Advances in Ionic Thermoelectrics: From Materials to Devices

As an extended member of the thermoelectric family, ionic thermoelectrics (i‐TEs) exhibit exceptional Seebeck coefficients and applicable power factors, and as a result have triggered intensive interest as a promising energy conversion technique to harvest and exploit low‐grade waste heat (<130 °...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced energy materials Ročník 13; číslo 9
Hlavní autoři: Sun, Shuai, Li, Meng, Shi, Xiao‐Lei, Chen, Zhi‐Gang
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.03.2023
Témata:
ISSN:1614-6832, 1614-6840
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:As an extended member of the thermoelectric family, ionic thermoelectrics (i‐TEs) exhibit exceptional Seebeck coefficients and applicable power factors, and as a result have triggered intensive interest as a promising energy conversion technique to harvest and exploit low‐grade waste heat (<130 °C). The last decade has witnessed great progress in i‐TE materials and devices; however, there are ongoing disputes about the inherent fundamentals and working mechanisms of i‐TEs, and a comprehensive overview of this field is required urgently. In this review, the prominent i‐TE effects, which set the ground for i‐TE materials, or more precisely, thermo‐electrochemical systems, are first elaborated. Then, TE performance, capacitance capability, and mechanical properties of such system‐based i‐TE materials, followed by a critical discussion on how to manipulate these factors toward a higher figure‐of‐merit, are examined. After that, the prevalent molding methods for assembling i‐TE materials into applicable devices are summarized. To conclude, several evaluation criteria for i‐TE devices are proposed to quantitatively illustrate the promise of practical applications. It is therefore clarified that, if the recent trend of developing i‐TEs can continue, the waste heat recycling landscape will be significantly altered. In this review, the progress in ionic thermoelectrics, including fundamental theories, material designations, property characteristics, performance regulations, molding methodologies, and device employments, are comprehensively summarized. Perspective remarks on the outlook and challenges of ionic thermoelectrics are also discussed.
ISSN:1614-6832
1614-6840
DOI:10.1002/aenm.202203692