| References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 4 start-page: 127 year: 2020 publication-title: Nat. Rev. Chem. – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 139 start-page: 4258 year: 2017 publication-title: J. Am. Chem. Soc. – year: 2019 publication-title: Adv. Energy Mater. – volume: 45 start-page: 6345 year: 2016 publication-title: Chem. Soc. Rev. – volume: 51 year: 2015 publication-title: Chem. Commun. – volume: 49 start-page: 3565 year: 2020 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 3459 year: 2020 publication-title: J. Mater. Chem. A – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 120 start-page: 6490 year: 2020 publication-title: Chem. Rev. – volume: 4 start-page: 2757 year: 2019 publication-title: ACS Energy Lett. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 4198 year: 2017 publication-title: ACS Nano – volume: 14 start-page: 705 year: 2019 publication-title: Nat. Nanotechnol. – volume: 49 start-page: 2852 year: 2020 publication-title: Chem. Soc. Rev. – volume: 57 start-page: 2096 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 49 start-page: 708 year: 2020 publication-title: Chem. Soc. Rev. – volume: 4 year: 2014 publication-title: Adv. Energy Mater. – volume: 8 start-page: 3160 year: 2015 publication-title: Energy Environ. Sci. – volume: 310 start-page: 1166 year: 2005 publication-title: Science – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 117 start-page: 6225 year: 2017 publication-title: Chem. Rev. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 11 start-page: 587 year: 2019 publication-title: Nat. Chem. – volume: 56 start-page: 2747 year: 2020 publication-title: Chem. Commun. – volume: 29 start-page: 2074 year: 2017 publication-title: Chem. Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 5 start-page: 3140 year: 2020 publication-title: ACS Energy Lett. – volume: 141 start-page: 9623 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 576 year: 2018 publication-title: Nat. Commun. – volume: 118 year: 2018 publication-title: Chem. Rev. – volume: 120 start-page: 8814 year: 2020 publication-title: Chem. Rev. – volume: 5 start-page: 1022 year: 2020 publication-title: ACS Energy Lett. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 4 start-page: 972 year: 2018 publication-title: Chem – volume: 59 start-page: 5050 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 56 start-page: 5437 year: 2020 publication-title: Chem. Commun. – volume: 5 start-page: 922 year: 2020 publication-title: ACS Energy Lett. – volume: 10 start-page: 2334 year: 2017 publication-title: Energy Environ. Sci. – volume: 136 start-page: 5039 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 58 start-page: 849 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 59 start-page: 4557 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 355 start-page: 923 year: 2017 publication-title: Science – volume: 142 start-page: 16 year: 2020 publication-title: J. Am. Chem. Soc. – ident: e_1_2_7_42_1 doi: 10.1021/jacs.9b03467 – ident: e_1_2_7_18_1 doi: 10.1021/acsenergylett.0c00069 – ident: e_1_2_7_35_1 doi: 10.1039/C8TA07008C – ident: e_1_2_7_43_1 doi: 10.1021/acsami.0c08984 – ident: e_1_2_7_44_1 doi: 10.1002/anie.201915234 – ident: e_1_2_7_23_1 doi: 10.1021/ja412807w – ident: e_1_2_7_50_1 doi: 10.1021/jacs.7b02648 – ident: e_1_2_7_8_1 doi: 10.1021/acsenergylett.9b02668 – ident: e_1_2_7_32_1 doi: 10.1038/s41557-019-0238-5 – ident: e_1_2_7_37_1 doi: 10.1021/jacs.9b08147 – ident: e_1_2_7_4_1 doi: 10.1002/adma.201800561 – ident: e_1_2_7_29_1 doi: 10.1039/D0CS00017E – ident: e_1_2_7_38_1 doi: 10.1002/adma.202002038 – ident: e_1_2_7_10_1 doi: 10.1002/adma.201705430 – ident: e_1_2_7_15_1 doi: 10.1038/s41565-019-0465-3 – ident: e_1_2_7_46_1 doi: 10.1039/D0CC00454E – ident: e_1_2_7_24_1 doi: 10.1021/acs.chemrev.9b00482 – ident: e_1_2_7_51_1 doi: 10.1038/s41467-018-02889-7 – ident: e_1_2_7_5_1 doi: 10.1016/j.chempr.2018.01.003 – ident: e_1_2_7_33_1 doi: 10.1002/aenm.201904199 – ident: e_1_2_7_20_1 doi: 10.1039/C5CC04772B – ident: e_1_2_7_30_1 doi: 10.1039/D0CS00199F – ident: e_1_2_7_26_1 doi: 10.1021/jacs.7b08753 – ident: e_1_2_7_27_1 doi: 10.1126/science.1120411 – ident: e_1_2_7_17_1 doi: 10.1039/C5EE02589C – ident: e_1_2_7_19_1 doi: 10.1021/ja507852t – ident: e_1_2_7_31_1 doi: 10.1126/science.aal1585 – ident: e_1_2_7_9_1 doi: 10.1021/acsnano.7b01152 – ident: e_1_2_7_39_1 doi: 10.1002/adma.201901640 – ident: e_1_2_7_11_1 doi: 10.1021/acs.chemrev.8b00422 – ident: e_1_2_7_48_1 doi: 10.1002/aenm.201902428 – ident: e_1_2_7_22_1 doi: 10.1039/C9CC09846A – ident: e_1_2_7_14_1 doi: 10.1038/s41570-020-0160-9 – ident: e_1_2_7_40_1 doi: 10.1002/anie.201904291 – ident: e_1_2_7_36_1 doi: 10.1039/C9TA13384D – ident: e_1_2_7_3_1 doi: 10.1002/aenm.201702170 – ident: e_1_2_7_1_1 doi: 10.1021/acs.chemrev.6b00558 – ident: e_1_2_7_28_1 doi: 10.1021/acs.chemrev.9b00550 – ident: e_1_2_7_41_1 doi: 10.1002/anie.201812685 – ident: e_1_2_7_7_1 doi: 10.1021/acsenergylett.9b02280 – ident: e_1_2_7_47_1 doi: 10.1038/s41467-018-02889-7 – ident: e_1_2_7_13_1 doi: 10.1002/anie.201710841 – ident: e_1_2_7_34_1 doi: 10.1039/C9CS00827F – ident: e_1_2_7_2_1 doi: 10.1002/aenm.201600671 – ident: e_1_2_7_16_1 doi: 10.1002/aenm.201301651 – ident: e_1_2_7_49_1 doi: 10.1021/acs.chemmater.6b04178 – ident: e_1_2_7_12_1 doi: 10.1039/C6CS00173D – ident: e_1_2_7_21_1 doi: 10.1039/C7EE01473B – ident: e_1_2_7_6_1 doi: 10.1021/acsenergylett.0c01545 – ident: e_1_2_7_25_1 doi: 10.1002/adma.201703373 – ident: e_1_2_7_45_1 doi: 10.1002/anie.201909554 |
| SSID | ssj0017734 |
| Score | 2.6190557 |
| Snippet | Covalent organic frameworks (COFs) have attracted considerable attention as a facile and versatile design platform for advanced energy storage materials owing... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Carbonyls Chemical synthesis covalent organic frameworks Electrode materials Energy storage high capacity Lithium-ion batteries Materials science redox‐active carbonyl sites Tethering |
| Title | 30 Li+‐Accommodating Covalent Organic Frameworks as Ultralong Cyclable High‐Capacity Li‐Ion Battery Electrodes |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202108798 https://www.proquest.com/docview/2631847591 |
| Volume | 32 |
| WOSCitedRecordID | wos000719134200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 issn: 1616-301X databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB609aAH32J9sQfBg4Tmsc0mR2kbFKqIWOkt7G6yIpRUTBW8-RP8jf4SZ5I01oMIesuGyRB2Z3Zmdme-ATjGkKPjGKMsgvawuO8YK7Ql6pXQvs_9JLWLbPe7gbi6Ckaj8Hquir_Eh6gP3Egziv2aFFyqvP0FGioTQ5XkGLIEIgwWoemi8PIGNHs30XBQ3yQIUd4s-w7leDmjGXCj7ba_c_humL68zXmftTA60dr_f3cdViuHk52VErIBC2m2CStzMIRbMPVsNng4_Xh7p94RKJhU8pDds-4ExRCNEisLNjWLZplcOZM5G47plGRChK96TCVYjLJGkE0XLbBG9x654uhikrESxvOV9cuuO0mab8Mw6t92z62qG4OlMYolDFjpKelwkRpuJEHaqtDFhyBF86aEVE4oUSyNTrjxuMBXpsM9qTQnzLmO8HagkU2ydBeYnQhbKoXRlCS8ehlwdNO40h3D6WJYtcCaLUWsK6hy6pgxjkuQZTem2Yzr2WzBSU3_WIJ0_Eh5MFvZuFLWPHZ93NgI99BpgVus4S9c4rNedFmP9v7y0T4su1RIUeR_H0Bj-vScHsKSfpk-5E9HlRB_AjzP9Hc |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-RAEC7cGWHXg667Ljs-dvsg7GEJ5tFJJ0cZDSPGYZEZmVvo7qRFGDJiZgVv_gR_o7_EqiQTnYMI4i0dOkXorup6dNVXAPvocviOMcoiaA-LB46xIluiXAkdBDzIcrvKdr9IxHAYTibRvyabkGphanyINuBGklGd1yTgFJA-eEYNlZmhUnL0WUIRhZ-gy5GX_A50j87jcdJeJQhRXy0HDiV5OZMFcqPtHixTWNZMz-bmS6O10jrxxgf871dYb0xOdljzyCas5MU3WHsBRPgd5p7Nkqu_j_cP1D0CWZOKHopL1p8hI6JaYnXJpmbxIperZLJk4ynFSWY08U5PqQiLUd4IkumjDtZo4CNVHJ3MClYDed6x47rvTpaXWzCOj0f9gdX0Y7A0-rGEAis9JR0ucsONJFBbFbn4EOao4JSQyokkMqbRGTceF_jK-NyTSnNCnfOF9wM6xazIfwKzM2FLpdCfkoRYL0OOhhpX2jecroZVD6zFXqS6ASunnhnTtIZZdlNazbRdzR78aedf1zAdr87cXWxt2ohrmboBHm2EfOj0wK028Q0q6eFRfNaOtt_z0W_4PBidJWlyMjzdgS8ulVVU2eC70Jnf_M_3YFXfzq_Km18NRz8B45b4Zw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS-wwEB68Ifqg53jB9XbycMAHKfaSNu2j7FoU10XElX0rSdrIwtIVuwq--RP8jf4SZ9pu1QcRxLemTIeSzGRmkplvAP5jyOE7xiiLoD0sHjjGimyJeiV0EPAgzewy2_2mK3q9cDCILutsQqqFqfAhmgM30oxyvyYFz-5Sc_SOGipTQ6XkGLOEIgpnYZ77UYC6Od-5ivvd5ipBiOpqOXAoycsZTJEbbffoM4fPlund3fzotJZWJ179hf_9Ayu1y8mOKxn5CzNZvgbLH4AI12Hi2aw7PHx9fqHuESiaVPSQ37L2GAURzRKrSjY1i6e5XAWTBeuP6JxkTIRPekRFWIzyRpBNG22wRgcfueLobJyzCsjziZ1UfXfSrNiAfnxy3T616n4MlsY4llBgpaekw0VmuJEEaqsiFx_CDA2cElI5kUTBNDrlxuMCXxmfe1JpTqhzvvA2YS4f59kWMDsVtlQK4ylJiPUy5OiocaV9w-lqWLXAmq5FomuwcuqZMUoqmGU3odlMmtlswUFDf1fBdHxJuTtd2qRW1yJxA9zaCPnQaYFbLuI3XJLjTnzRjLZ_8tE_WLzsxEn3rHe-A0suVVWUyeC7MDe5f8j2YEE_TobF_X4t0G95U_fi |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=30+Li%2B%E2%80%90Accommodating+Covalent+Organic+Frameworks+as+Ultralong+Cyclable+High%E2%80%90Capacity+Li%E2%80%90Ion+Battery+Electrodes&rft.jtitle=Advanced+functional+materials&rft.au=Zhai%2C+Lipeng&rft.au=Li%2C+Gaojie&rft.au=Yang%2C+Xiubei&rft.au=Park%2C+Sodam&rft.date=2022-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202108798&rft.externalDBID=10.1002%252Fadfm.202108798&rft.externalDocID=ADFM202108798 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |