Convergence of recursive functions on computers

A theorem is presented which has applications in the numerical computation of fixed points of recursive functions. If a sequence of functions {fn} is convergent on a metric space I ⊆ ℝ, then it is possible to observe this behaviour on the set 𝔻 ⊂ ℚ of all numbers represented in a computer. However,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of engineering (Stevenage, England) Ročník 2014; číslo 10; s. 560 - 562
Hlavní autor: Nepomuceno, Erivelton Geraldo
Médium: Journal Article
Jazyk:angličtina
Vydáno: The Institution of Engineering and Technology 01.10.2014
Wiley
Témata:
ISSN:2051-3305, 2051-3305
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A theorem is presented which has applications in the numerical computation of fixed points of recursive functions. If a sequence of functions {fn} is convergent on a metric space I ⊆ ℝ, then it is possible to observe this behaviour on the set 𝔻 ⊂ ℚ of all numbers represented in a computer. However, as 𝔻 is not complete, the representation of fn on 𝔻 is subject to an error. Then fn and fm are considered equal when its differences computed on 𝔻 are equal or lower than the sum of error of each fn and fm. An example is given to illustrate the use of the theorem.
AbstractList A theorem is presented which has applications in the numerical computation of fixed points of recursive functions. If a sequence of functions {f(n)} is convergent on a metric space I ⊆ ℝ, then it is possible to observe this behaviour on the set 𝔻 ⊂ ℚ of all numbers represented in a computer. However, as 𝔻 is not complete, the representation of f(n) on 𝔻 is subject to an error. Then f(n) and f(m) are considered equal when its differences computed on 𝔻 are equal or lower than the sum of error of each f(n) and f(m). An example is given to illustrate the use of the theorem.
A theorem is presented which has applications in the numerical computation of fixed points of recursive functions. If a sequence of functions {fn } is convergent on a metric space I ⊆ ℝ, then it is possible to observe this behaviour on the set 𝔻 ⊂ ℚ of all numbers represented in a computer. However, as 𝔻 is not complete, the representation of fn on 𝔻 is subject to an error. Then fn and fm are considered equal when its differences computed on 𝔻 are equal or lower than the sum of error of each fn and fm. An example is given to illustrate the use of the theorem.
A theorem is presented which has applications in the numerical computation of fixed points of recursive functions. If a sequence of functions { f n } is convergent on a metric space I ⊆ ℝ, then it is possible to observe this behaviour on the set ⊂ ℚ of all numbers represented in a computer. However, as is not complete, the representation of f n on is subject to an error. Then f n and f m are considered equal when its differences computed on are equal or lower than the sum of error of each f n and f m . An example is given to illustrate the use of the theorem.
Author Nepomuceno, Erivelton Geraldo
Author_xml – sequence: 1
  givenname: Erivelton Geraldo
  surname: Nepomuceno
  fullname: Nepomuceno, Erivelton Geraldo
  email: nepomuceno@ufsj.edu.br
  organization: 2Model and Control Group, Department of Electrical Engineering, Federal University of São João del-Rei, São João del-Rei, Brazil
BookMark eNp9kc1PAjEQxRuDiYgcve_Fg4eF6QdL96gEFELCBc9Nt50lJbAl3QXjf28RTYgRT520v_dm-uaWtCpfISH3FHoURN5fe-wxoKIHjMkr0mYwoCnnMGid1TekW9drAKBcMBC0TfojXx0wrLAymPgyCWj2oXYHTMp9ZRrnqzrxVWL8drdvMNR35LrUmxq732eHvE3Gy9FrOl-8TEdP89RwyUVKC2MZpVra0mIcL4Ms51KWWSbRWlkwk0vLZHwqqLaFtTa3nBUDAF4A5Ix3yPTka71eq11wWx0-lNdOfV34sFI6NM5sUEk00iCHwqIULEeth9FEi6GhgtliGL34ycsEX9cBS2Vco49_a4J2G0VBHSNUMUJ1jFAdI4yq9JfqZ4pLfHbi390GP_6H1XI2Zs-TuAcQUfh4EjpsIrYPVQz2YpOHP9jZYnzmvbMl_wTX6p5Z
CitedBy_id crossref_primary_10_1080_21642583_2017_1387874
crossref_primary_10_1016_j_amc_2018_02_020
Cites_doi 10.1007/BF01020332
10.1038/261459a0
10.1049/el:20030881
10.1017/CBO9780511626296
10.1137/1.9780898718072
10.1007/BF02703801
10.1007/s11071-013-1007-4
ContentType Journal Article
Copyright 2021 The Institution of Engineering and Technology
Copyright_xml – notice: 2021 The Institution of Engineering and Technology
DBID IDLOA
24P
AAYXX
CITATION
DOA
DOI 10.1049/joe.2014.0228
DatabaseName IET Digital Library Open Access
Wiley Online Library Open Access
CrossRef
Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: WRHA-Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2051-3305
EndPage 562
ExternalDocumentID oai_doaj_org_article_8ec8ce30bde8429eaa73b0a47c142db7
10_1049_joe_2014_0228
TJE2BF00104
Genre article
GrantInformation_xml – fundername: CNPq/INERGE
GroupedDBID 24P
5VS
AAJGR
ADACO
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BFFAM
GROUPED_DOAJ
IDLOA
KQ8
OCL
OK1
RIE
RIG
RNS
RUI
0R~
1OC
AAHJG
ABJCF
ABQXS
ACCMX
ACESK
ACXQS
AFKRA
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
HCIFZ
IAO
IGS
IPNFZ
ITC
M43
M7S
M~E
PIMPY
PTHSS
ROL
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3834-1bcd211a8dfde0496069388f668edd8b2c98d28e04b1adbddd9d32b5003b00923
IEDL.DBID 24P
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000215583300090&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2051-3305
IngestDate Fri Oct 03 12:53:05 EDT 2025
Wed Oct 29 21:24:55 EDT 2025
Tue Nov 18 21:56:03 EST 2025
Wed Jan 22 16:30:48 EST 2025
Tue Jan 05 21:45:52 EST 2021
Thu May 09 18:03:13 EDT 2019
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords convergent function sequence
metric space
numerical computation
recursive functions
convergence of numerical methods
set theory
recursive function fixed points
recursive function convergence
Language English
License Attribution-NonCommercial-NoDerivs
http://creativecommons.org/licenses/by-nc-nd/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3834-1bcd211a8dfde0496069388f668edd8b2c98d28e04b1adbddd9d32b5003b00923
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fjoe.2014.0228
PageCount 3
ParticipantIDs wiley_primary_10_1049_joe_2014_0228_TJE2BF00104
crossref_citationtrail_10_1049_joe_2014_0228
iet_journals_10_1049_joe_2014_0228
doaj_primary_oai_doaj_org_article_8ec8ce30bde8429eaa73b0a47c142db7
crossref_primary_10_1049_joe_2014_0228
ProviderPackageCode IDLOA
RUI
PublicationCentury 2000
PublicationDate October 2014
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: October 2014
PublicationDecade 2010
PublicationTitle Journal of engineering (Stevenage, England)
PublicationYear 2014
Publisher The Institution of Engineering and Technology
Wiley
Publisher_xml – name: The Institution of Engineering and Technology
– name: Wiley
References Feigenbaum, M.J. (C1) 1978; 19
Dudek, P.; Juncu, V. (C6) 2003; 39
May, R.M. (C5) 1976; 261
1976
1978; 19
2008
1994
2003; 39
1976; 261
2001
November 2013
February 2006
e_1_2_5_7_1
Rudin W. (e_1_2_5_8_1) 1976
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_5_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
Schröder B.S. (e_1_2_5_9_1) 2008
References_xml – volume: 39
  start-page: 1431
  year: 2003
  end-page: 1432
  ident: C6
  article-title: Compact discrete-time chaos generator circuit
  publication-title: Electron. Lett.
– volume: 19
  start-page: 25
  issue: 1
  year: 1978
  end-page: 52
  ident: C1
  article-title: Quantitative universality for a class of nonlinear transformations
  publication-title: J. Stat. Phys.
– volume: 261
  start-page: 459
  issue: 5560
  year: 1976
  end-page: 467
  ident: C5
  article-title: Simple mathematical models with very complicated dynamics
  publication-title: Nature
– volume: 261
  start-page: 459
  issue: 5560
  year: 1976
  end-page: 467
  article-title: Simple mathematical models with very complicated dynamics
  publication-title: Nature
– start-page: 819
  year: November 2013
  end-page: 830
  article-title: Difference map and its electronic circuit realization
– volume: 39
  start-page: 1431
  year: 2003
  end-page: 1432
  article-title: Compact discrete‐time chaos generator circuit
  publication-title: Electron. Lett.
– volume: 19
  start-page: 25
  issue: 1
  year: 1978
  end-page: 52
  article-title: Quantitative universality for a class of nonlinear transformations
  publication-title: J. Stat. Phys.
– start-page: 69
  year: February 2006
  end-page: 78
  article-title: Electronic circuit realization of the logistic map
– year: 1976
– year: 1994
– year: 2008
– year: 2001
– ident: e_1_2_5_2_1
  doi: 10.1007/BF01020332
– ident: e_1_2_5_6_1
  doi: 10.1038/261459a0
– ident: e_1_2_5_7_1
  doi: 10.1049/el:20030881
– ident: e_1_2_5_5_1
  doi: 10.1017/CBO9780511626296
– volume-title: Principles of mathematical analysis
  year: 1976
  ident: e_1_2_5_8_1
– ident: e_1_2_5_10_1
  doi: 10.1137/1.9780898718072
– ident: e_1_2_5_3_1
  doi: 10.1007/BF02703801
– ident: e_1_2_5_4_1
  doi: 10.1007/s11071-013-1007-4
– volume-title: Mathematical analysis: a concise introduction
  year: 2008
  ident: e_1_2_5_9_1
SSID ssj0001342041
Score 1.9880136
Snippet A theorem is presented which has applications in the numerical computation of fixed points of recursive functions. If a sequence of functions {fn} is...
A theorem is presented which has applications in the numerical computation of fixed points of recursive functions. If a sequence of functions {fn } is...
A theorem is presented which has applications in the numerical computation of fixed points of recursive functions. If a sequence of functions { f n } is...
A theorem is presented which has applications in the numerical computation of fixed points of recursive functions. If a sequence of functions {f(n)} is...
SourceID doaj
crossref
wiley
iet
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 560
SubjectTerms convergence of numerical methods
convergent function sequence
metric space
numerical computation
recursive function convergence
recursive function fixed points
recursive functions
set theory
SummonAdditionalLinks – databaseName: Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4Q4gAHxFOUx1QhxInSV1iSI5s2oR0GhyHtFiVxKg2hdtoGvx8nLWM7DC5cGyu1bCe2E-czITdtZjSzwKLMpDSiStMIo3wboQFZdEBCU1C-2QQbDvl4LF5WWn25mrAaHrgWXMyt4cbmiQbLce-0SrFcJ4oynDsD7d-RJ0ysJFP-dCWnWULTBlQTo-D4rXKgmCm9d4Ava07IY_Wja5nYxXqE6l1M_4DsN7Fh-FjzdEi2bHlE9lYQA49J3HVV4v7BpA2rIpy543JXgR46B-VtKKzK0DS9GuYn5LXfG3WfoqbnQWQwV6RRqg1gTqY4FGCRb8wvRM550W5zC8B1ZgSHjOOQThVoABCQZ_oBZasdflJ-SrbLqrRnJKQABUYbCgROzNz1KcMtxSYanTquShWQu28hSNMAgru-FO_SX0xTIVFm0slMOpkF5HZJPq2RMDYRdpxEl0QOwNp_QLXKRq3yL7UG5Br1IZsFNd_0p9Ya0eC59zMop1AEJPb6_J1hORr0sk7fQxWd_wfzF2TXTV7X_F2S7cXsw16RHfO5mMxnLW-pX2Wv6Uc
  priority: 102
  providerName: Directory of Open Access Journals
Title Convergence of recursive functions on computers
URI http://digital-library.theiet.org/content/journals/10.1049/joe.2014.0228
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fjoe.2014.0228
https://doaj.org/article/8ec8ce30bde8429eaa73b0a47c142db7
Volume 2014
WOSCitedRecordID wos000215583300090&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: WRHA-Wiley Online Library Open Access
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6xsIflwGN3EeVRRQjtiWwbx9TOEVArQKJwYAU3y_Y4K6RVg9rCkd_OjBMKPYC04pKD7TjOPDwzfnwDsN9T3qmAKhU-k6m0Tqbk5YeUBCiQASqcRBuTTajhUN_eFldNnlO-C1PjQ8wW3Fgz4nzNCm5dnYWEnFpW8opRLjP5mxFcvsBSluWKxVrIq9dFllyKbsxeKUj4UordDxucTeqjM9fDnF2K8P1kbe7CdN5pjVZnsPrp8a7BSuNwJke1hKzDQhh9h-U3MIQ_oHPCR8_jLcyQVGUy5jV4PtaesNWLgplUo8Q3CSAmP-HPoH99cpo2iRRSTwGoTDPnkQI9q7HEQKOhoKXItS57PR0QtRO-0Cg0VbnMokPEAnPhDolhjkGZ8g1YHFWjsAmJRCzJhbFYUMeK92QVzVOh68hTIFW3LTh4IaPxDco4J7v4Z-JutywM0cEwHQzToQW_Zs3va3iN9xoeM09mjRgVOxZU47-mUTKjg9c-5F2HQZOdDdYq-gErFcmhQKdasEccNY2WTt77Unuu0fll_7XS3GPZgk7k88cDNtfnfXE8iPhHW__9xjZ84_L61OAOLE7HD2EXvvrH6d1k3I5C3o7LB_S8eOrT8-Zs-AyQFvuo
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7xqAQcgLYgUgqsKsSpSxKvib3HghLxauAQJG6W7fGiIJRFSdrfz4x3G8iBSlWv61mvdzzjedj-BuCwo7xTAVUqfFum0jqZkpcfUhKgQAYodxJtLDah-n19f5_fvrnFX-FDzBJurBlxvWYF54R0FXBKBsl8LBnmsi2PGcJlEZYlWRquYSDk7WuWJZOiFctXCpK-lIL3kxpok_pozvUwZ5gifj-Zm2GYznut0ez0Nv5_wJuwXrucyY9KRj7CQhh9grU3QISfoXnGh8_jPcyQlEUy5iw8H2xP2O5F0UzKUeLrEhCTLbjrdQdn52ldSiH1FILKtO08UqhnNRYYaDQUtuSZ1kWnowOidsLnGoWmJte26BAxx0y4E5oyx7BM2TYsjcpR2IFEIhbkxFjMqWPFu7KKVqrQcuQrkLLbBnz_w0fja5xxLnfxZOJ-t8wN8cEwHwzzoQFHM_LnCmDjPcJTnpQZEeNixwfl-MHUamZ08NqHrOUwaLK0wVpFP2ClIkkU6FQDvtGUmlpPJ-99aX-O6PKm-9ponrFoQDNO9N8HbAaXXXHaiwhIX_75jQNYOR_8vDbXF_2rXVhlmuoM4VdYmo5_hT344H9Ph5PxfpT4F8nM_FU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5BWSH2wGNZRBcoEVrtiWzbxK2dIy2toKBuD12pN8v2OKgINVVb-P0742T7OBQJcY0njjMPz4wf3wBcdqWz0qOME9cWsTBWxBTl-5gUyJMDyqxAE4pNyPFYzWbZZO8Wf4kPsV1wY8sI8zUbuF9iXiacgkEyfxYMc9kW1wzh8hAeiQ7Ns4ztLCa7VZZUJK1QvjIh7Yspee9UQJvUR_OghwPHFPD7yd3M_eYwag1uZ_js_wf8HJ5WIWf0qdSRF_DAL87gdA-I8CU0-3z4PNzD9FGRRyteheeD7RH7vaCaUbGIXFUCYn0Ot8PBtP8lrkopxI5SUBG3rUNK9YzCHD2NhtKWLFUq73aVR1Q2cZnCRFGTbRu0iJhhmtgOicwyLFP6CmqLYuFfQyQQcwpiDGbUseRdWUkzlW9ZihXI2E0dPt7zUbsKZ5zLXfzSYb9bZJr4oJkPmvlQh6st-bIE2DhG2GOhbIkYFzs8KFY_dGVmWnmnnE9bFr0iT-uNkfQDRkjSxAStrMMHEqmu7HR97EuNA6LRzWDXqEmmdWgGQf99wHo6GiS9YUBAuvjnN97D48nnof7-dfztDTxhkvII4VuobVa__Ts4cX828_WqERT-DnGv-9k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+of+recursive+functions+on+computers&rft.jtitle=Journal+of+engineering+%28Stevenage%2C+England%29&rft.au=Nepomuceno%2C+Erivelton+Geraldo&rft.date=2014-10-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=2051-3305&rft.eissn=2051-3305&rft.volume=2014&rft.issue=10&rft.spage=560&rft.epage=562&rft_id=info:doi/10.1049%2Fjoe.2014.0228&rft.externalDBID=10.1049%252Fjoe.2014.0228&rft.externalDocID=TJE2BF00104
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-3305&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-3305&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-3305&client=summon