Unraveling the Mechanism of the Persistent Photoconductivity in Organic Phototransistors
Persistent photoconductivity (PPC) in organic phototransistors provides an opportunity and broad prospects to achieve many emerging applications in optoelectronic devices. However, a fundamental understanding of PPC behavior is still a key challenge impeding its practical applications. In this study...
Uloženo v:
| Vydáno v: | Advanced functional materials Ročník 29; číslo 45 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken
Wiley Subscription Services, Inc
01.11.2019
|
| Témata: | |
| ISSN: | 1616-301X, 1616-3028 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Persistent photoconductivity (PPC) in organic phototransistors provides an opportunity and broad prospects to achieve many emerging applications in optoelectronic devices. However, a fundamental understanding of PPC behavior is still a key challenge impeding its practical applications. In this study, for the first time, a mechanism for electron trapping is presented in oxygen‐induced deep levels in organic semiconductors for the clarification of PPC behavior with solid evidence. Both theoretical simulation and experimental investigation unveil that oxygen in air atmosphere plays a decisive role in determining the PPC behavior. Oxygen molecules can induce deep defect levels in the energy bandgap of organic semiconductors, which will act as deep traps for photogenerated electrons. The trapped electrons will be maintained in the traps and undergo a very slow releasing process after light illumination, thus leading to a noticeable PPC behavior for the organic phototransistors. The proposed mechanism shows good universality and can be applicable to a host of organic semiconductors for explaining the PPC behaviors. This work reveals the significant role of oxygen in PPC behavior and also provides guidelines for controlling the unique PPC behavior toward device applications.
A new mechanism of electron trapping in oxygen‐induced deep levels in organic semiconductors is proposed for the clarification of persistent photoconductivity (PPC) behavior in organic phototransistors (OPTs). Oxygen molecules can induce deep defect levels in the energy bandgap of organic semiconductor, which can trap the photogenerated electrons during light illumination, thus leading to a prominent PPC behavior in OPTs. |
|---|---|
| AbstractList | Persistent photoconductivity (PPC) in organic phototransistors provides an opportunity and broad prospects to achieve many emerging applications in optoelectronic devices. However, a fundamental understanding of PPC behavior is still a key challenge impeding its practical applications. In this study, for the first time, a mechanism for electron trapping is presented in oxygen‐induced deep levels in organic semiconductors for the clarification of PPC behavior with solid evidence. Both theoretical simulation and experimental investigation unveil that oxygen in air atmosphere plays a decisive role in determining the PPC behavior. Oxygen molecules can induce deep defect levels in the energy bandgap of organic semiconductors, which will act as deep traps for photogenerated electrons. The trapped electrons will be maintained in the traps and undergo a very slow releasing process after light illumination, thus leading to a noticeable PPC behavior for the organic phototransistors. The proposed mechanism shows good universality and can be applicable to a host of organic semiconductors for explaining the PPC behaviors. This work reveals the significant role of oxygen in PPC behavior and also provides guidelines for controlling the unique PPC behavior toward device applications. Persistent photoconductivity (PPC) in organic phototransistors provides an opportunity and broad prospects to achieve many emerging applications in optoelectronic devices. However, a fundamental understanding of PPC behavior is still a key challenge impeding its practical applications. In this study, for the first time, a mechanism for electron trapping is presented in oxygen‐induced deep levels in organic semiconductors for the clarification of PPC behavior with solid evidence. Both theoretical simulation and experimental investigation unveil that oxygen in air atmosphere plays a decisive role in determining the PPC behavior. Oxygen molecules can induce deep defect levels in the energy bandgap of organic semiconductors, which will act as deep traps for photogenerated electrons. The trapped electrons will be maintained in the traps and undergo a very slow releasing process after light illumination, thus leading to a noticeable PPC behavior for the organic phototransistors. The proposed mechanism shows good universality and can be applicable to a host of organic semiconductors for explaining the PPC behaviors. This work reveals the significant role of oxygen in PPC behavior and also provides guidelines for controlling the unique PPC behavior toward device applications. A new mechanism of electron trapping in oxygen‐induced deep levels in organic semiconductors is proposed for the clarification of persistent photoconductivity (PPC) behavior in organic phototransistors (OPTs). Oxygen molecules can induce deep defect levels in the energy bandgap of organic semiconductor, which can trap the photogenerated electrons during light illumination, thus leading to a prominent PPC behavior in OPTs. |
| Author | Jia, Ruofei Wu, Xiaofeng Jie, Jiansheng Niu, Kaifeng Chi, Lifeng Huang, Liming Deng, Wei Zhang, Xiujuan |
| Author_xml | – sequence: 1 givenname: Ruofei surname: Jia fullname: Jia, Ruofei organization: Soochow University – sequence: 2 givenname: Xiaofeng surname: Wu fullname: Wu, Xiaofeng organization: Soochow University – sequence: 3 givenname: Wei surname: Deng fullname: Deng, Wei organization: Soochow University – sequence: 4 givenname: Xiujuan surname: Zhang fullname: Zhang, Xiujuan email: xjzhang@suda.edu.cn organization: Soochow University – sequence: 5 givenname: Liming surname: Huang fullname: Huang, Liming organization: Soochow University – sequence: 6 givenname: Kaifeng surname: Niu fullname: Niu, Kaifeng organization: Soochow University – sequence: 7 givenname: Lifeng surname: Chi fullname: Chi, Lifeng organization: Soochow University – sequence: 8 givenname: Jiansheng orcidid: 0000-0002-2230-4289 surname: Jie fullname: Jie, Jiansheng email: jsjie@suda.edu.cn organization: Soochow University |
| BookMark | eNqFkM1PwjAYxhuDiYBePS_xPOzX1u1IUNQEAgdJuDVd10HJaLEtEP57hzOYmBhP79fze9-8Tw90jDUKgHsEBwhC_CjKajvAEOUwSRN2BbooRWlMIM46lxwtb0DP-w2EiDFCu2C5ME4cVK3NKgprFU2VXAuj_Tay1VdjrpzXPigTovnaBiutKfcy6IMOp0ibaOZWjV62w-CEOaut87fguhK1V3ffsQ8W4-f30Ws8mb28jYaTWJKMsJhQzESeZYrmisiS0lxQWeIiK0qFCoSFYFiUSVNUjCVlhQuKcAppksIcMlyQPnho9-6c_dgrH_jG7p1pTnJMEEYU4hQ3qkGrks5671TFd05vhTtxBPnZPX52j1_cawD6C5A6iKCtaX7U9d9Y3mJHXavTP0f48Gk8_WE_AaETh_g |
| CitedBy_id | crossref_primary_10_1016_j_mssp_2023_107621 crossref_primary_10_1002_adfm_202315175 crossref_primary_10_1109_LSENS_2023_3264881 crossref_primary_10_1007_s12274_022_4132_x crossref_primary_10_1109_LED_2024_3368143 crossref_primary_10_1002_adom_202002030 crossref_primary_10_1007_s40843_025_3530_3 crossref_primary_10_1016_j_dyepig_2022_110882 crossref_primary_10_1007_s42114_023_00712_6 crossref_primary_10_1002_aelm_202300068 crossref_primary_10_1002_adma_202313608 crossref_primary_10_3390_s23052386 crossref_primary_10_1002_adom_202302091 crossref_primary_10_1021_acsphotonics_5c00151 crossref_primary_10_1038_s41467_024_50490_y crossref_primary_10_1016_j_surfin_2024_104587 crossref_primary_10_1016_j_orgel_2021_106375 crossref_primary_10_1007_s12274_022_4372_9 crossref_primary_10_1016_j_polymer_2024_127404 crossref_primary_10_1038_s41528_025_00444_1 crossref_primary_10_1002_anie_202313634 crossref_primary_10_1002_adma_202001227 crossref_primary_10_1002_adfm_202103787 crossref_primary_10_1103_4b1m_yx1m crossref_primary_10_1007_s40843_022_2261_0 crossref_primary_10_1007_s40843_020_1515_1 crossref_primary_10_1002_smll_202002312 crossref_primary_10_1002_aelm_202000717 crossref_primary_10_1007_s11426_022_1368_7 crossref_primary_10_1038_s41467_024_44897_w crossref_primary_10_1002_aelm_202400726 crossref_primary_10_1002_aelm_202300878 crossref_primary_10_1002_smll_202206181 crossref_primary_10_1002_adom_202102650 crossref_primary_10_1002_adfm_202420073 crossref_primary_10_1002_ange_202313634 crossref_primary_10_1016_j_apcatb_2025_125790 crossref_primary_10_1002_smm2_1009 crossref_primary_10_1088_1361_6463_ac7f66 crossref_primary_10_1002_adfm_202100202 crossref_primary_10_1002_adfm_202200843 crossref_primary_10_1039_C9NH00694J crossref_primary_10_1039_D1NR07084C crossref_primary_10_1021_jacs_2c06835 crossref_primary_10_1002_aelm_202400619 crossref_primary_10_1016_j_nanoen_2022_107001 crossref_primary_10_1038_s41528_022_00229_w crossref_primary_10_1038_s41467_022_34421_3 crossref_primary_10_1002_aelm_202000932 crossref_primary_10_1109_LED_2024_3379243 crossref_primary_10_1002_adfm_202316381 crossref_primary_10_1002_adma_202415530 crossref_primary_10_1002_adma_202418281 |
| Cites_doi | 10.1002/adma.201403198 10.1002/adma.201505126 10.1063/1.4959823 10.1038/srep01080 10.1021/acsnano.5b05313 10.1038/ncomms8269 10.1016/j.orgel.2014.06.007 10.1016/j.orgel.2010.06.016 10.1103/PhysRevB.75.153202 10.1002/aelm.201500119 10.1016/j.cap.2015.07.012 10.1038/ncomms15218 10.1038/nmat3256 10.1021/ja2010576 10.1002/adma.201503019 10.1002/adma.201204979 10.1088/1361-6528/aa6d98 10.1063/1.1949281 10.1038/s41467-018-07943-y 10.1021/acs.nanolett.7b00166 10.1002/adma.201801729 10.1063/1.5042303 10.1021/acsami.7b17176 10.1002/adfm.201500525 10.1002/adma.201404193 10.1103/PhysRevLett.97.166601 10.1016/j.mattod.2018.07.018 10.1002/adma.201603969 10.1002/aelm.201700493 10.1038/s41467-019-09206-w 10.1002/adfm.201504408 10.1002/adma.201001865 10.1002/adma.201400697 10.1016/j.orgel.2015.01.021 10.1002/smll.201700481 10.1002/adfm.201403005 10.1038/nature03376 10.1002/adma.201505149 10.1002/adfm.200800358 10.1002/adma.201607055 10.1002/adom.201500560 10.1007/s40820-017-0153-5 |
| ContentType | Journal Article |
| Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/adfm.201905657 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | CrossRef Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1616-3028 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_adfm_201905657 ADFM201905657 |
| Genre | article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51672180; 51622306; 51821002; 91833303; 21673151 – fundername: Collaborative Innovation Center of Suzhou Nano Science and Technology (Nano‐CIC) – fundername: Joint International Research Laboratory of Carbon‐Based Functional Materials and Devices – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20180845 – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions – fundername: 111 Project |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAMMB AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 O8X 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c3837-3427a988e49e3cd449a4cd2b8bde1b12aa72ad5de1f775df2b4126045609072b3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 82 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000487526800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1616-301X |
| IngestDate | Sun Nov 09 06:12:52 EST 2025 Sat Nov 29 07:18:35 EST 2025 Tue Nov 18 22:34:16 EST 2025 Wed Jan 22 16:38:09 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 45 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3837-3427a988e49e3cd449a4cd2b8bde1b12aa72ad5de1f775df2b4126045609072b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2230-4289 |
| PQID | 2312140262 |
| PQPubID | 2045204 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_2312140262 crossref_primary_10_1002_adfm_201905657 crossref_citationtrail_10_1002_adfm_201905657 wiley_primary_10_1002_adfm_201905657_ADFM201905657 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-01 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Advanced functional materials |
| PublicationYear | 2019 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2010; 11 2015; 1 2015; 15 2017; 8 2013; 3 2015; 6 2013; 25 2006; 97 2015; 18 2017; 28 2019; 10 2008; 18 2005; 434 2016; 10 2014; 26 2005; 86 2017; 29 2007; 75 2012; 11 2016; 120 2017; 9 2011; 133 2016; 4 2010; 22 2015; 25 2015; 27 2018; 4 2009; 94 2017; 17 2018; 113 2019; 24 2017; 13 2014; 15 2018; 30 2016; 28 2018; 10 2016; 26 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Lee M. (e_1_2_7_21_1) 2017; 29 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_35_1 Guo Y. (e_1_2_7_2_1) 2009; 94 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
| References_xml | – volume: 26 start-page: 4683 year: 2014 publication-title: Adv. Mater. – volume: 94 start-page: 100 year: 2009 publication-title: Appl. Phys. Lett. – volume: 10 start-page: 436 year: 2016 publication-title: ACS Nano – volume: 4 year: 2018 publication-title: Adv. Electron. Mater. – volume: 113 year: 2018 publication-title: Appl. Phys. Lett. – volume: 75 year: 2007 publication-title: Phys. Rev. B – volume: 3 start-page: 1080 year: 2013 publication-title: Sci. Rep. – volume: 25 start-page: 4267 year: 2013 publication-title: Adv. Mater. – volume: 133 start-page: 9968 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 28 start-page: 3078 year: 2016 publication-title: Adv. Mater. – volume: 6 start-page: 7269 year: 2015 publication-title: Nat. Commun. – volume: 28 start-page: 2201 year: 2016 publication-title: Adv. Mater. – volume: 27 start-page: 228 year: 2015 publication-title: Adv. Mater. – volume: 24 start-page: 17 year: 2019 publication-title: Mater. Today – volume: 434 start-page: 194 year: 2005 publication-title: Nature – volume: 11 start-page: 301 year: 2012 publication-title: Nat. Mater. – volume: 26 start-page: 7555 year: 2014 publication-title: Adv. Mater. – volume: 25 start-page: 2038 year: 2015 publication-title: Adv. Funct. Mater. – volume: 1 year: 2015 publication-title: Adv. Electron. Mater. – volume: 15 start-page: 1238 year: 2015 publication-title: Curr. Appl. Phys. – volume: 25 start-page: 3138 year: 2015 publication-title: Adv. Funct. Mater. – volume: 22 start-page: 5105 year: 2010 publication-title: Adv. Mater. – volume: 86 year: 2005 publication-title: Appl. Phys. Lett. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 10 start-page: 12 year: 2019 publication-title: Nat. Commun. – volume: 9 start-page: 52 year: 2017 publication-title: Nano‐Micro Lett. – volume: 18 start-page: 2905 year: 2008 publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 97 year: 2006 publication-title: Phys. Rev. Lett. – volume: 11 start-page: 1529 year: 2010 publication-title: Org. Electron. – volume: 4 start-page: 264 year: 2016 publication-title: Adv. Opt. Mater. – volume: 28 year: 2017 publication-title: Nanotechnology – volume: 10 start-page: 1294 year: 2019 publication-title: Nat. Commun. – volume: 26 start-page: 1938 year: 2016 publication-title: Adv. Funct. Mater. – volume: 27 start-page: 7305 year: 2015 publication-title: Adv. Mater. – volume: 120 year: 2016 publication-title: J. Appl. Phys. – volume: 18 start-page: 113 year: 2015 publication-title: Org. Electron. – volume: 15 start-page: 2099 year: 2014 publication-title: Org. Electron. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 13 year: 2017 publication-title: Small – volume: 29 start-page: 8 year: 2017 publication-title: Adv. Mater. – volume: 17 start-page: 2482 year: 2017 publication-title: Nano Lett. – ident: e_1_2_7_41_1 doi: 10.1002/adma.201403198 – ident: e_1_2_7_33_1 doi: 10.1002/adma.201505126 – ident: e_1_2_7_20_1 doi: 10.1063/1.4959823 – ident: e_1_2_7_7_1 doi: 10.1038/srep01080 – ident: e_1_2_7_22_1 doi: 10.1021/acsnano.5b05313 – ident: e_1_2_7_29_1 doi: 10.1038/ncomms8269 – ident: e_1_2_7_8_1 doi: 10.1016/j.orgel.2014.06.007 – ident: e_1_2_7_12_1 doi: 10.1016/j.orgel.2010.06.016 – ident: e_1_2_7_39_1 doi: 10.1103/PhysRevB.75.153202 – ident: e_1_2_7_37_1 doi: 10.1002/aelm.201500119 – ident: e_1_2_7_25_1 doi: 10.1016/j.cap.2015.07.012 – ident: e_1_2_7_42_1 doi: 10.1038/ncomms15218 – ident: e_1_2_7_17_1 doi: 10.1038/nmat3256 – ident: e_1_2_7_34_1 doi: 10.1021/ja2010576 – ident: e_1_2_7_4_1 doi: 10.1002/adma.201503019 – ident: e_1_2_7_15_1 doi: 10.1002/adma.201204979 – ident: e_1_2_7_36_1 doi: 10.1088/1361-6528/aa6d98 – volume: 94 start-page: 100 year: 2009 ident: e_1_2_7_2_1 publication-title: Appl. Phys. Lett. – ident: e_1_2_7_38_1 doi: 10.1063/1.1949281 – ident: e_1_2_7_6_1 doi: 10.1038/s41467-018-07943-y – ident: e_1_2_7_32_1 doi: 10.1021/acs.nanolett.7b00166 – ident: e_1_2_7_16_1 doi: 10.1002/adma.201801729 – ident: e_1_2_7_30_1 doi: 10.1063/1.5042303 – ident: e_1_2_7_27_1 doi: 10.1021/acsami.7b17176 – ident: e_1_2_7_18_1 doi: 10.1002/adfm.201500525 – ident: e_1_2_7_19_1 doi: 10.1002/adma.201404193 – ident: e_1_2_7_40_1 doi: 10.1103/PhysRevLett.97.166601 – ident: e_1_2_7_44_1 doi: 10.1016/j.mattod.2018.07.018 – ident: e_1_2_7_1_1 doi: 10.1002/adma.201603969 – ident: e_1_2_7_28_1 doi: 10.1002/aelm.201700493 – ident: e_1_2_7_5_1 doi: 10.1038/s41467-019-09206-w – ident: e_1_2_7_14_1 doi: 10.1002/adfm.201504408 – ident: e_1_2_7_35_1 doi: 10.1002/adma.201001865 – ident: e_1_2_7_3_1 doi: 10.1002/adma.201400697 – ident: e_1_2_7_9_1 doi: 10.1016/j.orgel.2015.01.021 – ident: e_1_2_7_24_1 doi: 10.1002/smll.201700481 – ident: e_1_2_7_13_1 doi: 10.1002/adfm.201403005 – ident: e_1_2_7_26_1 doi: 10.1038/nature03376 – ident: e_1_2_7_10_1 doi: 10.1002/adma.201505149 – volume: 29 start-page: 8 year: 2017 ident: e_1_2_7_21_1 publication-title: Adv. Mater. – ident: e_1_2_7_23_1 doi: 10.1002/adfm.200800358 – ident: e_1_2_7_43_1 doi: 10.1002/adma.201607055 – ident: e_1_2_7_11_1 doi: 10.1002/adom.201500560 – ident: e_1_2_7_31_1 doi: 10.1007/s40820-017-0153-5 |
| SSID | ssj0017734 |
| Score | 2.5671659 |
| Snippet | Persistent photoconductivity (PPC) in organic phototransistors provides an opportunity and broad prospects to achieve many emerging applications in... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Electrons Materials science Optoelectronic devices organic phototransistors Organic semiconductors organic single crystals Oxygen oxygen‐induced deep traps Photoconductivity Phototransistors Semiconductors |
| Title | Unraveling the Mechanism of the Persistent Photoconductivity in Organic Phototransistors |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201905657 https://www.proquest.com/docview/2312140262 |
| Volume | 29 |
| WOSCitedRecordID | wos000487526800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 issn: 1616-301X databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_o5kEPfovTKT0InsrW9DPH4RwetjHEQW8lX8WBtrJW_37zmq7bDiLorWnTUJKXvt9L8vs9gDvJuUOEpDaXjNt4gNHmwmG2doYqcFWoQUlFFB6H02kUx3S2weI3-hDNghvOjOp_jROc8aK3Fg1lMkUmuXZouHO3C22ijddvQXv4PJqPm52EMDQ7y4GDZ7yceCXc2Ce97Ra2HdMabW5i1srpjI7-_7nHcFgDTmtgLOQEdlR2CgcbMoRnEM8zTEKExHRL40FropAOvCjerTytbuAxeTSHrLRmr3mZ6xgaZWKrvBPWIrMMoVOYhyV6v0p8pDiH-ejx5eHJrjMu2AIjVdv1SMhoFCmPKldIz6PME5LwiEvl6EFlLCRM-rqQhqEvU8I9RwdEGoT1dZBNuHsBrSzP1CVYqctpxB0pOKWedoGRSl3UFvMjJlIR-B2wV92diFqOHLNivCVGSJkk2GNJ02MduG_qfxghjh9rdlejl9QTskg0jCU6liQB6QCpxumXVpLBcDRpSld_eeka9vHaMBe70CqXn-oG9sRXuSiWt7WhfgPR5upo |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60FdSDb7FaNQfBU2izeR-LtVRMS5EWcgv7ChY0kSb6-91J0rQ9iCAed7NZwu5s5pudmW8A7gRjBuHC15mgTMcARp1xg-pKGUrHlK4CJUWicOCOx14Y-pMqmhBzYUp-iPrCDU9G8b_GA44X0p0VaygVMaaSK42GrrttaFpKlpSQN_svg1lQuxJct3QtOwYGeRnhkrmxSzqbM2xqphXcXAethdYZHP7D9x7BQQU5tV4pI8ewJZMT2F8jIjyFcJZgGSJMTdcUItRGEhOC59m7lsZFBwbKo0AkuTZ5TfNUWdFIFFtUntDmiVamdPLyYY76r6Afyc5gNnicPgz1quaCztFW1U2LuNT3PGn50uTCsnxqcUGYx4Q01LZS6hIqbNWIXdcWMWGWoUwiBcO6yswmzDyHRpIm8gK02GS-xwzBme9bSgl6MjaRXcz2KI-5Y7dAX653xCtCcqyL8RaVVMokwhWL6hVrwX09_qOk4vhxZHu5fVF1JLNIAVmirEnikBaQYqN-mSXq9QejunX5l5duYXc4HQVR8DR-voI97C_zGNvQyBef8hp2-Fc-zxY3ldR-A-WE7lg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60FdGDb7FaNQfBU6jZvI_FGhTbUsRCb2FfwYImpYn-fneyadoeRBCPu9ksYR-Zb3bn-wbgRjBmES5CkwnKTAxgNBm3qKmMofRs6StQUhKF-_5wGEwm4aiKJkQujNaHqA_ccGeU_2vc4HImks5SNZSKBKnkyqLh1d0mNB3MJNOAZu8lGvfrqwTf11fLnoVBXtZkodx4RzrrPaxbpiXcXAWtpdWJ9v_hew9gr4KcRlevkUPYkOkR7K4IER7DZJxiGiKkphsKERoDiYTgaf5hZElZgYHyuCDSwhi9ZUWmvGgUii0zTxjT1NCUTq4fFmj_SvmR_ATG0cPr_aNZ5VwwOfqqpu0Qn4ZBIJ1Q2lw4TkgdLggLmJCWmlZKfUKFqwqJ77siIcyxlEukYNidcrMJs0-hkWapPAMjsVkYMEtwFoaOMoKBTGxUF3MDyhPuuS0wF-Md80qQHPNivMdaSpnEOGJxPWItuK3bz7QUx48t24vpi6stmccKyBLlTRKPtICUE_VLL3G3Fw3q0vlfXrqG7VEvivtPw-cL2MFqTWNsQ6OYf8pL2OJfxTSfX1WL9huJ0u3T |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+the+Mechanism+of+the+Persistent+Photoconductivity+in+Organic+Phototransistors&rft.jtitle=Advanced+functional+materials&rft.au=Jia%2C+Ruofei&rft.au=Wu%2C+Xiaofeng&rft.au=Deng%2C+Wei&rft.au=Zhang%2C+Xiujuan&rft.date=2019-11-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=45&rft_id=info:doi/10.1002%2Fadfm.201905657&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201905657 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |