Detecting time lag between a pair of time series using visibility graph algorithm

Estimating the time lag between a pair of time series is of significance in many practical applications. In this article, we introduce a method to quantify such lags by adapting the visibility graph algorithm, which converts time series into a mathematical graph. Currently widely used method to dete...

Full description

Saved in:
Bibliographic Details
Published in:Communication in statistics. Case studies and data analysis Vol. 7; no. 3; pp. 315 - 343
Main Authors: John, Majnu, Ferbinteanu, Janina
Format: Journal Article
Language:English
Published: United States Taylor & Francis 2021
Subjects:
ISSN:2373-7484, 2373-7484
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Estimating the time lag between a pair of time series is of significance in many practical applications. In this article, we introduce a method to quantify such lags by adapting the visibility graph algorithm, which converts time series into a mathematical graph. Currently widely used method to detect such lags is based on cross-correlations, which has certain limitations. We present simulated examples where the new method identifies the lag correctly and unambiguously while as the cross-correlation method does not. The article includes results from an extensive simulation study conducted to better understand the scenarios where the new method performed better or worse than the existing approach. We also present a likelihood based parametric modeling framework and consider frameworks for quantifying uncertainty and hypothesis testing for the new approach. We apply the current and new methods to two case studies, one from neuroscience and the other from environmental epidemiology, to illustrate the methods further.
AbstractList Estimating the time lag between a pair of time series is of significance in many practical applications. In this article, we introduce a method to quantify such lags by adapting the visibility graph algorithm, which converts time series into a mathematical graph. Currently widely used method to detect such lags is based on cross-correlations, which has certain limitations. We present simulated examples where the new method identifies the lag correctly and unambiguously while as the cross-correlation method does not. The article includes results from an extensive simulation study conducted to better understand the scenarios where the new method performed better or worse than the existing approach. We also present a likelihood based parametric modeling framework and consider frameworks for quantifying uncertainty and hypothesis testing for the new approach. We apply the current and new methods to two case studies, one from neuroscience and the other from environmental epidemiology, to illustrate the methods further.
Estimating the time lag between a pair of time series is of significance in many practical applications. In this article, we introduce a method to quantify such lags by adapting the visibility graph algorithm, which converts time series into a mathematical graph. Currently widely used method to detect such lags is based on cross-correlations, which has certain limitations. We present simulated examples where the new method identifies the lag correctly and unambiguously while as the cross-correlation method does not. The article includes results from an extensive simulation study conducted to better understand the scenarios where the new method performed better or worse than the existing approach. We also present a likelihood based parametric modeling framework and consider frameworks for quantifying uncertainty and hypothesis testing for the new approach. We apply the current and new methods to two case studies, one from neuroscience and the other from environmental epidemiology, to illustrate the methods further.Estimating the time lag between a pair of time series is of significance in many practical applications. In this article, we introduce a method to quantify such lags by adapting the visibility graph algorithm, which converts time series into a mathematical graph. Currently widely used method to detect such lags is based on cross-correlations, which has certain limitations. We present simulated examples where the new method identifies the lag correctly and unambiguously while as the cross-correlation method does not. The article includes results from an extensive simulation study conducted to better understand the scenarios where the new method performed better or worse than the existing approach. We also present a likelihood based parametric modeling framework and consider frameworks for quantifying uncertainty and hypothesis testing for the new approach. We apply the current and new methods to two case studies, one from neuroscience and the other from environmental epidemiology, to illustrate the methods further.
Author John, Majnu
Ferbinteanu, Janina
AuthorAffiliation b Department of Psychiatry, Hofstra University, Hempstead, NY, USA
c The Feinstein Institute of Medical Research, Northwell Health System, Manhasset, NY, USA
f Department of Neurology, SUNY Downstate, Brooklyn, NY, USA
e Department of Physiology and Pharmacology, SUNY Downstate, Brooklyn, NY, USA
d Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA
a Department of Mathematics, Hofstra University, Hempstead, NY, USA
AuthorAffiliation_xml – name: b Department of Psychiatry, Hofstra University, Hempstead, NY, USA
– name: a Department of Mathematics, Hofstra University, Hempstead, NY, USA
– name: f Department of Neurology, SUNY Downstate, Brooklyn, NY, USA
– name: d Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA
– name: c The Feinstein Institute of Medical Research, Northwell Health System, Manhasset, NY, USA
– name: e Department of Physiology and Pharmacology, SUNY Downstate, Brooklyn, NY, USA
Author_xml – sequence: 1
  givenname: Majnu
  orcidid: 0000-0003-4596-245X
  surname: John
  fullname: John, Majnu
  organization: Division of Psychiatry Research, Zucker Hillside Hospital
– sequence: 2
  givenname: Janina
  surname: Ferbinteanu
  fullname: Ferbinteanu, Janina
  organization: Department of Neurology, SUNY Downstate
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35300322$$D View this record in MEDLINE/PubMed
BookMark eNqFUVtrFDEUDlKxF_sTlDz6smsuk5kMgliqVaFQBH0OJ2kyG8kka5Jt2X_vDLsrtQ_t0zmc7wbnO0VHMUWL0BtKlpRI8p7xjneNbJaMMLqkUjIu2hfoZL4vZuDowX6Mzkv5TQihTc8471-hYy44IZyxE_Tjs63WVB8HXP1ocYABa1vvrY0Y8Bp8xsntoGKztwVvyky-88VrH3zd4iHDeoUhDCn7uhpfo5cOQrHn-3mGfl19-Xn5bXF98_X75cX1wnDJ2wV10lF7a4BT7jSYlmnTadZKTnQnpG2A6L4zuuuANQIEmw5GiI66iUAE4Wfo4853vdHjZGRjzRDUOvsR8lYl8Op_JPqVGtKdkj0TnNLJ4N3eIKc_G1uqGn0xNgSINm2KYm1D-p70vJmobx9m_Qs5_HEifNgRTE6lZOuU8RWqT3O0D4oSNRenDsWpuTi1L25Si0fqQ8Bzuk87nY8u5RHuUw63qsI2pOwyROOL4k9b_AUu269S
CitedBy_id crossref_primary_10_1515_npprj_2024_0004
crossref_primary_10_1177_20552076231171496
Cites_doi 10.3390/e22060617
10.1073/pnas.0709247105
10.1016/B978-0-12-058470-3.50012-4
10.1093/ije/dyt092
10.1214/14-AOS1301
10.18637/jss.v089.i06
10.1002/9781118619193
10.1214/11-PS182
10.1109/ACCESS.2016.2612242
10.1016/0165-0270(80)90061-8
10.1016/j.neuroimage.2017.01.056
10.1111/jtsa.12170
10.2307/3318584
10.1016/0165-0270(95)00085-2
ContentType Journal Article
Copyright 2021 Taylor & Francis Group, LLC 2021
Copyright_xml – notice: 2021 Taylor & Francis Group, LLC 2021
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1080/23737484.2021.1882356
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2373-7484
EndPage 343
ExternalDocumentID PMC8925311
35300322
10_1080_23737484_2021_1882356
1882356
Genre Research Article
Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R21 MH106708
– fundername: NIMH NIH HHS
  grantid: R01 MH117646
– fundername: NIMH NIH HHS
  grantid: R01 MH108654
– fundername: NIMH NIH HHS
  grantid: R01 MH109508
– fundername: NIMH NIH HHS
  grantid: R21 MH122886
– fundername: NIMH NIH HHS
  grantid: R01 MH120313
– fundername: NIMH NIH HHS
  grantid: R34 MH103835
GroupedDBID 0BK
0R~
30N
AAGDL
AAHIA
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABLIJ
ABPAQ
ABXUL
ABXYU
ACGFS
ADCVX
ADFNY
ADGTB
AECIN
AEEWU
AEISY
AFRVT
AGDLA
AHDZW
AHQJS
AIJEM
AIYEW
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQTUD
AWYRJ
BLEHA
CCCUG
DEAQA
DGEBU
EBS
EUPTU
GTTXZ
H13
KYCEM
LJTGL
M4Z
M~E
RNANH
ROSJB
RTWRZ
SOJIQ
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
ZGOLN
AAYXX
CITATION
ADYSH
EJD
NPM
UK1
7X8
5PM
ID FETCH-LOGICAL-c3836-1f8f1edca313fbac62bc7b26830b758e4a0b97cb77a245a524a0c5571f30b0503
IEDL.DBID TFW
ISSN 2373-7484
IngestDate Tue Nov 04 02:00:40 EST 2025
Thu Sep 04 15:15:35 EDT 2025
Wed Feb 19 02:26:09 EST 2025
Tue Nov 18 22:06:16 EST 2025
Sat Nov 29 05:35:48 EST 2025
Mon Oct 20 23:48:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords transfer function
visibility graph algorithm
cross correlation
correlogram
neuroscience
Time series
ozone levels
time lag
local field potentials
environmental epidemiology
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3836-1f8f1edca313fbac62bc7b26830b758e4a0b97cb77a245a524a0c5571f30b0503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4596-245X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8925311
PMID 35300322
PQID 2640990934
PQPubID 23479
PageCount 29
ParticipantIDs proquest_miscellaneous_2640990934
crossref_citationtrail_10_1080_23737484_2021_1882356
pubmed_primary_35300322
informaworld_taylorfrancis_310_1080_23737484_2021_1882356
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8925311
crossref_primary_10_1080_23737484_2021_1882356
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Communication in statistics. Case studies and data analysis
PublicationTitleAlternate Commun Stat Case Stud Data Anal Appl
PublicationYear 2021
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References Wei W. W. S. (CIT0019) 2006
CIT0010
CIT0001
CIT0012
CIT0011
Lacasa L. (CIT0013) 2010; 3
Núñez A. (CIT0016) 2012
CIT0003
CIT0014
CIT0002
CIT0005
CIT0004
McMurry T. L. (CIT0015) 2010; 9
CIT0007
CIT0018
CIT0006
CIT0017
CIT0009
CIT0008
References_xml – ident: CIT0010
  doi: 10.3390/e22060617
– ident: CIT0012
  doi: 10.1073/pnas.0709247105
– ident: CIT0004
  doi: 10.1016/B978-0-12-058470-3.50012-4
– volume-title: Time Series Analysis: Univariate and Multivariate Methods
  year: 2006
  ident: CIT0019
– ident: CIT0005
  doi: 10.1093/ije/dyt092
– volume: 9
  start-page: 753
  issue: 1
  year: 2010
  ident: CIT0015
  publication-title: Electronic Journal of Statistics
– volume-title: Graph Theory
  year: 2012
  ident: CIT0016
– ident: CIT0009
  doi: 10.1214/14-AOS1301
– ident: CIT0002
  doi: 10.18637/jss.v089.i06
– ident: CIT0006
  doi: 10.1002/9781118619193
– ident: CIT0017
  doi: 10.1214/11-PS182
– ident: CIT0003
– ident: CIT0018
  doi: 10.1109/ACCESS.2016.2612242
– ident: CIT0014
  doi: 10.1016/0165-0270(80)90061-8
– ident: CIT0011
  doi: 10.1016/j.neuroimage.2017.01.056
– ident: CIT0001
  doi: 10.1111/jtsa.12170
– ident: CIT0007
  doi: 10.2307/3318584
– volume: 3
  volume-title: Computer Science Research and Technology
  year: 2010
  ident: CIT0013
– ident: CIT0008
  doi: 10.1016/0165-0270(95)00085-2
SSID ssj0001492339
Score 2.198544
Snippet Estimating the time lag between a pair of time series is of significance in many practical applications. In this article, we introduce a method to quantify...
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 315
SubjectTerms correlogram
cross correlation
environmental epidemiology
local field potentials
neuroscience
ozone levels
time lag
Time series
transfer function
visibility graph algorithm
Title Detecting time lag between a pair of time series using visibility graph algorithm
URI https://www.tandfonline.com/doi/abs/10.1080/23737484.2021.1882356
https://www.ncbi.nlm.nih.gov/pubmed/35300322
https://www.proquest.com/docview/2640990934
https://pubmed.ncbi.nlm.nih.gov/PMC8925311
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2373-7484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001492339
  issn: 2373-7484
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 2373-7484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001492339
  issn: 2373-7484
  databaseCode: TFW
  dateStart: 20150102
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSwMxFA4qHvTgvtSNCF5Hm2Umk6NoixeLgmJvQxIztVCn0qmCF3-7781SrSge9DIwkwQmydvz8j1CjrS7FyGLXGCkjQIZghw0krlApx70g41jaZtFsQnV6cTdrr6qsgnzKq0Sfei0BIooZDUyt7F5nRF3woVC0BSMiHB2zMBGFCGCboPqR9a8ad99RFkQf0zo-urOT4OnlNIUZOl3hufX_MlPCqm9_A9TWSFLlTVKT0vyWSUzPlsji5cTKNd8nVyfezxnAA1HsQ49HZgerZK7qKFPpj-iw7RsQmr2OcVU-h7FS-tF4u0rLUCxqRn0hqP--OFxg9y2WzdnF0FVhyFw4L9GAUvjlMFsjWAitcZF3DpleRSLpgV3w0vTtFo5q5ThMjQhhw8uDBVLoQPizWySuWyY-W1CnY8MusFN8AqlUyAtmLbgFd2zyIKhJhtE1huRuAqkHGtlDBJWYZnWK5bgiiXVijXI8WTYU4nS8dsA_XmXk3ERHknLWiaJ-GXsYU0SCfAiHrCYzA-f8wSMSzxn1ALmsVWSyOR3RChAgHLeIGqKeCYdEOd7uiXrPxR437HmICnZzh_-eZcs4GsZO9ojc-PRs98n8-5l3M9HB2RWdWN4Xr61Dgr-eQcrmhT6
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB5BQQIOtLwDpTUS123j13p9REDUijYSUhC9WbbrTSOFTZWkSPx7ZvaRJgjUA73aHsmP8bw8_gbgvY3nUvM8Zl6FPFMa5aBXPGa2TKgfQlGo0K-LTZjhsDg7s-t_YSitknzosgGKqGU1XW4KRncpcYdCGkJNoZCI4AccjUSp87twT6OuJfz80eD7dZyFEMik7T7v_It6Qy1tgJb-zfT8M4NyTSUNtm9jMTvwuDVI2YeGg57AnVQ9hUenKzTXxTP4-inRUwMqOUal6NnUj1mb38U8u_STOZuVTRcxdFowyqYfM_q3Xufe_mI1Ljbz0_FsPlle_HgO3wafRx-PsrYUQxbRhc0zXhYlx-V6yWUZfMxFiCaIvJD9gB5HUr4frInBGC-U9lpgQ9Ta8BIHEOTMC9iqZlV6BSym3JMn3EfHUEWDAoPbgI7ROc8D2mqqB6o7CRdbnHIqlzF1vIUz7XbM0Y65dsd6cLAiu2yAOm4isOvH7JZ1hKRsypk4eQPtu44nHF5HemPxVZpdLRzal_TUaCWu42XDI6vpSC1RhgrRA7PBPasBBPW92VNNLmrI78IKFJb89X_MeR8eHI1OT9zJ8fDLG3hIXU0oaRe2lvOr9Bbux5_LyWK-V1-g352RFws
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagRQgObYECoaUYieu28WPt9RG1jUBAVKQierNsx04jpZsomyLx75nZR2gQVQ9wtT2SH-N5efwNIe9MGImcqZA56VUmc5CDTrKQmRRBP_iikL5fF5vQw2FxcWHO2mzCqk2rRB86NUARtazGyz0fpS4j7ogLjaApGBHh7JCBjShydZ9sgumskMnPB99_h1kQgEyY7u_ObdRrWmkNs_RvluefCZQ3NNJg-z-sZYdsteYofd_wzxNyL5ZPyeMvKyzX6hn5ehLxoQFUHMVC9HTqxrTN7qKOzt1kQWep6UJ2jhXFXPoxxV_rdebtT1qjYlM3Hc8Wk-Xl1S75Njg9P_6QtYUYsgAOrMpYKhKD1TrBRPIuKO6D9lwVou_B34jS9b3RwWvtuMxdzqEh5LlmCQYg4MxzslHOyviS0BCVQz-4D26hDBrEBTMe3KIRUx4sNdkjsjsIG1qUciyWMbWsBTPtdszijtl2x3rkcEU2b2A67iIwN0_ZLuv4SGqKmVhxB-3bjiUsXEZ8YXFlnF1XFqxLfGg0AtbxomGR1XRELkCCct4jeo15VgMQ6Hu9p5xc1oDfheEgKtmrf5jzG_Lw7GRgP38cftojj7CniSPtk43l4jq-Jg_Cj-WkWhzU1-cXPa0VvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+time+lag+between+a+pair+of+time+series+using+visibility+graph+algorithm&rft.jtitle=Communication+in+statistics.+Case+studies+and+data+analysis&rft.au=John%2C+Majnu&rft.au=Ferbinteanu%2C+Janina&rft.date=2021&rft.eissn=2373-7484&rft.volume=7&rft.issue=3&rft.spage=315&rft.epage=343&rft_id=info:doi/10.1080%2F23737484.2021.1882356&rft_id=info%3Apmid%2F35300322&rft.externalDocID=PMC8925311
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-7484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-7484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-7484&client=summon