Unraveling the Mechanism of the Persistent Photoconductivity in Organic Phototransistors

Persistent photoconductivity (PPC) in organic phototransistors provides an opportunity and broad prospects to achieve many emerging applications in optoelectronic devices. However, a fundamental understanding of PPC behavior is still a key challenge impeding its practical applications. In this study...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced functional materials Ročník 29; číslo 45
Hlavní autoři: Jia, Ruofei, Wu, Xiaofeng, Deng, Wei, Zhang, Xiujuan, Huang, Liming, Niu, Kaifeng, Chi, Lifeng, Jie, Jiansheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc 01.11.2019
Témata:
ISSN:1616-301X, 1616-3028
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Persistent photoconductivity (PPC) in organic phototransistors provides an opportunity and broad prospects to achieve many emerging applications in optoelectronic devices. However, a fundamental understanding of PPC behavior is still a key challenge impeding its practical applications. In this study, for the first time, a mechanism for electron trapping is presented in oxygen‐induced deep levels in organic semiconductors for the clarification of PPC behavior with solid evidence. Both theoretical simulation and experimental investigation unveil that oxygen in air atmosphere plays a decisive role in determining the PPC behavior. Oxygen molecules can induce deep defect levels in the energy bandgap of organic semiconductors, which will act as deep traps for photogenerated electrons. The trapped electrons will be maintained in the traps and undergo a very slow releasing process after light illumination, thus leading to a noticeable PPC behavior for the organic phototransistors. The proposed mechanism shows good universality and can be applicable to a host of organic semiconductors for explaining the PPC behaviors. This work reveals the significant role of oxygen in PPC behavior and also provides guidelines for controlling the unique PPC behavior toward device applications. A new mechanism of electron trapping in oxygen‐induced deep levels in organic semiconductors is proposed for the clarification of persistent photoconductivity (PPC) behavior in organic phototransistors (OPTs). Oxygen molecules can induce deep defect levels in the energy bandgap of organic semiconductor, which can trap the photogenerated electrons during light illumination, thus leading to a prominent PPC behavior in OPTs.
AbstractList Persistent photoconductivity (PPC) in organic phototransistors provides an opportunity and broad prospects to achieve many emerging applications in optoelectronic devices. However, a fundamental understanding of PPC behavior is still a key challenge impeding its practical applications. In this study, for the first time, a mechanism for electron trapping is presented in oxygen‐induced deep levels in organic semiconductors for the clarification of PPC behavior with solid evidence. Both theoretical simulation and experimental investigation unveil that oxygen in air atmosphere plays a decisive role in determining the PPC behavior. Oxygen molecules can induce deep defect levels in the energy bandgap of organic semiconductors, which will act as deep traps for photogenerated electrons. The trapped electrons will be maintained in the traps and undergo a very slow releasing process after light illumination, thus leading to a noticeable PPC behavior for the organic phototransistors. The proposed mechanism shows good universality and can be applicable to a host of organic semiconductors for explaining the PPC behaviors. This work reveals the significant role of oxygen in PPC behavior and also provides guidelines for controlling the unique PPC behavior toward device applications.
Persistent photoconductivity (PPC) in organic phototransistors provides an opportunity and broad prospects to achieve many emerging applications in optoelectronic devices. However, a fundamental understanding of PPC behavior is still a key challenge impeding its practical applications. In this study, for the first time, a mechanism for electron trapping is presented in oxygen‐induced deep levels in organic semiconductors for the clarification of PPC behavior with solid evidence. Both theoretical simulation and experimental investigation unveil that oxygen in air atmosphere plays a decisive role in determining the PPC behavior. Oxygen molecules can induce deep defect levels in the energy bandgap of organic semiconductors, which will act as deep traps for photogenerated electrons. The trapped electrons will be maintained in the traps and undergo a very slow releasing process after light illumination, thus leading to a noticeable PPC behavior for the organic phototransistors. The proposed mechanism shows good universality and can be applicable to a host of organic semiconductors for explaining the PPC behaviors. This work reveals the significant role of oxygen in PPC behavior and also provides guidelines for controlling the unique PPC behavior toward device applications. A new mechanism of electron trapping in oxygen‐induced deep levels in organic semiconductors is proposed for the clarification of persistent photoconductivity (PPC) behavior in organic phototransistors (OPTs). Oxygen molecules can induce deep defect levels in the energy bandgap of organic semiconductor, which can trap the photogenerated electrons during light illumination, thus leading to a prominent PPC behavior in OPTs.
Author Jia, Ruofei
Wu, Xiaofeng
Jie, Jiansheng
Niu, Kaifeng
Chi, Lifeng
Huang, Liming
Deng, Wei
Zhang, Xiujuan
Author_xml – sequence: 1
  givenname: Ruofei
  surname: Jia
  fullname: Jia, Ruofei
  organization: Soochow University
– sequence: 2
  givenname: Xiaofeng
  surname: Wu
  fullname: Wu, Xiaofeng
  organization: Soochow University
– sequence: 3
  givenname: Wei
  surname: Deng
  fullname: Deng, Wei
  organization: Soochow University
– sequence: 4
  givenname: Xiujuan
  surname: Zhang
  fullname: Zhang, Xiujuan
  email: xjzhang@suda.edu.cn
  organization: Soochow University
– sequence: 5
  givenname: Liming
  surname: Huang
  fullname: Huang, Liming
  organization: Soochow University
– sequence: 6
  givenname: Kaifeng
  surname: Niu
  fullname: Niu, Kaifeng
  organization: Soochow University
– sequence: 7
  givenname: Lifeng
  surname: Chi
  fullname: Chi, Lifeng
  organization: Soochow University
– sequence: 8
  givenname: Jiansheng
  orcidid: 0000-0002-2230-4289
  surname: Jie
  fullname: Jie, Jiansheng
  email: jsjie@suda.edu.cn
  organization: Soochow University
BookMark eNqFkM1PwjAYxhuDiYBePS_xPOzX1u1IUNQEAgdJuDVd10HJaLEtEP57hzOYmBhP79fze9-8Tw90jDUKgHsEBwhC_CjKajvAEOUwSRN2BbooRWlMIM46lxwtb0DP-w2EiDFCu2C5ME4cVK3NKgprFU2VXAuj_Tay1VdjrpzXPigTovnaBiutKfcy6IMOp0ibaOZWjV62w-CEOaut87fguhK1V3ffsQ8W4-f30Ws8mb28jYaTWJKMsJhQzESeZYrmisiS0lxQWeIiK0qFCoSFYFiUSVNUjCVlhQuKcAppksIcMlyQPnho9-6c_dgrH_jG7p1pTnJMEEYU4hQ3qkGrks5671TFd05vhTtxBPnZPX52j1_cawD6C5A6iKCtaX7U9d9Y3mJHXavTP0f48Gk8_WE_AaETh_g
CitedBy_id crossref_primary_10_1016_j_mssp_2023_107621
crossref_primary_10_1002_adfm_202315175
crossref_primary_10_1109_LSENS_2023_3264881
crossref_primary_10_1007_s12274_022_4132_x
crossref_primary_10_1109_LED_2024_3368143
crossref_primary_10_1002_adom_202002030
crossref_primary_10_1007_s40843_025_3530_3
crossref_primary_10_1016_j_dyepig_2022_110882
crossref_primary_10_1007_s42114_023_00712_6
crossref_primary_10_1002_aelm_202300068
crossref_primary_10_1002_adma_202313608
crossref_primary_10_3390_s23052386
crossref_primary_10_1002_adom_202302091
crossref_primary_10_1021_acsphotonics_5c00151
crossref_primary_10_1038_s41467_024_50490_y
crossref_primary_10_1016_j_surfin_2024_104587
crossref_primary_10_1016_j_orgel_2021_106375
crossref_primary_10_1007_s12274_022_4372_9
crossref_primary_10_1016_j_polymer_2024_127404
crossref_primary_10_1038_s41528_025_00444_1
crossref_primary_10_1002_anie_202313634
crossref_primary_10_1002_adma_202001227
crossref_primary_10_1002_adfm_202103787
crossref_primary_10_1103_4b1m_yx1m
crossref_primary_10_1007_s40843_022_2261_0
crossref_primary_10_1007_s40843_020_1515_1
crossref_primary_10_1002_smll_202002312
crossref_primary_10_1002_aelm_202000717
crossref_primary_10_1007_s11426_022_1368_7
crossref_primary_10_1038_s41467_024_44897_w
crossref_primary_10_1002_aelm_202400726
crossref_primary_10_1002_aelm_202300878
crossref_primary_10_1002_smll_202206181
crossref_primary_10_1002_adom_202102650
crossref_primary_10_1002_adfm_202420073
crossref_primary_10_1002_ange_202313634
crossref_primary_10_1016_j_apcatb_2025_125790
crossref_primary_10_1002_smm2_1009
crossref_primary_10_1088_1361_6463_ac7f66
crossref_primary_10_1002_adfm_202100202
crossref_primary_10_1002_adfm_202200843
crossref_primary_10_1039_C9NH00694J
crossref_primary_10_1039_D1NR07084C
crossref_primary_10_1021_jacs_2c06835
crossref_primary_10_1002_aelm_202400619
crossref_primary_10_1016_j_nanoen_2022_107001
crossref_primary_10_1038_s41528_022_00229_w
crossref_primary_10_1038_s41467_022_34421_3
crossref_primary_10_1002_aelm_202000932
crossref_primary_10_1109_LED_2024_3379243
crossref_primary_10_1002_adfm_202316381
crossref_primary_10_1002_adma_202415530
crossref_primary_10_1002_adma_202418281
Cites_doi 10.1002/adma.201403198
10.1002/adma.201505126
10.1063/1.4959823
10.1038/srep01080
10.1021/acsnano.5b05313
10.1038/ncomms8269
10.1016/j.orgel.2014.06.007
10.1016/j.orgel.2010.06.016
10.1103/PhysRevB.75.153202
10.1002/aelm.201500119
10.1016/j.cap.2015.07.012
10.1038/ncomms15218
10.1038/nmat3256
10.1021/ja2010576
10.1002/adma.201503019
10.1002/adma.201204979
10.1088/1361-6528/aa6d98
10.1063/1.1949281
10.1038/s41467-018-07943-y
10.1021/acs.nanolett.7b00166
10.1002/adma.201801729
10.1063/1.5042303
10.1021/acsami.7b17176
10.1002/adfm.201500525
10.1002/adma.201404193
10.1103/PhysRevLett.97.166601
10.1016/j.mattod.2018.07.018
10.1002/adma.201603969
10.1002/aelm.201700493
10.1038/s41467-019-09206-w
10.1002/adfm.201504408
10.1002/adma.201001865
10.1002/adma.201400697
10.1016/j.orgel.2015.01.021
10.1002/smll.201700481
10.1002/adfm.201403005
10.1038/nature03376
10.1002/adma.201505149
10.1002/adfm.200800358
10.1002/adma.201607055
10.1002/adom.201500560
10.1007/s40820-017-0153-5
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201905657
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201905657
ADFM201905657
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51672180; 51622306; 51821002; 91833303; 21673151
– fundername: Collaborative Innovation Center of Suzhou Nano Science and Technology (Nano‐CIC)
– fundername: Joint International Research Laboratory of Carbon‐Based Functional Materials and Devices
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20180845
– fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions
– fundername: 111 Project
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAMMB
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
O8X
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3837-3427a988e49e3cd449a4cd2b8bde1b12aa72ad5de1f775df2b4126045609072b3
IEDL.DBID DRFUL
ISICitedReferencesCount 82
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000487526800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1616-301X
IngestDate Sun Nov 09 06:12:52 EST 2025
Sat Nov 29 07:18:35 EST 2025
Tue Nov 18 22:34:16 EST 2025
Wed Jan 22 16:38:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3837-3427a988e49e3cd449a4cd2b8bde1b12aa72ad5de1f775df2b4126045609072b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2230-4289
PQID 2312140262
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_2312140262
crossref_primary_10_1002_adfm_201905657
crossref_citationtrail_10_1002_adfm_201905657
wiley_primary_10_1002_adfm_201905657_ADFM201905657
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 11
2015; 1
2015; 15
2017; 8
2013; 3
2015; 6
2013; 25
2006; 97
2015; 18
2017; 28
2019; 10
2008; 18
2005; 434
2016; 10
2014; 26
2005; 86
2017; 29
2007; 75
2012; 11
2016; 120
2017; 9
2011; 133
2016; 4
2010; 22
2015; 25
2015; 27
2018; 4
2009; 94
2017; 17
2018; 113
2019; 24
2017; 13
2014; 15
2018; 30
2016; 28
2018; 10
2016; 26
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Lee M. (e_1_2_7_21_1) 2017; 29
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_35_1
Guo Y. (e_1_2_7_2_1) 2009; 94
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 26
  start-page: 4683
  year: 2014
  publication-title: Adv. Mater.
– volume: 94
  start-page: 100
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 10
  start-page: 436
  year: 2016
  publication-title: ACS Nano
– volume: 4
  year: 2018
  publication-title: Adv. Electron. Mater.
– volume: 113
  year: 2018
  publication-title: Appl. Phys. Lett.
– volume: 75
  year: 2007
  publication-title: Phys. Rev. B
– volume: 3
  start-page: 1080
  year: 2013
  publication-title: Sci. Rep.
– volume: 25
  start-page: 4267
  year: 2013
  publication-title: Adv. Mater.
– volume: 133
  start-page: 9968
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 28
  start-page: 3078
  year: 2016
  publication-title: Adv. Mater.
– volume: 6
  start-page: 7269
  year: 2015
  publication-title: Nat. Commun.
– volume: 28
  start-page: 2201
  year: 2016
  publication-title: Adv. Mater.
– volume: 27
  start-page: 228
  year: 2015
  publication-title: Adv. Mater.
– volume: 24
  start-page: 17
  year: 2019
  publication-title: Mater. Today
– volume: 434
  start-page: 194
  year: 2005
  publication-title: Nature
– volume: 11
  start-page: 301
  year: 2012
  publication-title: Nat. Mater.
– volume: 26
  start-page: 7555
  year: 2014
  publication-title: Adv. Mater.
– volume: 25
  start-page: 2038
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 1
  year: 2015
  publication-title: Adv. Electron. Mater.
– volume: 15
  start-page: 1238
  year: 2015
  publication-title: Curr. Appl. Phys.
– volume: 25
  start-page: 3138
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 22
  start-page: 5105
  year: 2010
  publication-title: Adv. Mater.
– volume: 86
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 10
  start-page: 12
  year: 2019
  publication-title: Nat. Commun.
– volume: 9
  start-page: 52
  year: 2017
  publication-title: Nano‐Micro Lett.
– volume: 18
  start-page: 2905
  year: 2008
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 97
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 1529
  year: 2010
  publication-title: Org. Electron.
– volume: 4
  start-page: 264
  year: 2016
  publication-title: Adv. Opt. Mater.
– volume: 28
  year: 2017
  publication-title: Nanotechnology
– volume: 10
  start-page: 1294
  year: 2019
  publication-title: Nat. Commun.
– volume: 26
  start-page: 1938
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 7305
  year: 2015
  publication-title: Adv. Mater.
– volume: 120
  year: 2016
  publication-title: J. Appl. Phys.
– volume: 18
  start-page: 113
  year: 2015
  publication-title: Org. Electron.
– volume: 15
  start-page: 2099
  year: 2014
  publication-title: Org. Electron.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  year: 2017
  publication-title: Small
– volume: 29
  start-page: 8
  year: 2017
  publication-title: Adv. Mater.
– volume: 17
  start-page: 2482
  year: 2017
  publication-title: Nano Lett.
– ident: e_1_2_7_41_1
  doi: 10.1002/adma.201403198
– ident: e_1_2_7_33_1
  doi: 10.1002/adma.201505126
– ident: e_1_2_7_20_1
  doi: 10.1063/1.4959823
– ident: e_1_2_7_7_1
  doi: 10.1038/srep01080
– ident: e_1_2_7_22_1
  doi: 10.1021/acsnano.5b05313
– ident: e_1_2_7_29_1
  doi: 10.1038/ncomms8269
– ident: e_1_2_7_8_1
  doi: 10.1016/j.orgel.2014.06.007
– ident: e_1_2_7_12_1
  doi: 10.1016/j.orgel.2010.06.016
– ident: e_1_2_7_39_1
  doi: 10.1103/PhysRevB.75.153202
– ident: e_1_2_7_37_1
  doi: 10.1002/aelm.201500119
– ident: e_1_2_7_25_1
  doi: 10.1016/j.cap.2015.07.012
– ident: e_1_2_7_42_1
  doi: 10.1038/ncomms15218
– ident: e_1_2_7_17_1
  doi: 10.1038/nmat3256
– ident: e_1_2_7_34_1
  doi: 10.1021/ja2010576
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.201503019
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.201204979
– ident: e_1_2_7_36_1
  doi: 10.1088/1361-6528/aa6d98
– volume: 94
  start-page: 100
  year: 2009
  ident: e_1_2_7_2_1
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_7_38_1
  doi: 10.1063/1.1949281
– ident: e_1_2_7_6_1
  doi: 10.1038/s41467-018-07943-y
– ident: e_1_2_7_32_1
  doi: 10.1021/acs.nanolett.7b00166
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.201801729
– ident: e_1_2_7_30_1
  doi: 10.1063/1.5042303
– ident: e_1_2_7_27_1
  doi: 10.1021/acsami.7b17176
– ident: e_1_2_7_18_1
  doi: 10.1002/adfm.201500525
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.201404193
– ident: e_1_2_7_40_1
  doi: 10.1103/PhysRevLett.97.166601
– ident: e_1_2_7_44_1
  doi: 10.1016/j.mattod.2018.07.018
– ident: e_1_2_7_1_1
  doi: 10.1002/adma.201603969
– ident: e_1_2_7_28_1
  doi: 10.1002/aelm.201700493
– ident: e_1_2_7_5_1
  doi: 10.1038/s41467-019-09206-w
– ident: e_1_2_7_14_1
  doi: 10.1002/adfm.201504408
– ident: e_1_2_7_35_1
  doi: 10.1002/adma.201001865
– ident: e_1_2_7_3_1
  doi: 10.1002/adma.201400697
– ident: e_1_2_7_9_1
  doi: 10.1016/j.orgel.2015.01.021
– ident: e_1_2_7_24_1
  doi: 10.1002/smll.201700481
– ident: e_1_2_7_13_1
  doi: 10.1002/adfm.201403005
– ident: e_1_2_7_26_1
  doi: 10.1038/nature03376
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.201505149
– volume: 29
  start-page: 8
  year: 2017
  ident: e_1_2_7_21_1
  publication-title: Adv. Mater.
– ident: e_1_2_7_23_1
  doi: 10.1002/adfm.200800358
– ident: e_1_2_7_43_1
  doi: 10.1002/adma.201607055
– ident: e_1_2_7_11_1
  doi: 10.1002/adom.201500560
– ident: e_1_2_7_31_1
  doi: 10.1007/s40820-017-0153-5
SSID ssj0017734
Score 2.5671659
Snippet Persistent photoconductivity (PPC) in organic phototransistors provides an opportunity and broad prospects to achieve many emerging applications in...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Electrons
Materials science
Optoelectronic devices
organic phototransistors
Organic semiconductors
organic single crystals
Oxygen
oxygen‐induced deep traps
Photoconductivity
Phototransistors
Semiconductors
Title Unraveling the Mechanism of the Persistent Photoconductivity in Organic Phototransistors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201905657
https://www.proquest.com/docview/2312140262
Volume 29
WOSCitedRecordID wos000487526800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_o5kEPfovTKT0InsrW9DPH4RwetjHEQW8lX8WBtrJW_37zmq7bDiLorWnTUJKXvt9L8vs9gDvJuUOEpDaXjNt4gNHmwmG2doYqcFWoQUlFFB6H02kUx3S2weI3-hDNghvOjOp_jROc8aK3Fg1lMkUmuXZouHO3C22ijddvQXv4PJqPm52EMDQ7y4GDZ7yceCXc2Ce97Ra2HdMabW5i1srpjI7-_7nHcFgDTmtgLOQEdlR2CgcbMoRnEM8zTEKExHRL40FropAOvCjerTytbuAxeTSHrLRmr3mZ6xgaZWKrvBPWIrMMoVOYhyV6v0p8pDiH-ejx5eHJrjMu2AIjVdv1SMhoFCmPKldIz6PME5LwiEvl6EFlLCRM-rqQhqEvU8I9RwdEGoT1dZBNuHsBrSzP1CVYqctpxB0pOKWedoGRSl3UFvMjJlIR-B2wV92diFqOHLNivCVGSJkk2GNJ02MduG_qfxghjh9rdlejl9QTskg0jCU6liQB6QCpxumXVpLBcDRpSld_eeka9vHaMBe70CqXn-oG9sRXuSiWt7WhfgPR5upo
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60FdSDb7FaNQfBU2izeR-LtVRMS5EWcgv7ChY0kSb6-91J0rQ9iCAed7NZwu5s5pudmW8A7gRjBuHC15mgTMcARp1xg-pKGUrHlK4CJUWicOCOx14Y-pMqmhBzYUp-iPrCDU9G8b_GA44X0p0VaygVMaaSK42GrrttaFpKlpSQN_svg1lQuxJct3QtOwYGeRnhkrmxSzqbM2xqphXcXAethdYZHP7D9x7BQQU5tV4pI8ewJZMT2F8jIjyFcJZgGSJMTdcUItRGEhOC59m7lsZFBwbKo0AkuTZ5TfNUWdFIFFtUntDmiVamdPLyYY76r6Afyc5gNnicPgz1quaCztFW1U2LuNT3PGn50uTCsnxqcUGYx4Q01LZS6hIqbNWIXdcWMWGWoUwiBcO6yswmzDyHRpIm8gK02GS-xwzBme9bSgl6MjaRXcz2KI-5Y7dAX653xCtCcqyL8RaVVMokwhWL6hVrwX09_qOk4vhxZHu5fVF1JLNIAVmirEnikBaQYqN-mSXq9QejunX5l5duYXc4HQVR8DR-voI97C_zGNvQyBef8hp2-Fc-zxY3ldR-A-WE7lg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60FdGDb7FaNQfBU6jZvI_FGhTbUsRCb2FfwYImpYn-fneyadoeRBCPu9ksYR-Zb3bn-wbgRjBmES5CkwnKTAxgNBm3qKmMofRs6StQUhKF-_5wGEwm4aiKJkQujNaHqA_ccGeU_2vc4HImks5SNZSKBKnkyqLh1d0mNB3MJNOAZu8lGvfrqwTf11fLnoVBXtZkodx4RzrrPaxbpiXcXAWtpdWJ9v_hew9gr4KcRlevkUPYkOkR7K4IER7DZJxiGiKkphsKERoDiYTgaf5hZElZgYHyuCDSwhi9ZUWmvGgUii0zTxjT1NCUTq4fFmj_SvmR_ATG0cPr_aNZ5VwwOfqqpu0Qn4ZBIJ1Q2lw4TkgdLggLmJCWmlZKfUKFqwqJ77siIcyxlEukYNidcrMJs0-hkWapPAMjsVkYMEtwFoaOMoKBTGxUF3MDyhPuuS0wF-Md80qQHPNivMdaSpnEOGJxPWItuK3bz7QUx48t24vpi6stmccKyBLlTRKPtICUE_VLL3G3Fw3q0vlfXrqG7VEvivtPw-cL2MFqTWNsQ6OYf8pL2OJfxTSfX1WL9huJ0u3T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+the+Mechanism+of+the+Persistent+Photoconductivity+in+Organic+Phototransistors&rft.jtitle=Advanced+functional+materials&rft.au=Jia%2C+Ruofei&rft.au=Wu%2C+Xiaofeng&rft.au=Deng%2C+Wei&rft.au=Zhang%2C+Xiujuan&rft.date=2019-11-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=45&rft_id=info:doi/10.1002%2Fadfm.201905657&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201905657
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon