Evaluation, Prediction, and Feedback of Blast Furnace Hearth Activity Based on Data‐Driven Analysis and Process Metallurgy

For complex, difficult‐to‐control, and hour‐delay blast furnace (BF) systems, the quantitative characterization, prediction, and adjustment of the BF hearth activity are significant in improving the furnace status. In this study, data including raw fuel, process operation, smelting state, and slag a...

Full description

Saved in:
Bibliographic Details
Published in:Steel research international Vol. 95; no. 2
Main Authors: Shi, Quan, Tang, Jue, Chu, Mansheng
Format: Journal Article
Language:English
Published: Weinheim Wiley Subscription Services, Inc 01.02.2024
Subjects:
ISSN:1611-3683, 1869-344X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract For complex, difficult‐to‐control, and hour‐delay blast furnace (BF) systems, the quantitative characterization, prediction, and adjustment of the BF hearth activity are significant in improving the furnace status. In this study, data including raw fuel, process operation, smelting state, and slag and iron discharge during the entire BF process are analyzed, with a total of 171 variables and 5033 groups of data. Based on the knowledge of BF technology, a comprehensive index of hearth activity is then proposed to quantitatively characterize and grade the activity level of the BF hearth; the rationality of this method is verified from the two aspects of furnace heat level and furnace status coincidence. Compared with the traditional single‐machine learning algorithm, the performance of the proposed method that combines genetic algorithm and stacking exhibits significant improvement. The hit rates for 10% and 5% errors in the prediction and estimation of hearth activity are 94.64% and 80.36%, respectively. To enhance the BF hearth activity, quantized and dynamic actions and suggestions are also simultaneously pushed. The model of BF hearth activity is successfully applied in practical online production. During the application period, the average furnace hearth activity increases by 10% compared to the historical value. Herein, a blast furnace hearth activity evaluation, prediction, and feedback model is established by integrating data‐driven technology and blast furnace metallurgical process. It not only realizes the quantitative evaluation of blast furnace hearth activity and accurate prediction of future trends, but also significantly improves the level of blast furnace hearth activity by pushing the regulation strategy in advance.
AbstractList For complex, difficult‐to‐control, and hour‐delay blast furnace (BF) systems, the quantitative characterization, prediction, and adjustment of the BF hearth activity are significant in improving the furnace status. In this study, data including raw fuel, process operation, smelting state, and slag and iron discharge during the entire BF process are analyzed, with a total of 171 variables and 5033 groups of data. Based on the knowledge of BF technology, a comprehensive index of hearth activity is then proposed to quantitatively characterize and grade the activity level of the BF hearth; the rationality of this method is verified from the two aspects of furnace heat level and furnace status coincidence. Compared with the traditional single‐machine learning algorithm, the performance of the proposed method that combines genetic algorithm and stacking exhibits significant improvement. The hit rates for 10% and 5% errors in the prediction and estimation of hearth activity are 94.64% and 80.36%, respectively. To enhance the BF hearth activity, quantized and dynamic actions and suggestions are also simultaneously pushed. The model of BF hearth activity is successfully applied in practical online production. During the application period, the average furnace hearth activity increases by 10% compared to the historical value.
For complex, difficult‐to‐control, and hour‐delay blast furnace (BF) systems, the quantitative characterization, prediction, and adjustment of the BF hearth activity are significant in improving the furnace status. In this study, data including raw fuel, process operation, smelting state, and slag and iron discharge during the entire BF process are analyzed, with a total of 171 variables and 5033 groups of data. Based on the knowledge of BF technology, a comprehensive index of hearth activity is then proposed to quantitatively characterize and grade the activity level of the BF hearth; the rationality of this method is verified from the two aspects of furnace heat level and furnace status coincidence. Compared with the traditional single‐machine learning algorithm, the performance of the proposed method that combines genetic algorithm and stacking exhibits significant improvement. The hit rates for 10% and 5% errors in the prediction and estimation of hearth activity are 94.64% and 80.36%, respectively. To enhance the BF hearth activity, quantized and dynamic actions and suggestions are also simultaneously pushed. The model of BF hearth activity is successfully applied in practical online production. During the application period, the average furnace hearth activity increases by 10% compared to the historical value. Herein, a blast furnace hearth activity evaluation, prediction, and feedback model is established by integrating data‐driven technology and blast furnace metallurgical process. It not only realizes the quantitative evaluation of blast furnace hearth activity and accurate prediction of future trends, but also significantly improves the level of blast furnace hearth activity by pushing the regulation strategy in advance.
Author Chu, Mansheng
Tang, Jue
Shi, Quan
Author_xml – sequence: 1
  givenname: Quan
  orcidid: 0000-0002-3182-4630
  surname: Shi
  fullname: Shi, Quan
  organization: Engineering Research Center of Frontier Technologies for Low-Carbon Steelmaking (Ministry of Education of China)
– sequence: 2
  givenname: Jue
  orcidid: 0000-0002-3765-277X
  surname: Tang
  fullname: Tang, Jue
  email: tangj@smm.neu.edu.cn
  organization: Engineering Research Center of Frontier Technologies for Low-Carbon Steelmaking (Ministry of Education of China)
– sequence: 3
  givenname: Mansheng
  surname: Chu
  fullname: Chu, Mansheng
  organization: Engineering Research Center of Frontier Technologies for Low-Carbon Steelmaking (Ministry of Education of China)
BookMark eNqFkMtO3DAUhi0EUrltu7bElgy-JI6zHC5TkKaAaCt1F504J2AwDtieqSKx6CP0GfsknUtVJCTU1fkX3_dL598hm773SMhHzkacMXEUg_UjwYRkTOpig2xzrapM5vn3zUVWnGdSafmB7Md4z9gS0qrMt8nL2RzcDJLt_SG9Dthas87gWzpBbBswD7Tv6LGDmOhkFjwYpOcIId3R8QKe2zTQY4jY0t7TU0jw--ev02Dn6OnYgxuijau269AbjJF-xgTOzcLtsEe2OnAR9__eXfJtcvb15DybXn26OBlPMyO1LDLVGACpcuRQatFyKbRB1TW6bDgwzNucyZaXrJCV6AqRlxWiUKAZYKObQsldcrDufQr98wxjqu_75SMu1qISXJelqooFla8pE_oYA3a1sWm1TApgXc1ZvZy6Xk5d_5t6oY3eaE_BPkIY3heqtfDDOhz-Q9dfbi4uX90_D-WVSw
CitedBy_id crossref_primary_10_1007_s40831_025_01212_1
crossref_primary_10_1007_s42243_025_01569_3
crossref_primary_10_1002_srin_202300671
crossref_primary_10_1007_s12613_024_2955_z
crossref_primary_10_1007_s12613_023_2693_7
crossref_primary_10_2355_isijinternational_ISIJINT_2025_155
crossref_primary_10_1007_s40831_024_00818_1
Cites_doi 10.1002/srin.202200215
10.1016/j.knosys.2017.02.013
10.2355/isijinternational.ISIJINT-2021-371
10.1007/s11704-019-8208-z
10.1002/srin.202200266
10.1051/metal/2023002
10.2355/isijinternational.ISIJINT-2018-005
10.1002/srin.202200680
10.1016/j.engappai.2021.104197
10.2355/isijinternational.42.504
10.1080/03019233.2017.1400732
10.1021/acsomega.2c05029
10.1016/j.eswa.2018.12.022
10.1080/03019233.2021.1907957
10.1016/j.physa.2011.12.004
10.1007/s12613-023-2636-3
10.1002/cjce.24790
10.1179/030192309X12506804200627
10.1007/s11663-021-02399-w
10.1007/s11042-020-10139-6
10.1051/metal/2020007
10.1002/widm.1249
10.3390/pr7080519
10.1631/FITEE.2200366
10.2355/isijinternational.ISIJINT-2020-249
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1002/srin.202300385
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1869-344X
EndPage n/a
ExternalDocumentID 10_1002_srin_202300385
SRIN202300385
Genre article
GrantInformation_xml – fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China
  funderid: 52274326
GroupedDBID 05W
0R~
123
1OC
31~
33P
4.4
50Y
8-1
A00
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMNLL
BMXJE
BRXPI
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
I-F
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
P2P
P2W
P4E
PALCI
PQQKQ
R.K
RJQFR
ROL
RX1
SJN
SUPJJ
TUS
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
ZZTAW
~S-
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
LH4
1OB
8BQ
8FD
JG9
ID FETCH-LOGICAL-c3835-6bcaa364e1a782d1328ce6fb87b1a0e4d403d1705392f52479ee26a80aeb8b563
IEDL.DBID DRFUL
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001110613100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1611-3683
IngestDate Tue Aug 12 12:11:36 EDT 2025
Sat Nov 29 04:06:05 EST 2025
Tue Nov 18 21:50:00 EST 2025
Wed Jan 22 16:15:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3835-6bcaa364e1a782d1328ce6fb87b1a0e4d403d1705392f52479ee26a80aeb8b563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3765-277X
0000-0002-3182-4630
PQID 2921877695
PQPubID 1046344
PageCount 15
ParticipantIDs proquest_journals_2921877695
crossref_citationtrail_10_1002_srin_202300385
crossref_primary_10_1002_srin_202300385
wiley_primary_10_1002_srin_202300385_SRIN202300385
PublicationCentury 2000
PublicationDate February 2024
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Steel research international
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2021; 48
2023; 30
2010; 37
2023; 58
2023; 120
2022; 93
2019; 55
2017; 27
2023; 101
2016; 51
2020; 14
2021; 100
2007; 10
2009; 28
2019; 121
2018; 8
2023; 24
2002; 42
2010; 29
2022; 62
2019; 46
2022; 7
2017; 57
2012; 391
2020; 117
2022; 53
2021; 61
2017; 123
2018; 53
2009; 16
2023; 94
2018; 58
2021; 80
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
Xu W. R. (e_1_2_9_12_1) 2010; 29
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_33_1
Chen H. (e_1_2_9_5_1) 2007; 10
Nakano K. (e_1_2_9_9_1) 2009; 16
Zhou D. D. (e_1_2_9_24_1) 2017; 57
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
Zhang H. S. (e_1_2_9_15_1) 2009; 28
e_1_2_9_19_1
e_1_2_9_18_1
Li Z. Q. (e_1_2_9_30_1) 2019; 55
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
Dai B. (e_1_2_9_2_1) 2016; 51
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
Yu C. Y. (e_1_2_9_25_1) 2017; 27
e_1_2_9_6_1
e_1_2_9_4_1
Han Y. (e_1_2_9_26_1) 2023; 58
Chen C. (e_1_2_9_3_1) 2018; 53
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 48
  start-page: 742
  year: 2021
  publication-title: Ironmaking Steelmaking
– volume: 93
  start-page: 2200266
  year: 2022
  publication-title: Steel Res. Int.
– volume: 27
  start-page: 16
  year: 2017
  publication-title: J. Anhui Vocational Coll. Metall. Technol.
– volume: 7
  start-page: 519
  year: 2019
  publication-title: Processes
– volume: 28
  start-page: 10
  year: 2009
  publication-title: Ironmaking
– volume: 14
  start-page: 241
  year: 2020
  publication-title: Front. Comput. Sci.
– volume: 51
  start-page: 22
  year: 2016
  publication-title: Iron Steel
– volume: 7
  start-page: 41296
  year: 2022
  publication-title: ACS Omega
– volume: 8
  start-page: e1249
  year: 2018
  publication-title: WIREs Data Min. Knowl. Discovery
– volume: 29
  start-page: 23
  year: 2010
  publication-title: Ironmaking
– volume: 101
  start-page: 4506
  year: 2023
  publication-title: Can. J. Chem. Eng.
– volume: 55
  start-page: 10
  year: 2019
  publication-title: Comput. Eng. Appl.
– volume: 80
  start-page: 8091
  year: 2021
  publication-title: Multimedia Tools Appl.
– volume: 58
  start-page: 1198
  year: 2018
  publication-title: ISIJ Int.
– volume: 53
  start-page: 591
  year: 2022
  publication-title: Metall. Mater. Trans. B
– volume: 37
  start-page: 21
  year: 2010
  publication-title: Ironmaking Steelmaking
– volume: 24
  start-page: 327
  year: 2023
  publication-title: Front. Inf. Technol. Electron. Eng.
– volume: 58
  start-page: 30
  year: 2023
  publication-title: Iron Steel
– volume: 62
  start-page: 477
  year: 2022
  publication-title: ISIJ Int.
– volume: 46
  start-page: 373
  year: 2019
  publication-title: Ironmaking Steelmaking
– volume: 117
  start-page: 113
  year: 2020
  publication-title: Metall. Res. Technol.
– volume: 93
  start-page: 2200215
  year: 2022
  publication-title: Steel Res. Int.
– volume: 121
  start-page: 233
  year: 2019
  publication-title: Expert Syst. Appl.
– volume: 120
  start-page: 1
  year: 2023
  publication-title: Metall. Res. Technol.
– volume: 30
  start-page: 1651
  year: 2023
  publication-title: Int. J. Miner., Metall. Mater.
– volume: 16
  start-page: 1156
  year: 2009
  publication-title: J. Iron Steel Res. Int.
– volume: 94
  start-page: 2200680
  year: 2023
  publication-title: Steel Res. Int.
– volume: 100
  start-page: 104197
  year: 2021
  publication-title: Eng. Appl. Artif. Intell.
– volume: 61
  start-page: 108
  year: 2021
  publication-title: ISIJ Int.
– volume: 10
  start-page: 12
  year: 2007
  publication-title: Iron Steel
– volume: 42
  start-page: 504
  year: 2002
  publication-title: ISIJ Int.
– volume: 123
  start-page: 116
  year: 2017
  publication-title: Knowledge-Based Syst.
– volume: 53
  start-page: 29
  year: 2018
  publication-title: Iron Steel
– volume: 57
  start-page: 1059
  year: 2017
  publication-title: ISIJ Int.
– volume: 391
  start-page: 2193
  year: 2012
  publication-title: Phys. A
– ident: e_1_2_9_17_1
  doi: 10.1002/srin.202200215
– ident: e_1_2_9_31_1
  doi: 10.1016/j.knosys.2017.02.013
– ident: e_1_2_9_34_1
  doi: 10.2355/isijinternational.ISIJINT-2021-371
– volume: 16
  start-page: 1156
  year: 2009
  ident: e_1_2_9_9_1
  publication-title: J. Iron Steel Res. Int.
– volume: 27
  start-page: 16
  year: 2017
  ident: e_1_2_9_25_1
  publication-title: J. Anhui Vocational Coll. Metall. Technol.
– ident: e_1_2_9_35_1
  doi: 10.1007/s11704-019-8208-z
– volume: 10
  start-page: 12
  year: 2007
  ident: e_1_2_9_5_1
  publication-title: Iron Steel
– ident: e_1_2_9_6_1
  doi: 10.1002/srin.202200266
– ident: e_1_2_9_23_1
  doi: 10.1051/metal/2023002
– volume: 51
  start-page: 22
  year: 2016
  ident: e_1_2_9_2_1
  publication-title: Iron Steel
– volume: 57
  start-page: 1059
  year: 2017
  ident: e_1_2_9_24_1
  publication-title: ISIJ Int.
– ident: e_1_2_9_8_1
  doi: 10.2355/isijinternational.ISIJINT-2018-005
– volume: 55
  start-page: 10
  year: 2019
  ident: e_1_2_9_30_1
  publication-title: Comput. Eng. Appl.
– ident: e_1_2_9_18_1
  doi: 10.1002/srin.202200680
– ident: e_1_2_9_28_1
  doi: 10.1016/j.engappai.2021.104197
– volume: 28
  start-page: 10
  year: 2009
  ident: e_1_2_9_15_1
  publication-title: Ironmaking
– ident: e_1_2_9_10_1
  doi: 10.2355/isijinternational.42.504
– volume: 58
  start-page: 30
  year: 2023
  ident: e_1_2_9_26_1
  publication-title: Iron Steel
– ident: e_1_2_9_14_1
  doi: 10.1080/03019233.2017.1400732
– ident: e_1_2_9_19_1
  doi: 10.1021/acsomega.2c05029
– ident: e_1_2_9_32_1
  doi: 10.1016/j.eswa.2018.12.022
– ident: e_1_2_9_4_1
  doi: 10.1080/03019233.2021.1907957
– ident: e_1_2_9_33_1
  doi: 10.1016/j.physa.2011.12.004
– volume: 29
  start-page: 23
  year: 2010
  ident: e_1_2_9_12_1
  publication-title: Ironmaking
– volume: 53
  start-page: 29
  year: 2018
  ident: e_1_2_9_3_1
  publication-title: Iron Steel
– ident: e_1_2_9_20_1
  doi: 10.1007/s12613-023-2636-3
– ident: e_1_2_9_21_1
  doi: 10.1002/cjce.24790
– ident: e_1_2_9_16_1
  doi: 10.1179/030192309X12506804200627
– ident: e_1_2_9_7_1
  doi: 10.1007/s11663-021-02399-w
– ident: e_1_2_9_29_1
  doi: 10.1007/s11042-020-10139-6
– ident: e_1_2_9_13_1
  doi: 10.1051/metal/2020007
– ident: e_1_2_9_36_1
  doi: 10.1002/widm.1249
– ident: e_1_2_9_11_1
  doi: 10.3390/pr7080519
– ident: e_1_2_9_22_1
  doi: 10.1631/FITEE.2200366
– ident: e_1_2_9_27_1
  doi: 10.2355/isijinternational.ISIJINT-2020-249
SSID ssj0000388674
Score 2.3708167
Snippet For complex, difficult‐to‐control, and hour‐delay blast furnace (BF) systems, the quantitative characterization, prediction, and adjustment of the BF hearth...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms data-driven analyses
Genetic algorithms
hearth activities
Machine learning
Metallurgical analysis
prediction and feedbacks
process metallurgies
Process metallurgy
time lags
Title Evaluation, Prediction, and Feedback of Blast Furnace Hearth Activity Based on Data‐Driven Analysis and Process Metallurgy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsrin.202300385
https://www.proquest.com/docview/2921877695
Volume 95
WOSCitedRecordID wos001110613100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1869-344X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000388674
  issn: 1611-3683
  databaseCode: DRFUL
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60etCDb7FaZQ-CFxfz6m5ybK2hghZRC72FfUWLkkoaBcGDP8Hf6C9xNkljexBBbxuyGcLOzM43-_gGoUM3cKUlfUpiFfgEQoAmXMWU2FIwEUtIMpTMi02wXs8fDIKrqVv8BT9EteBmPCOfr42DczE--SYNHadDw18KENpsbs2jBQeMt1lDC53rsH9RrbMYthOakzEDtrGJS313wt1oOSezQmZj0zfgnIatedwJV___x2topcScuFUYyTqa08kGWp5iItxEb2cV6_cxvkrN7k3R5onCIUQ4weUDHsW4DWg7w6GRKDXugp9k97glixoUuA0xUeFRgjs845_vH53UTKZ4wnySSyuvJuBLDbj_8Tm9e91C_fDs9rRLysIMREJC2yRUSM5d6mmbA8BQkND6UtNY-EzY3NKe8ixXGZ4eAF9x0_FYoLVDuW9xLXzRpO42qiWjRO8gHGtBJVOutKnywEg4t20VW56ymGZUizoiE5VEsmQtN8UzHqOCb9mJzKhG1ajW0VHV_6ng6_ixZ2Oi4aj023HkBAB5GKMBvHZyXf4iJbq5Pu9VT7t_-WgPLUHbK46CN1AtS5_1PlqUL9lwnB6U9vwF5Zf4rw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA66K6gH3-LbHAQvBvvapD2u7pYV10V8gLeSV1WUrnSrIHjwJ_gb_SVO2m7XPYgg3vpIh5LMZL6ZJN8gtOcGrrSkT0msAp-AC9CEq5gSWwomYglBhpJ5sQnW6_k3N8F5uZvQnIUp-CGqhJuxjHy-NgZuEtKHI9bQQXpvCEwBQ5vVrUlU90CXQMnrrYvwulslWgzdCc3ZmAHc2MSlvjskb7Scw3Eh485phDi_49bc8YTz__DLC2iuRJ24WajJIprQyRKa_cZFuIze2hXv9wE-T836TXHNE4VD8HGCywfcj_ER4O0Mh0ai1LgDlpLd4aYsqlDgI_CKCvcT3OIZ_3z_aKVmOsVD7pNcWnk4AZ9pQP6Pz-nt6wq6DttXxx1SlmYgEkLaBqFCcu5ST9scIIaCkNaXmsbCZ8LmlvaUZ7nKMPUA_IobjscCrR3KfYtr4YsGdVdRLekneg3hWAsqmXKlTZUHasK5bavY8pTFNKNarCMyHJNIlrzlpnzGY1QwLjuR6dWo6tV1tF-1fyoYO35suTUc4qi03EHkBAB6GKMBvHbywfxFSnR5cdKr7jb-8tEumu5cnXWj7knvdBPNwHOv2Bi-hWpZ-qy30ZR8ye4H6U6p3F_L6vyf
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSxxBEC7iKqKHRI2SNRr7IHixcV7bPXNcXQcluiw-wNvQTxVlVmbHgJBDfoK_Mb8k1TOzox4kEHKbR08xdFV1fdWPrwC2wyRUnooZtTqJKYYAQ4W2jPpKcmkVJhlaVcUm-HAYX10lo2Y3oTsLU_NDtBNuzjOq8do5uHnQdu-FNXRS3DoCU8TQbnVrBmYjV0mmA7ODs_TypJ1ocXQnrGJjRnDj05DF4ZS80Qv23gp5G5xeEOdr3FoFnvTTf_jlJfjYoE7Sr81kGT6YfAUWX3ERfoafhy3v9y4ZFW79pr4WuSYpxjgp1B0ZW7KPeLskqZOoDDlCTylvSF_VVSjIPkZFTcY5GYhS_P71PCjccEqm3CeVtOZwAjk1iPzvH4vrp1W4TA8vDo5oU5qBKkxpe5RJJUTIIuMLhBgaU9pYGWZlzKUvPBPpyAu1Y-pB-GV7QcQTYwImYk8YGcseC9egk49z8wWINZIprkPlMx2hmQjh-9p6kfa44czILtCpTjLV8Ja78hn3Wc24HGSuV7O2V7uw07Z_qBk73m25MVVx1njuJAsSBD2cswRfB5Uy_yIlOz87HrZ36__y0RbMjwZpdnI8_P4VFvBxVO8L34BOWTyaTZhTP8rbSfGtse0_W-r8Gg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation%2C+Prediction%2C+and+Feedback+of+Blast+Furnace+Hearth+Activity+Based+on+Data%E2%80%90Driven+Analysis+and+Process+Metallurgy&rft.jtitle=Steel+research+international&rft.au=Shi%2C+Quan&rft.au=Tang%2C+Jue&rft.au=Chu%2C+Mansheng&rft.date=2024-02-01&rft.issn=1611-3683&rft.eissn=1869-344X&rft.volume=95&rft.issue=2&rft_id=info:doi/10.1002%2Fsrin.202300385&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_srin_202300385
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1611-3683&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1611-3683&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1611-3683&client=summon