Forecasting healthcare service volumes with machine learning algorithms

As an efficacious solution to remedying the imbalance of medical resources, the online medical platform has burgeoned expeditiously. Apt allotment of medical resources on the medical platform can facilitate patients in reasonably selecting physicians and time slots, coordinating doctors' clinic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of forecasting Jg. 43; H. 6; S. 2358 - 2377
Hauptverfasser: Yang, Dong‐Hui, Zhu, Ke‐Hui, Wang, Ruo‐Nan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Chichester Wiley Periodicals Inc 01.09.2024
Schlagworte:
ISSN:0277-6693, 1099-131X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract As an efficacious solution to remedying the imbalance of medical resources, the online medical platform has burgeoned expeditiously. Apt allotment of medical resources on the medical platform can facilitate patients in reasonably selecting physicians and time slots, coordinating doctors' clinical arrangements, and generating precise projections of medical platform service volume to enhance patient satisfaction and alleviate physicians' workload. To this end, grounded in the data‐driven method, this paper assembles an exhaustive feature set encompassing hospital features, physician features, and patient features. Through feature selection, appropriate features are screened, and machine learning algorithms are leveraged to accurately forecast doctors' online consultation volume. Subsequently, to glean the influence relationship between online medical services and offline medical services, this paper introduces features of offline medical services such as hospital registration volume and regional gross domestic product (GDP) to solve the prediction of offline medical service volume using online medical information. The findings signify that online data feature prediction can pinpoint superior machine learning models for online medical platform service volume (with the optimal accuracy up to 96.89%). Online features exert a positive effect on predicting offline medical service volume, but the accuracy declines to some degree (the optimal accuracy is 73%). Physicians with favorable reputations on the online platform are more susceptible to attain higher offline appointment volumes when online consultation volume is a vital feature impacting offline appointment volume.
AbstractList As an efficacious solution to remedying the imbalance of medical resources, the online medical platform has burgeoned expeditiously. Apt allotment of medical resources on the medical platform can facilitate patients in reasonably selecting physicians and time slots, coordinating doctors' clinical arrangements, and generating precise projections of medical platform service volume to enhance patient satisfaction and alleviate physicians' workload. To this end, grounded in the data‐driven method, this paper assembles an exhaustive feature set encompassing hospital features, physician features, and patient features. Through feature selection, appropriate features are screened, and machine learning algorithms are leveraged to accurately forecast doctors' online consultation volume. Subsequently, to glean the influence relationship between online medical services and offline medical services, this paper introduces features of offline medical services such as hospital registration volume and regional gross domestic product (GDP) to solve the prediction of offline medical service volume using online medical information. The findings signify that online data feature prediction can pinpoint superior machine learning models for online medical platform service volume (with the optimal accuracy up to 96.89%). Online features exert a positive effect on predicting offline medical service volume, but the accuracy declines to some degree (the optimal accuracy is 73%). Physicians with favorable reputations on the online platform are more susceptible to attain higher offline appointment volumes when online consultation volume is a vital feature impacting offline appointment volume.
Author Zhu, Ke‐Hui
Yang, Dong‐Hui
Wang, Ruo‐Nan
Author_xml – sequence: 1
  givenname: Dong‐Hui
  orcidid: 0000-0002-9447-3161
  surname: Yang
  fullname: Yang, Dong‐Hui
  email: dhyang@seu.edu.cn
  organization: Southeast University
– sequence: 2
  givenname: Ke‐Hui
  surname: Zhu
  fullname: Zhu, Ke‐Hui
  organization: Southeast University
– sequence: 3
  givenname: Ruo‐Nan
  surname: Wang
  fullname: Wang, Ruo‐Nan
  organization: Southeast University
BookMark eNp1kE1Lw0AQhhepYFsFf0LAi5fU_Wizm6MUW4VCQRS8LdPNbLMlydbdtKX_3tR6Ej3NYZ7nneEdkF7jGyTkltERo5Q_WB9GgglxQfqM5nnKBPvokT7lUqZZlosrMohxQymVivE-mc98QAOxdc06KRGqtjQQMIkY9s5gsvfVrsaYHFxbJjWY0jWYVAihOQlQrX3oNnW8JpcWqog3P3NI3mdPb9PndLGcv0wfF6kRSogUClNIpZhcZRMLDDLo3gBbjCUiBRQFZjwvOFCjrDIqQ2FXnGcrmPCJRItiSO7OudvgP3cYW73xu9B0J7WgSlI2ljLvqPszZYKPMaDV2-BqCEfNqD7VpLua9KmmDh39Qo1roXW-aQO46i8hPQsHV-Hx32A9W75-8188aHww
CitedBy_id crossref_primary_10_3390_smartcities8030097
crossref_primary_10_1002_for_3255
Cites_doi 10.3389/fpsyg.2022.886077
10.2196/jmir.2003
10.3389/fpubh.2022.986933
10.3390/ijerph192013293
10.1080/10864415.2016.1171977
10.1016/j.indmarman.2018.01.004
10.2196/16765
10.1016/j.ijmedinf.2022.104781
10.1038/s41598-022-11607-9
10.1080/16549716.2023.2179163
10.21037/qims-22-268
10.1002/for.2953
10.3390/healthcare9101401
10.1038/s42256-022-00538-9
10.1007/978-3-319-08416-9_11
10.1016/j.dss.2015.05.006
10.1287/isre.2017.0749
10.1111/j.1365-2753.2009.01297.x
10.1287/isre.2019.0836
10.3389/fpubh.2014.00095
10.1186/s12911-016-0386-0
10.1016/j.dss.2012.10.047
10.2196/21892
10.1108/INTR-07-2020-0379
10.1007/s12652-019-01434-8
10.1016/j.omega.2022.102784
10.1016/j.dss.2013.01.003
10.2196/jmir.6423
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
8BJ
FQK
JBE
DOI 10.1002/for.3133
DatabaseName CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
DatabaseTitleList
CrossRef
International Bibliography of the Social Sciences (IBSS)
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Social Sciences (General)
Business
EISSN 1099-131X
EndPage 2377
ExternalDocumentID 10_1002_for_3133
FOR3133
Genre article
GrantInformation_xml – fundername: Key Project of Philosophy and Social Science Research in Colleges and Universities in Jiangsu Province
  funderid: 2023SJZD014
– fundername: Foundation of Yunnan Key Laboratory of Service Computing
  funderid: YNSC23111
– fundername: National Natural Science Foundation of China
– fundername: Fundamental Research Funds for the Central Universities
GroupedDBID -~X
.3N
.GA
.L6
.Y3
05W
0R~
10A
1L6
1OB
1OC
1XV
29K
3-9
31~
33P
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51Y
52M
52O
52Q
52S
52T
52U
52W
5GY
5VS
66C
702
7PT
7WY
8-0
8-1
8-3
8-4
8-5
8FL
8FW
8R4
8R5
8UM
8VB
930
9M8
A04
AABNI
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AAONW
AAOUF
AASGY
AAXRX
AAYCA
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABSOO
ABTAH
ABUWG
ACAHQ
ACBKW
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACHQT
ACPOU
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEMA
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADNMO
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFKFF
AFKRA
AFPWT
AFWVQ
AFYRF
AFZJQ
AHBTC
AHQJS
AIAGR
AIFKG
AIURR
AIWBW
AJBDE
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ASTYK
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BEZIV
BFHJK
BKOMP
BMXJE
BNVMJ
BPHCQ
BQESF
BROTX
BRXPI
BY8
CCPQU
CS3
D-C
D-D
D-I
DCZOG
DJZPD
DPXWK
DR2
DRFUL
DRSSH
DU5
DWQXO
EBO
EBS
EBU
EJD
F00
F01
F5P
FEDTE
FRNLG
G-S
G.N
G50
GNP
GODZA
GROUPED_ABI_INFORM_ARCHIVE
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
K1G
K60
K6~
KQQ
LATKE
LAW
LC2
LC4
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
M0C
M55
MEWTI
MK4
MRFUL
MRSSH
MSFUL
MSSSH
MXFUL
MXSSH
N04
N06
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2Y
P4C
PALCI
PQBIZ
PQBZA
PQQKQ
PROAC
Q.N
Q11
Q2X
QB0
QRW
QWB
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TH9
TN5
U5U
UB1
UHB
V2E
V8K
VQA
W8V
W99
WBKPD
WEBCB
WH7
WIB
WIH
WII
WOHZO
WQZ
WRC
WSUWO
WWB
WXSBR
XG1
XPP
XSW
XV2
ZCG
ZL0
ZY4
ZZTAW
~IA
~WP
AAMMB
AAYXX
ABBNM
ADXHL
AEFGJ
AETEA
AEYWJ
AFFHD
AGHNM
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
O8X
PHGZM
PHGZT
8BJ
FQK
JBE
ID FETCH-LOGICAL-c3833-adcd78817b65fa1a6a781afd47ee0ae3de629d2a0c8f8c86e3fb226ba5257efe3
IEDL.DBID DRFUL
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001199817000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0277-6693
IngestDate Sat Nov 08 05:14:41 EST 2025
Tue Nov 18 19:51:17 EST 2025
Sat Nov 29 02:17:11 EST 2025
Wed Jan 22 17:17:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3833-adcd78817b65fa1a6a781afd47ee0ae3de629d2a0c8f8c86e3fb226ba5257efe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9447-3161
PQID 3087014779
PQPubID 48359
PageCount 20
ParticipantIDs proquest_journals_3087014779
crossref_primary_10_1002_for_3133
crossref_citationtrail_10_1002_for_3133
wiley_primary_10_1002_for_3133_FOR3133
PublicationCentury 2000
PublicationDate September 2024
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Journal of forecasting
PublicationYear 2024
Publisher Wiley Periodicals Inc
Publisher_xml – name: Wiley Periodicals Inc
References 2021; 9
2015; 78
2018; 29
2010; 16
2021; 23
2019; 30
2023; 16
2020; 11
2012; 14
2016; 18
2016; 16
2020; 8
2023; 42
2022; 163
2014; 2
2013; 55
2022
2022; 4
2022; 12
2022; 13
2016; 20
2023; 115
2022; 15
2014; 57
2014
2022; 10
2022; 32
2018; 71
2022; 11
2022; 19
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
Wu J. (e_1_2_9_28_1) 2022; 11
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
Chen H. (e_1_2_9_3_1) 2022; 15
e_1_2_9_4_1
e_1_2_9_2_1
Fan W. J. (e_1_2_9_5_1) 2022
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 16
  issue: 1
  year: 2023
  article-title: Utilization of telehealth services in low‐ and middle‐income countries amid the COVID‐19 pandemic: A narrative summary
  publication-title: Global Health Action
– volume: 9
  issue: 10
  year: 2021
  article-title: The utilization and benefits of telehealth services by health care professionals managing breast cancer patients during the COVID‐19 pandemic
  publication-title: Healthcare
– volume: 13
  issue: 4
  year: 2022
  article-title: The effects of online text comments on patients' choices: The mediating roles of comment sentiment and comment content
  publication-title: Frontiers in Psychology
– volume: 16
  start-page: 1215
  issue: 6
  year: 2010
  end-page: 1220
  article-title: How do patients choose their doctors for primary care in a free market?
  publication-title: Journal of Evaluation in Clinical Practice
– volume: 57
  start-page: 417
  year: 2014
  end-page: 427
  article-title: Factors influencing online health information search: An empirical analysis of a national cancer‐related survey
  publication-title: Decision Support Systems
– volume: 163
  year: 2022
  article-title: The effect of interactive factors on online health consultation review deviation: An empirical investigation
  publication-title: International Journal of Medical Informatics
– volume: 115
  year: 2023
  article-title: Physician selection based on user‐generated content considering interactive criteria and risk preferences of patients
  publication-title: Omega‐International Journal of Management Science
– volume: 8
  issue: 2
  year: 2020
  article-title: Analysis of massive online medical consultation service data to understand physicians' economic return: Observational data mining study
  publication-title: JMIR Medical Informatics
– volume: 14
  issue: 1
  year: 2012
  article-title: A changing landscape of physician quality reporting: Analysis of patients' online ratings of their physicians over a 5‐year period
  publication-title: Journal of Medical Internet Research
– volume: 11
  start-page: 2925
  year: 2020
  end-page: 2942
  article-title: Mining patient opinion to evaluate the service quality in healthcare: A deep‐learning approach
  publication-title: Journal of Ambient Intelligence and Humanized Computing
– volume: 30
  start-page: 872
  issue: 3
  year: 2019
  end-page: 891
  article-title: When a doctor knows, it shows: An empirical analysis of doctors' responses in a Q&A Forum of an online healthcare portal
  publication-title: Information Systems Research
– volume: 55
  start-page: 941
  issue: 4
  year: 2013
  end-page: 947
  article-title: Digital health communities: The effect of their motivation mechanisms
  publication-title: Decision Support Systems
– volume: 29
  start-page: 849
  issue: 4
  year: 2018
  end-page: 870
  article-title: Exit, voice, and response on digital platforms: An empirical investigation of online management response strategies
  publication-title: Information Systems Research
– volume: 71
  start-page: 203
  issue: 2
  year: 2018
  end-page: 214
  article-title: Offline retailers expanding online to compete with manufacturers: Strategies and channel power
  publication-title: Industrial Marketing Management
– volume: 32
  start-page: 454
  year: 2022
  end-page: 476
  article-title: Doctor recommendation on healthcare consultation platforms: An integrated framework of knowledge graph and deep learning
  publication-title: Internet Research
– volume: 4
  start-page: 814
  issue: 10
  year: 2022
  article-title: Forecasting SARS‐CoV‐2 transmission and clinical risk at small spatial scales by the application of machine learning architectures to syndromic surveillance data
  publication-title: Nature Machine Intelligence
– volume: 23
  issue: 3
  year: 2021
  article-title: Effectiveness of interactive tools in online health care communities: Social exchange theory perspective
  publication-title: Journal of Medical Internet Research
– volume: 15
  start-page: 68
  issue: 3
  year: 2022
  end-page: 74
  article-title: The relationship between the level of trust and self‐efficacy of hospitalized patients and the behavior of medical decision‐making: Using physician‐patient interactions as the mediator
  publication-title: Chinese Journal of Health Policy
– volume: 18
  issue: 10
  year: 2016
  article-title: The impact of the internet on health consultation market concentration: An econometric analysis of secondary data
  publication-title: Journal of Medical Internet Research
– year: 2022
– volume: 19
  issue: 20
  year: 2022
  article-title: Internal or external word‐of‐mouth (WOM), why do patients choose doctors on online medical services (OMSs) single platform in China?
  publication-title: International Journal of Environmental Research and Public Health
– volume: 11
  start-page: 1
  issue: 1
  year: 2022
  end-page: 23
  article-title: What affects patients' choice of consultant: An empirical study of online doctor consultation service
  publication-title: Electronic Commerce Research
– volume: 13
  start-page: 1957
  issue: 3
  year: 2022
  end-page: 1971
  article-title: A systematic review of the modelling of patient arrivals in emergency departments
  publication-title: Quantitative Imaging in Medicine and Surgery
– volume: 20
  start-page: 551
  issue: 4
  year: 2016
  end-page: 577
  article-title: The impact of individual and organizational reputation on physicians' appointments online
  publication-title: International Journal of Electronic Commerce
– volume: 42
  start-page: 1245
  year: 2023
  end-page: 1260
  article-title: A deep learning model for online doctor rating prediction
  publication-title: Journal of Forecasting
– volume: 12
  start-page: 7603
  issue: 1
  year: 2022
  article-title: Analyzing historical and future acute neurosurgical demand using an AI‐enabled predictive dashboard
  publication-title: Scientific Reports
– volume: 10
  year: 2022
  article-title: Patient's behavior of selection physician in online health communities: Based on an elaboration likelihood model
  publication-title: Frontiers in Public Health
– volume: 16
  start-page: 151
  year: 2016
  article-title: Exploring the impact of word‐of‐mouth about physicians' service quality on patient choice based on online health communities
  publication-title: BMC Medical Informatics and Decision Making
– start-page: 111
  year: 2014
  end-page: 126
– volume: 2
  start-page: 95
  year: 2014
  end-page: 95
  article-title: Establishing an independent mobile health program for chronic disease self‐management support in Bolivia
  publication-title: Frontiers in Public Health
– volume: 78
  start-page: 113
  year: 2015
  end-page: 121
  article-title: Exploring the influence of the online physician service delivery process on patient satisfaction
  publication-title: Decision Support Systems
– ident: e_1_2_9_4_1
  doi: 10.3389/fpsyg.2022.886077
– ident: e_1_2_9_6_1
  doi: 10.2196/jmir.2003
– volume: 15
  start-page: 68
  issue: 3
  year: 2022
  ident: e_1_2_9_3_1
  article-title: The relationship between the level of trust and self‐efficacy of hospitalized patients and the behavior of medical decision‐making: Using physician‐patient interactions as the mediator
  publication-title: Chinese Journal of Health Policy
– ident: e_1_2_9_22_1
  doi: 10.3389/fpubh.2022.986933
– ident: e_1_2_9_25_1
  doi: 10.3390/ijerph192013293
– ident: e_1_2_9_17_1
  doi: 10.1080/10864415.2016.1171977
– ident: e_1_2_9_11_1
  doi: 10.1016/j.indmarman.2018.01.004
– ident: e_1_2_9_9_1
  doi: 10.2196/16765
– ident: e_1_2_9_7_1
  doi: 10.1016/j.ijmedinf.2022.104781
– ident: e_1_2_9_20_1
  doi: 10.1038/s41598-022-11607-9
– ident: e_1_2_9_26_1
  doi: 10.1080/16549716.2023.2179163
– ident: e_1_2_9_10_1
  doi: 10.21037/qims-22-268
– ident: e_1_2_9_13_1
  doi: 10.1002/for.2953
– ident: e_1_2_9_19_1
  doi: 10.3390/healthcare9101401
– ident: e_1_2_9_27_1
  doi: 10.1038/s42256-022-00538-9
– ident: e_1_2_9_16_1
  doi: 10.1007/978-3-319-08416-9_11
– volume-title: An empirical investigation of their impact on offline appointments
  year: 2022
  ident: e_1_2_9_5_1
– ident: e_1_2_9_31_1
  doi: 10.1016/j.dss.2015.05.006
– ident: e_1_2_9_14_1
  doi: 10.1287/isre.2017.0749
– ident: e_1_2_9_29_1
  doi: 10.1111/j.1365-2753.2009.01297.x
– ident: e_1_2_9_12_1
  doi: 10.1287/isre.2019.0836
– ident: e_1_2_9_21_1
  doi: 10.3389/fpubh.2014.00095
– volume: 11
  start-page: 1
  issue: 1
  year: 2022
  ident: e_1_2_9_28_1
  article-title: What affects patients' choice of consultant: An empirical study of online doctor consultation service
  publication-title: Electronic Commerce Research
– ident: e_1_2_9_18_1
  doi: 10.1186/s12911-016-0386-0
– ident: e_1_2_9_30_1
  doi: 10.1016/j.dss.2012.10.047
– ident: e_1_2_9_23_1
  doi: 10.2196/21892
– ident: e_1_2_9_32_1
  doi: 10.1108/INTR-07-2020-0379
– ident: e_1_2_9_24_1
  doi: 10.1007/s12652-019-01434-8
– ident: e_1_2_9_15_1
  doi: 10.1016/j.omega.2022.102784
– ident: e_1_2_9_2_1
  doi: 10.1016/j.dss.2013.01.003
– ident: e_1_2_9_8_1
  doi: 10.2196/jmir.6423
SSID ssj0007812
Score 2.3740375
Snippet As an efficacious solution to remedying the imbalance of medical resources, the online medical platform has burgeoned expeditiously. Apt allotment of medical...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2358
SubjectTerms Accuracy
Algorithms
Clinical information
feature selection
forecast
Forecasting
GDP
Gross Domestic Product
Health services
Imbalance
Internet
Machine learning
online medical platform
Patient satisfaction
Patients
Physicians
Practitioner patient relationship
Projections
Registration
Satisfaction
Title Forecasting healthcare service volumes with machine learning algorithms
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffor.3133
https://www.proquest.com/docview/3087014779
Volume 43
WOSCitedRecordID wos001199817000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-131X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007812
  issn: 0277-6693
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90E_XFj6lYnRJB_Hgoa5t-pI-iTh9kiDjYW0nS6xT2Iev07zdp005BQfCpgSa0XHKX3yV3vwM4FQGGLrpoK_TGbR8DYTNfoC0dztJYYODyrCg2EfV6bDCIH01Upc6FKfkh6gM3rRmFvdYKzkXeWZCGKkynHE5Kl6Gpc6qU49W8eer2H2o7HLHirrO4pAzDmFbUs47XqcZ-34wWCPMrTi02mu7mf35xCzYMvCRX5XrYhiWctGC1im5vwVqViKzaVpmaS4x65-TCcFBf7sCdLtkpea6DoslLHSNG8tK0kNKo5UQf45JxEZCJxFSgGBI-Gk5n6s0434V-9_b5-t42NRdsqXxVavNUppphPhJhkHGXh1yJkWepHyE6HGmKoRenHncky5hkIdJMKAQnuGZVxQzpHjQm0wnuA9HunFR4kyqM4XuZxzKhvR2k0mNCoQILzivhJ9IQkuu6GKOkpFL2EiW_RMvPgpO651tJwvFDn3Y1f4lRwzzRdIfq41EUW3BWzNSv4xPldOvnwV87HsK6pwBOGW_WhsZ89o5HsCI_5q_57Ngsxk-33-O8
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_mJs4XP6bidGoE8eOhbG26NsUnUefEOUQ22FtJ0usU9iHr9O836dcUFASfGmhCyyV3-d3l8juAE9FEx0QTDYXeuGFjUxjMFmjIBmeBJ7Bp8jAuNuF2u2ww8J4KcJndhUn4IfKAm9aM2F5rBdcB6fqCNVSBOuVxUroEJduhLitC6ea51e_khthl8WFnfErpOB7NuGcbVj0b-303WkDMr0A13mla6__6xw1YSwEmuUpWxCYUcFKBlSy_vQLl7CqyaleTy7kkVfCInKcs1BdbcKeLdkoe6bRo8pJniZEoMS4kMWsR0YFcMo5TMpGkNSiGhI-G05l6M462od-67V23jbTqgiGVt0oNHshAc8y7wmmG3OQOV3LkYWC7iA2ONEDH8gKLNyQLmWQO0lAoDCe45lXFEOkOFCfTCe4C0Q6dVIiTKpRhW6HFQqH9HaTSYkLhgiqcZdL3ZUpJritjjPyETNnylfx8Lb8qHOc93xIajh_61LIJ9FNFjHxNeKg-7rpeFU7jqfp1vK_cbv3c-2vHIyi3e48dv3PffdiHVUvBnST7rAbF-ewdD2BZfsxfo9lhujI_AVwc56w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FfXiW1yfEcTHoWzb9JHiSdSqKIuIgreSpJNV0N1lq_5-kzatCgqCpwY6oWWSmXyTTL4B2BUhRh566Gj0xp0AQ-GwQKAjXc7yRGDocVUWm4i7XfbwkNyMwVF9F6bih2g23IxllP7aGDgOc9X5ZA3VoE5HnJSOw0QQJmHQgonT2_T-unHEMSsPO8tTyihKaM096_qduu_31egTYn4FquVKk8796x_nYdYCTHJczYgFGMP-IkzV-e2LMF1fRdbtdnU5l1gDL8iBZaE-XIJzU7RT8sKkRZPHJkuMFJVzIZVbK4jZyCUvZUomEluDokf4c28w0m9eimW4T8_uTi4cW3XBkTpapQ7PZW445mMRhYp7POJaj1zlQYzocqQ5Rn6S-9yVTDHJIqRKaAwnuOFVRYV0BVr9QR9XgZiATmrESTXKCHzlMyVMvINU-kxoXNCG_Vr7mbSU5KYyxnNWkSn7mdZfZvTXhp1GcljRcPwgs1EPYGYNscgM4aH-eBwnbdgrh-rX_pkOu81z7a-C2zB1c5pm15fdq3WY8TXaqZLPNqD1OnrDTZiU769PxWjLTswPC5XnJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+healthcare+service+volumes+with+machine+learning+algorithms&rft.jtitle=Journal+of+forecasting&rft.au=Dong%E2%80%90Hui+Yang&rft.au=Ke%E2%80%90Hui+Zhu&rft.au=Ruo%E2%80%90Nan+Wang&rft.date=2024-09-01&rft.pub=Wiley+Periodicals+Inc&rft.issn=0277-6693&rft.eissn=1099-131X&rft.volume=43&rft.issue=6&rft.spage=2358&rft.epage=2377&rft_id=info:doi/10.1002%2Ffor.3133&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6693&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6693&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6693&client=summon