Detecting time lag between a pair of time series using visibility graph algorithm
Estimating the time lag between a pair of time series is of significance in many practical applications. In this article, we introduce a method to quantify such lags by adapting the visibility graph algorithm, which converts time series into a mathematical graph. Currently widely used method to dete...
Uloženo v:
| Vydáno v: | Communication in statistics. Case studies and data analysis Ročník 7; číslo 3; s. 315 - 343 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Taylor & Francis
2021
|
| Témata: | |
| ISSN: | 2373-7484, 2373-7484 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Estimating the time lag between a pair of time series is of significance in many practical applications. In this article, we introduce a method to quantify such lags by adapting the visibility graph algorithm, which converts time series into a mathematical graph. Currently widely used method to detect such lags is based on cross-correlations, which has certain limitations. We present simulated examples where the new method identifies the lag correctly and unambiguously while as the cross-correlation method does not. The article includes results from an extensive simulation study conducted to better understand the scenarios where the new method performed better or worse than the existing approach. We also present a likelihood based parametric modeling framework and consider frameworks for quantifying uncertainty and hypothesis testing for the new approach. We apply the current and new methods to two case studies, one from neuroscience and the other from environmental epidemiology, to illustrate the methods further. |
|---|---|
| AbstractList | Estimating the time lag between a pair of time series is of significance in many practical applications. In this article, we introduce a method to quantify such lags by adapting the visibility graph algorithm, which converts time series into a mathematical graph. Currently widely used method to detect such lags is based on cross-correlations, which has certain limitations. We present simulated examples where the new method identifies the lag correctly and unambiguously while as the cross-correlation method does not. The article includes results from an extensive simulation study conducted to better understand the scenarios where the new method performed better or worse than the existing approach. We also present a likelihood based parametric modeling framework and consider frameworks for quantifying uncertainty and hypothesis testing for the new approach. We apply the current and new methods to two case studies, one from neuroscience and the other from environmental epidemiology, to illustrate the methods further. Estimating the time lag between a pair of time series is of significance in many practical applications. In this article, we introduce a method to quantify such lags by adapting the visibility graph algorithm, which converts time series into a mathematical graph. Currently widely used method to detect such lags is based on cross-correlations, which has certain limitations. We present simulated examples where the new method identifies the lag correctly and unambiguously while as the cross-correlation method does not. The article includes results from an extensive simulation study conducted to better understand the scenarios where the new method performed better or worse than the existing approach. We also present a likelihood based parametric modeling framework and consider frameworks for quantifying uncertainty and hypothesis testing for the new approach. We apply the current and new methods to two case studies, one from neuroscience and the other from environmental epidemiology, to illustrate the methods further.Estimating the time lag between a pair of time series is of significance in many practical applications. In this article, we introduce a method to quantify such lags by adapting the visibility graph algorithm, which converts time series into a mathematical graph. Currently widely used method to detect such lags is based on cross-correlations, which has certain limitations. We present simulated examples where the new method identifies the lag correctly and unambiguously while as the cross-correlation method does not. The article includes results from an extensive simulation study conducted to better understand the scenarios where the new method performed better or worse than the existing approach. We also present a likelihood based parametric modeling framework and consider frameworks for quantifying uncertainty and hypothesis testing for the new approach. We apply the current and new methods to two case studies, one from neuroscience and the other from environmental epidemiology, to illustrate the methods further. |
| Author | John, Majnu Ferbinteanu, Janina |
| AuthorAffiliation | b Department of Psychiatry, Hofstra University, Hempstead, NY, USA c The Feinstein Institute of Medical Research, Northwell Health System, Manhasset, NY, USA f Department of Neurology, SUNY Downstate, Brooklyn, NY, USA e Department of Physiology and Pharmacology, SUNY Downstate, Brooklyn, NY, USA d Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA a Department of Mathematics, Hofstra University, Hempstead, NY, USA |
| AuthorAffiliation_xml | – name: b Department of Psychiatry, Hofstra University, Hempstead, NY, USA – name: a Department of Mathematics, Hofstra University, Hempstead, NY, USA – name: f Department of Neurology, SUNY Downstate, Brooklyn, NY, USA – name: d Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA – name: c The Feinstein Institute of Medical Research, Northwell Health System, Manhasset, NY, USA – name: e Department of Physiology and Pharmacology, SUNY Downstate, Brooklyn, NY, USA |
| Author_xml | – sequence: 1 givenname: Majnu orcidid: 0000-0003-4596-245X surname: John fullname: John, Majnu organization: Division of Psychiatry Research, Zucker Hillside Hospital – sequence: 2 givenname: Janina surname: Ferbinteanu fullname: Ferbinteanu, Janina organization: Department of Neurology, SUNY Downstate |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35300322$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUVtrFDEUDlKxF_sTlDz6smsuk5kMgliqVaFQBH0OJ2kyG8kka5Jt2X_vDLsrtQ_t0zmc7wbnO0VHMUWL0BtKlpRI8p7xjneNbJaMMLqkUjIu2hfoZL4vZuDowX6Mzkv5TQihTc8471-hYy44IZyxE_Tjs63WVB8HXP1ocYABa1vvrY0Y8Bp8xsntoGKztwVvyky-88VrH3zd4iHDeoUhDCn7uhpfo5cOQrHn-3mGfl19-Xn5bXF98_X75cX1wnDJ2wV10lF7a4BT7jSYlmnTadZKTnQnpG2A6L4zuuuANQIEmw5GiI66iUAE4Wfo4853vdHjZGRjzRDUOvsR8lYl8Op_JPqVGtKdkj0TnNLJ4N3eIKc_G1uqGn0xNgSINm2KYm1D-p70vJmobx9m_Qs5_HEifNgRTE6lZOuU8RWqT3O0D4oSNRenDsWpuTi1L25Si0fqQ8Bzuk87nY8u5RHuUw63qsI2pOwyROOL4k9b_AUu269S |
| CitedBy_id | crossref_primary_10_1515_npprj_2024_0004 crossref_primary_10_1177_20552076231171496 |
| Cites_doi | 10.3390/e22060617 10.1073/pnas.0709247105 10.1016/B978-0-12-058470-3.50012-4 10.1093/ije/dyt092 10.1214/14-AOS1301 10.18637/jss.v089.i06 10.1002/9781118619193 10.1214/11-PS182 10.1109/ACCESS.2016.2612242 10.1016/0165-0270(80)90061-8 10.1016/j.neuroimage.2017.01.056 10.1111/jtsa.12170 10.2307/3318584 10.1016/0165-0270(95)00085-2 |
| ContentType | Journal Article |
| Copyright | 2021 Taylor & Francis Group, LLC 2021 |
| Copyright_xml | – notice: 2021 Taylor & Francis Group, LLC 2021 |
| DBID | AAYXX CITATION NPM 7X8 5PM |
| DOI | 10.1080/23737484.2021.1882356 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2373-7484 |
| EndPage | 343 |
| ExternalDocumentID | PMC8925311 35300322 10_1080_23737484_2021_1882356 1882356 |
| Genre | Research Article Journal Article |
| GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R21 MH106708 – fundername: NIMH NIH HHS grantid: R01 MH117646 – fundername: NIMH NIH HHS grantid: R01 MH108654 – fundername: NIMH NIH HHS grantid: R01 MH109508 – fundername: NIMH NIH HHS grantid: R21 MH122886 – fundername: NIMH NIH HHS grantid: R01 MH120313 – fundername: NIMH NIH HHS grantid: R34 MH103835 |
| GroupedDBID | 0BK 0R~ 30N AAGDL AAHIA AALDU AAMIU AAPUL AAQRR ABCCY ABLIJ ABPAQ ABXUL ABXYU ACGFS ADCVX ADFNY ADGTB AECIN AEEWU AEISY AFRVT AGDLA AHDZW AHQJS AIJEM AIYEW AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQTUD AWYRJ BLEHA CCCUG DEAQA DGEBU EBS EUPTU GTTXZ H13 KYCEM LJTGL M4Z M~E RNANH ROSJB RTWRZ SOJIQ TASJS TBQAZ TDBHL TEJ TFL TFT TFW TTHFI TUROJ ZGOLN AAYXX CITATION ADYSH EJD NPM UK1 7X8 5PM |
| ID | FETCH-LOGICAL-c3836-1f8f1edca313fbac62bc7b26830b758e4a0b97cb77a245a524a0c5571f30b0503 |
| IEDL.DBID | TFW |
| ISSN | 2373-7484 |
| IngestDate | Tue Nov 04 02:00:40 EST 2025 Thu Sep 04 15:15:35 EDT 2025 Wed Feb 19 02:26:09 EST 2025 Tue Nov 18 22:06:16 EST 2025 Sat Nov 29 05:35:48 EST 2025 Mon Oct 20 23:48:09 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | transfer function visibility graph algorithm cross correlation correlogram neuroscience Time series ozone levels time lag local field potentials environmental epidemiology |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3836-1f8f1edca313fbac62bc7b26830b758e4a0b97cb77a245a524a0c5571f30b0503 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-4596-245X |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8925311 |
| PMID | 35300322 |
| PQID | 2640990934 |
| PQPubID | 23479 |
| PageCount | 29 |
| ParticipantIDs | proquest_miscellaneous_2640990934 crossref_citationtrail_10_1080_23737484_2021_1882356 pubmed_primary_35300322 informaworld_taylorfrancis_310_1080_23737484_2021_1882356 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8925311 crossref_primary_10_1080_23737484_2021_1882356 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-00-00 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Communication in statistics. Case studies and data analysis |
| PublicationTitleAlternate | Commun Stat Case Stud Data Anal Appl |
| PublicationYear | 2021 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | Wei W. W. S. (CIT0019) 2006 CIT0010 CIT0001 CIT0012 CIT0011 Lacasa L. (CIT0013) 2010; 3 Núñez A. (CIT0016) 2012 CIT0003 CIT0014 CIT0002 CIT0005 CIT0004 McMurry T. L. (CIT0015) 2010; 9 CIT0007 CIT0018 CIT0006 CIT0017 CIT0009 CIT0008 |
| References_xml | – ident: CIT0010 doi: 10.3390/e22060617 – ident: CIT0012 doi: 10.1073/pnas.0709247105 – ident: CIT0004 doi: 10.1016/B978-0-12-058470-3.50012-4 – volume-title: Time Series Analysis: Univariate and Multivariate Methods year: 2006 ident: CIT0019 – ident: CIT0005 doi: 10.1093/ije/dyt092 – volume: 9 start-page: 753 issue: 1 year: 2010 ident: CIT0015 publication-title: Electronic Journal of Statistics – volume-title: Graph Theory year: 2012 ident: CIT0016 – ident: CIT0009 doi: 10.1214/14-AOS1301 – ident: CIT0002 doi: 10.18637/jss.v089.i06 – ident: CIT0006 doi: 10.1002/9781118619193 – ident: CIT0017 doi: 10.1214/11-PS182 – ident: CIT0003 – ident: CIT0018 doi: 10.1109/ACCESS.2016.2612242 – ident: CIT0014 doi: 10.1016/0165-0270(80)90061-8 – ident: CIT0011 doi: 10.1016/j.neuroimage.2017.01.056 – ident: CIT0001 doi: 10.1111/jtsa.12170 – ident: CIT0007 doi: 10.2307/3318584 – volume: 3 volume-title: Computer Science Research and Technology year: 2010 ident: CIT0013 – ident: CIT0008 doi: 10.1016/0165-0270(95)00085-2 |
| SSID | ssj0001492339 |
| Score | 2.1984417 |
| Snippet | Estimating the time lag between a pair of time series is of significance in many practical applications. In this article, we introduce a method to quantify... |
| SourceID | pubmedcentral proquest pubmed crossref informaworld |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 315 |
| SubjectTerms | correlogram cross correlation environmental epidemiology local field potentials neuroscience ozone levels time lag Time series transfer function visibility graph algorithm |
| Title | Detecting time lag between a pair of time series using visibility graph algorithm |
| URI | https://www.tandfonline.com/doi/abs/10.1080/23737484.2021.1882356 https://www.ncbi.nlm.nih.gov/pubmed/35300322 https://www.proquest.com/docview/2640990934 https://pubmed.ncbi.nlm.nih.gov/PMC8925311 |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2373-7484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001492339 issn: 2373-7484 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 2373-7484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001492339 issn: 2373-7484 databaseCode: TFW dateStart: 20150102 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxEB61qAd6AAq0DY_IlbhuWNu76_URARGXRK1ERW4re-NNIoUNygYkLvx2ZvaREgTKoVxW8toj-THjGY_H3wCcaJUFUcq1Z1GqvSDwLUHeOk_aGNWdDcPYVckmVL8fDwb6dx1NWNRhlXSGziqgiHKvJuE2tmgi4k6FVASaQh4RwTscbUQZEug2qn4SzevuzT8vC-GPSd083XmPeEUprUCWvmV4vo6ffKGQutsfMJQd2KqtUXZWsc83-OTyXfjaW0K5Fnvw58LRPQNqOEZ56NnUjFgd3MUMuzOTOZtlVRVxsysYhdKPGD1aLwNvH1kJis3MdDSbTxbj23342728Pr_y6jwMXorn18jjWZxxHK2RXGbWpJGwqbIiiqVv8bjhAuNbrVKrlBFBaEKBP9IwVDzDBoQ38x028lnufgKLjEUDUiCNigKjjR66iCD_3DD2je-GLQiahUjSGqSccmVME15jmTYzltCMJfWMtaCzJLurUDrWEeiXq5wsSvdIVuUySeQa2l8NSyQoi3TBYnI3uy8SNC7pnlHLoAU_KhZZdkeGEjdQIVqgVphn2YBwvldr8sm4xPuOtcCdkh_8R58PYZOKle_oCDYW83t3DF_Sh8WkmLfhsxrE-O09XbZL-XkG4Y4WAA |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3dT9swEMBPrEwaewD2AXRjw5P2GojtOI4fJ0ZVtLbSpE7rm2WnTonUpagtSPz38-Wja6dNfYDXOCcl9tl3Pp9_B_BZySyKU6oC62d1EEWhReStC7hNvLmzQiSuKjYhB4NkNFLrd2EwrRL30FkFiijXapzcGIxuUuIuGJdITcGQCKPn1DuJXMTPYFd4W4v8_GHn5584CxLIuGou7_xPesMsbUBL_-V6_p1BuWaSOgdP8TOHsF87pORLpUGvYMcVr-Flf0VzXbyB718dHjV4I0ewFD2Zmgmp87uIIbcmn5NZVjWhQrsFwWz6CcF762Xu7QMpudjETCezeb68-fUWfnSuhpfdoC7FEKR-CxsHNEsy6n_XcMoza9KY2VRaFic8tH7H4SITWiVTK6VhkTCC-QepEJJm_gVEzhxBq5gV7gRIbKz3IZmXkXFklFFjFyP1z42T0IRu3IaoGQmd1pxyLJcx1bTGmTY9prHHdN1jbThfid1WoI5tAmp9mPWyjJBkVTkTzbfIfmp0QvvpiGcspnCzu4X2_iUeNSoeteG40pHV53DB_RrKWBvkhvasXkDU92ZLkd-UyO9EMb9Y0neP-OYzeNEd9nu6dz349h72sKkKJZ1Cazm_cx_geXq_zBfzj-UE-g1TuxgR |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB5BixAcaGkLBPowEtdt1_auvT4iSkQFjVIpiNwse2OnkdJNlE2R-Pd49pE2iCoHuK53JD9mPOPx528APijpE5FTFdlg1VGSxBYpb13EbRbcnU3TzNXFJmSvlw2Hqt-gCcsGVolnaF8TRVR7NRr3fORbRNwZ4xJJUzAjwugpDTEiT8Vj2A6hs0AlH3R_3KVZkICMq_btzkPSa15pjbP0b5HnnwDKex6pu_MfxrILL5pwlHys9eclPHLFHjy_XHG5lvtwde7woiG4OIKF6MnUjEmD7iKGzM1kQWa-bkJ1diVBLP2Y4Kv1Cnn7i1Ss2MRMx7PFZHl9cwDfu58Hn75ETSGGKA8HWBFRn3kaRms45d6aXDCbS8tExmMbzhsuMbFVMrdSGpakJmXhQ56mkvrwAxLOvIKtYla4N0CEsSGCZEFGisQoo0ZOIOefG2Wxid2oA0m7EDpvWMqxWMZU04bMtJ0xjTOmmxnrwOlKbF7TdGwSUPdXWS-r_Iivi5lovkH2fasSOhgj3rCYws1uSx2iS7xoVDzpwOtaRVbd4SkPOyhjHZBryrP6AYm-11uKyXVF-J0pFrZK-vYf-nwCT_vnXf3tovf1HTzDljqPdAhby8WtO4In-c_lpFwcV-bzG_KoFsM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+time+lag+between+a+pair+of+time+series+using+visibility+graph+algorithm&rft.jtitle=Communication+in+statistics.+Case+studies+and+data+analysis&rft.au=John%2C+Majnu&rft.au=Ferbinteanu%2C+Janina&rft.date=2021&rft.issn=2373-7484&rft.eissn=2373-7484&rft.volume=7&rft.issue=3&rft.spage=315&rft_id=info:doi/10.1080%2F23737484.2021.1882356&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-7484&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-7484&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-7484&client=summon |