Advances in Ionic Thermoelectrics: From Materials to Devices
As an extended member of the thermoelectric family, ionic thermoelectrics (i‐TEs) exhibit exceptional Seebeck coefficients and applicable power factors, and as a result have triggered intensive interest as a promising energy conversion technique to harvest and exploit low‐grade waste heat (<130 °...
Saved in:
| Published in: | Advanced energy materials Vol. 13; no. 9 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
01.03.2023
|
| Subjects: | |
| ISSN: | 1614-6832, 1614-6840 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | As an extended member of the thermoelectric family, ionic thermoelectrics (i‐TEs) exhibit exceptional Seebeck coefficients and applicable power factors, and as a result have triggered intensive interest as a promising energy conversion technique to harvest and exploit low‐grade waste heat (<130 °C). The last decade has witnessed great progress in i‐TE materials and devices; however, there are ongoing disputes about the inherent fundamentals and working mechanisms of i‐TEs, and a comprehensive overview of this field is required urgently. In this review, the prominent i‐TE effects, which set the ground for i‐TE materials, or more precisely, thermo‐electrochemical systems, are first elaborated. Then, TE performance, capacitance capability, and mechanical properties of such system‐based i‐TE materials, followed by a critical discussion on how to manipulate these factors toward a higher figure‐of‐merit, are examined. After that, the prevalent molding methods for assembling i‐TE materials into applicable devices are summarized. To conclude, several evaluation criteria for i‐TE devices are proposed to quantitatively illustrate the promise of practical applications. It is therefore clarified that, if the recent trend of developing i‐TEs can continue, the waste heat recycling landscape will be significantly altered.
In this review, the progress in ionic thermoelectrics, including fundamental theories, material designations, property characteristics, performance regulations, molding methodologies, and device employments, are comprehensively summarized. Perspective remarks on the outlook and challenges of ionic thermoelectrics are also discussed. |
|---|---|
| AbstractList | As an extended member of the thermoelectric family, ionic thermoelectrics (i‐TEs) exhibit exceptional Seebeck coefficients and applicable power factors, and as a result have triggered intensive interest as a promising energy conversion technique to harvest and exploit low‐grade waste heat (<130 °C). The last decade has witnessed great progress in i‐TE materials and devices; however, there are ongoing disputes about the inherent fundamentals and working mechanisms of i‐TEs, and a comprehensive overview of this field is required urgently. In this review, the prominent i‐TE effects, which set the ground for i‐TE materials, or more precisely, thermo‐electrochemical systems, are first elaborated. Then, TE performance, capacitance capability, and mechanical properties of such system‐based i‐TE materials, followed by a critical discussion on how to manipulate these factors toward a higher figure‐of‐merit, are examined. After that, the prevalent molding methods for assembling i‐TE materials into applicable devices are summarized. To conclude, several evaluation criteria for i‐TE devices are proposed to quantitatively illustrate the promise of practical applications. It is therefore clarified that, if the recent trend of developing i‐TEs can continue, the waste heat recycling landscape will be significantly altered.
In this review, the progress in ionic thermoelectrics, including fundamental theories, material designations, property characteristics, performance regulations, molding methodologies, and device employments, are comprehensively summarized. Perspective remarks on the outlook and challenges of ionic thermoelectrics are also discussed. |
| Author | Shi, Xiao‐Lei Chen, Zhi‐Gang Li, Meng Sun, Shuai |
| Author_xml | – sequence: 1 givenname: Shuai surname: Sun fullname: Sun, Shuai organization: University of Southern Queensland – sequence: 2 givenname: Meng surname: Li fullname: Li, Meng organization: Queensland University of Technology – sequence: 3 givenname: Xiao‐Lei surname: Shi fullname: Shi, Xiao‐Lei email: xiaolei.shi@qut.edu.au organization: Queensland University of Technology – sequence: 4 givenname: Zhi‐Gang orcidid: 0000-0002-9309-7993 surname: Chen fullname: Chen, Zhi‐Gang email: zhigang.chen@usq.edu.au organization: Queensland University of Technology |
| BookMark | eNo9j81LAzEQxYNUsNZePecf2JqvbhLxstRWC61e6jkk0wlG9kN2l0r_e7coO5eZ92De43dLJnVTIyH3nC04Y-LBY10tBBOCydyKKzLlOVdZbhSbjLcUN2TedV9sGGU5k3JKnorjydeAHU013TZ1Anr4xLZqsETo2wTdI920TUX3vsc2-bKjfUOf8ZSGnztyHQcH5_97Rj4268PqNdu9v2xXxS4DOZRmoJTQedQhah7AoFoabyB4rcFbbiPwIELk0jA4BqU0oI5qqYBZE9EYI2fE_uX-pBLP7rtNlW_PjjN3YXcXdjeyu2L9th-V_AW8SFFZ |
| CitedBy_id | crossref_primary_10_1016_j_apmt_2024_102240 crossref_primary_10_1016_j_nwnano_2024_100050 crossref_primary_10_1002_adsu_202400509 crossref_primary_10_1002_macp_202400358 crossref_primary_10_1016_j_matlet_2024_137038 crossref_primary_10_1039_D5TA05571G crossref_primary_10_1016_j_mtphys_2024_101375 crossref_primary_10_3390_gels11070508 crossref_primary_10_1016_j_colsurfa_2025_137971 crossref_primary_10_1016_j_pmatsci_2024_101420 crossref_primary_10_1007_s42247_023_00553_5 crossref_primary_10_1016_j_cej_2025_159714 crossref_primary_10_1016_j_mtener_2023_101383 crossref_primary_10_1021_acsnano_5c01742 crossref_primary_10_1002_adfm_202410127 crossref_primary_10_1002_adfm_202500048 crossref_primary_10_1002_smll_202412336 crossref_primary_10_1016_j_mtener_2024_101546 crossref_primary_10_26599_NR_2025_94907291 crossref_primary_10_1002_anie_202511293 crossref_primary_10_1002_smll_202400477 crossref_primary_10_1016_j_jallcom_2023_169601 crossref_primary_10_1021_acs_chemrev_5c00060 crossref_primary_10_1111_jace_19744 crossref_primary_10_1002_smll_202310777 crossref_primary_10_1016_j_nanoen_2025_111057 crossref_primary_10_3390_ma16196574 crossref_primary_10_1016_j_pmatsci_2023_101156 crossref_primary_10_1002_eom2_12428 crossref_primary_10_1021_acsami_5c06208 crossref_primary_10_1016_j_jallcom_2023_173337 crossref_primary_10_1016_j_jallcom_2025_179319 crossref_primary_10_1002_adma_202414663 crossref_primary_10_1002_adfm_202305835 crossref_primary_10_1002_adfm_202406968 crossref_primary_10_1002_advs_202509400 crossref_primary_10_1063_5_0179343 crossref_primary_10_1016_j_est_2024_110437 crossref_primary_10_1021_acsnano_5c04885 crossref_primary_10_1002_adfm_202417740 crossref_primary_10_1016_j_cej_2025_168809 crossref_primary_10_1016_j_jpcs_2023_111726 crossref_primary_10_1016_j_nxmate_2025_100627 crossref_primary_10_1002_adma_202304182 crossref_primary_10_1103_sv9k_t1tr crossref_primary_10_1016_j_optmat_2024_116107 crossref_primary_10_1021_acs_nanolett_5c02774 crossref_primary_10_1002_smll_202502884 crossref_primary_10_1007_s42114_025_01239_8 crossref_primary_10_1016_j_cej_2023_147257 crossref_primary_10_1002_smll_202503338 crossref_primary_10_1016_j_cej_2025_165667 crossref_primary_10_1016_j_cej_2024_151650 crossref_primary_10_1002_adfm_202307960 crossref_primary_10_1021_acsami_5c00480 crossref_primary_10_1016_j_enchem_2024_100136 crossref_primary_10_1039_D4NR03423F crossref_primary_10_1002_adfm_202307835 crossref_primary_10_1002_eom2_12406 crossref_primary_10_1016_j_cej_2024_156415 crossref_primary_10_1007_s42765_025_00529_6 crossref_primary_10_1016_j_pmatsci_2025_101575 crossref_primary_10_1002_smll_202304599 crossref_primary_10_1002_adma_202510413 crossref_primary_10_1002_adts_202400151 crossref_primary_10_1002_adfm_202513969 crossref_primary_10_1002_advs_202406589 crossref_primary_10_1039_D4TA08215J crossref_primary_10_1007_s40820_023_01292_2 crossref_primary_10_1002_aenm_202405502 crossref_primary_10_1002_adfm_202402823 crossref_primary_10_1002_ange_202511293 crossref_primary_10_1002_marc_202400837 crossref_primary_10_1002_smll_202407622 crossref_primary_10_1016_j_applthermaleng_2024_124399 crossref_primary_10_1002_aenm_202500584 crossref_primary_10_1002_adfm_202415856 crossref_primary_10_1002_cjoc_202300406 crossref_primary_10_1021_acs_chemrev_5c00245 crossref_primary_10_1016_j_cej_2025_168065 crossref_primary_10_1016_j_cej_2024_149784 crossref_primary_10_1002_marc_202400041 crossref_primary_10_1016_j_nanoen_2024_110388 crossref_primary_10_1016_j_nanoen_2023_108482 crossref_primary_10_1016_j_cej_2024_150307 crossref_primary_10_1039_D5NR01895A crossref_primary_10_1038_s41467_025_60103_x crossref_primary_10_1039_D4EE00768A crossref_primary_10_1016_j_cej_2025_164715 crossref_primary_10_1016_j_nxener_2025_100261 crossref_primary_10_1002_adsu_202400039 crossref_primary_10_3390_ma17143524 crossref_primary_10_1016_j_cej_2024_154970 crossref_primary_10_1016_j_ceramint_2023_10_065 crossref_primary_10_1063_5_0235864 crossref_primary_10_3390_polym16040555 crossref_primary_10_1002_adma_202420214 crossref_primary_10_1039_D4SC04158E crossref_primary_10_1016_j_cej_2024_155789 crossref_primary_10_1007_s42114_024_00863_0 crossref_primary_10_1002_ece2_17 crossref_primary_10_1002_adma_202313023 crossref_primary_10_1002_smll_202311811 crossref_primary_10_1016_j_scib_2025_03_032 crossref_primary_10_1063_5_0174133 crossref_primary_10_1016_j_cej_2025_160206 crossref_primary_10_1016_j_solmat_2023_112542 crossref_primary_10_20517_energymater_2025_34 crossref_primary_10_1039_D5TA00734H crossref_primary_10_1016_j_device_2023_100188 crossref_primary_10_1016_j_cej_2025_165588 crossref_primary_10_1007_s40820_025_01866_2 crossref_primary_10_1002_smll_202408048 crossref_primary_10_1021_acsami_5c08724 crossref_primary_10_1016_j_cej_2024_157823 crossref_primary_10_1021_acs_langmuir_5c00403 crossref_primary_10_1016_j_ceramint_2023_11_035 crossref_primary_10_1088_2752_5724_ad0ca9 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2023 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH |
| DBID | 24P |
| DOI | 10.1002/aenm.202203692 |
| DatabaseName | Wiley Online Library Open Access |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1614-6840 |
| EndPage | n/a |
| ExternalDocumentID | AENM202203692 |
| Genre | reviewArticle |
| GrantInformation_xml | – fundername: Australian Research Council – fundername: QUT Capacity Building Professor Program – fundername: HBIS‐UQ Innovation Centre for Sustainable Steel project |
| GroupedDBID | 05W 0R~ 1OC 24P 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- |
| ID | FETCH-LOGICAL-c3832-c44276f7bf71bc8e458a8cba77ca919fc1b2bf1380cdb447ce7f454c098fe8883 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 153 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000918599000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1614-6832 |
| IngestDate | Wed Jan 22 16:14:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3832-c44276f7bf71bc8e458a8cba77ca919fc1b2bf1380cdb447ce7f454c098fe8883 |
| ORCID | 0000-0002-9309-7993 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202203692 |
| PageCount | 45 |
| ParticipantIDs | wiley_primary_10_1002_aenm_202203692_AENM202203692 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-01 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Advanced energy materials |
| PublicationYear | 2023 |
| References | 2004; 22 2020 2012; 32 358 2010; 10 1998 1988; 83 51 2016 2020; 45 4 1960; 32 2018; 281 2017 2020 2019; 29 3 4 2018 2022 2021; 3 259 18 2018 2020; 10 12 2019; 10 2022 2022; 648 10 2010 2020 2022 2022 2019 2004 2017 2005; 12 316 32 35 276 33 117 105 2008; 108 2019; 18 2020; 13 2020; 12 2019 2021 2017 2021; 2 13 9 50 2016 2022 2021; 138 5 8 1956; 177 2008 2005 2014 2010 2014; 101 21 10 26 112 2013; 6 2018; 48 2019; 286 2018; 6 2018; 9 2020 2018; 59 455 2013; 54 2008; 27 2019; 29 2018; 30 1926; 48 2022; 32 2018 2018; 4 8 2020 2019 2013; 8 5 3 2019 2015 2021 2019 2006; 136 7 214 11 22 2016; 45 2012 2006; 116 247 2020 2021; 5 98 1959; 106 2019; 8 2019; 9 2021; 48 2020 2022 2022 2019 2020; 120 239 125 88 106 2019; 31 1920; 1 2016 2020 2016 2017; 2 207 16 133 2019; 1 1999; 28 1960; 255 2015 2020; 44 53 2020; 268 1931 1931; 38 37 2003 2019 2019; 44 11 15 2020; 32 2018 2021; 3 8 2018 2011 2016 2012 1959 1976; 6 47 55 22 63 123 1978 2016 2018; 19 54–55 14 2022 2022; 5 2 2016; 4 2016; 5 2016; 6 2016; 7 2003; 107 2016; 2 2021 2015 2022; 3 15 51 2022; 3 2017 2021; 1 35 2020; 30 2021 2020 2019; 125 12 320 2022; 7 2022 2022 2021; 14 9 8 2022; 9 2021 2022 1994 2014; 31 14 19 17 2009 1990 2006; 156 54 274 2022; 12 2022; 13 2021 2020 2014 2021; 89 262 7 5 2021; 371 2022; 14 2022; 10 2021; 61 2018; 10 1879 1856; 2 20 2022; 16 2016; 8 2016; 9 2017; 5 2018; 122 2017; 1 2002 2014; 69 2 2021; 23 2017; 3 2020 2021 2016 2020 2019; 120 31 15 367 138 2022 2018; 14 18 2003 2009; 119 62 2021; 126 2019; 57 2020; 368 2013 2018; 42 30 2017; 358 2021 2022 2023; 50 91 131 2020; 8 2014; 1 2018 2021 2015; 93 121 97 2017; 31 2020; 5 2018; 132 2021; 32 2012 2018; 11 17 2021; 31 2020; 2 2016 2018; 1 47 2014; 3 2021; 33 2021 2021; 3 299 2004 2012 2013; 37 14 9 2020; 49 2020 2010 2020 2020; 11 9 12 11 2011; 21 2016; 116 2021 2017 2021; 121 53 3 2014; 7 2022 2018; 10 5 2010; 73 2019; 198 2021; 9 2021; 7 2017 2020 2017; 8 397 7 2002 2022; 35 144 2015; 6 2021; 5 1948; 73 2015; 5 2021 2021 2022; 33 8 14 2021; 4 2021; 3 2022 2022; 4 12 2017 2017; 225 29 2011; 40 2020 2012; 12 488 2007 2021; 23 7 2016; 52 2011 1928; 134 50 2022 2014; 101 26 2019; 141 2015; 8 2015; 7 2018 2021; 122 11 2019 2016; 31 7 2016; 55 2021; 13 2021; 16 1989; 93 2018 2021; 11 18 2015; 27 2021; 11 2014 2022 2021; 62 10 11 2014 2015; 26 16 2019 2018; 2 18 2021; 19 1962 2007; 40 2021 2020; 3 61 2009; 2 2018; 54 2020 2019 2013; 11 31 9 |
| References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 108 start-page: 1419 year: 2008 publication-title: Chem. Rev. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 122 11 start-page: 277 year: 2018 2021 publication-title: J. Phys. Chem. C Membranes – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 2 year: 2020 publication-title: Phys. Rev. Res. – volume: 45 4 start-page: 6147 3130 year: 2016 2020 publication-title: Chem. Soc. Rev. Mater. Chem. Front. – volume: 3 61 start-page: 53 120 year: 2021 2020 publication-title: ACS Appl. Electron Mater. Isr. J. Chem. – volume: 10 start-page: 1765 year: 2019 publication-title: Nat. Commun. – volume: 648 10 year: 2022 2022 publication-title: Colloids Surf., A Energy Technol. – volume: 5 start-page: 8071 year: 2017 publication-title: J. Mater. Chem. C – volume: 101 21 10 26 112 start-page: 5317 1931 7792 year: 2008 2005 2014 2010 2014 publication-title: Phys. Rev. Lett. Langmuir Soft Matter Langmuir Phys. Rev. Lett. – volume: 3 15 51 start-page: 3641 7467 485 year: 2021 2015 2022 publication-title: ACS Appl. Electron. Mater. Nano Lett. Chem. Soc. Rev. – volume: 22 start-page: 2345 year: 2004 publication-title: Ann. Geophys. – volume: 2 start-page: 419 year: 2009 publication-title: ChemSusChem – volume: 6 start-page: 2639 year: 2013 publication-title: Energy Environ. Sci. – volume: 73 year: 2010 publication-title: Rep. Prog. Phys. – volume: 8 5 3 start-page: 441 549 year: 2020 2019 2013 publication-title: J. Mater. Chem. C Adv. Electron. Mater. Adv. Energy Mater. – volume: 48 start-page: 582 year: 2018 publication-title: Nano Energy – volume: 4 start-page: 4070 year: 2021 publication-title: ACS Appl. Energy Mater. – volume: 32 358 start-page: 3205 year: 2020 2012 publication-title: Adv. Mater. J. Non‐Cryst. Solids – volume: 23 7 start-page: 1674 4895 year: 2007 2021 publication-title: Langmuir Energy Rep. – volume: 32 start-page: 857 year: 1960 publication-title: J. Chem. Phys. – volume: 18 start-page: 608 year: 2019 publication-title: Nat. Mater. – volume: 2 20 start-page: 48 539 year: 1879 1856 publication-title: Arch. Sci. Phys. Nat. Sitzber. Akad. Wiss. Wien, Math‐naturw, Kl. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 371 start-page: 343 year: 2021 publication-title: Science – volume: 61 start-page: 88 year: 2021 publication-title: J. Energy Chem. – volume: 93 start-page: 2079 year: 1989 publication-title: J. Phys. Chem. – volume: 50 91 131 start-page: 9983 year: 2021 2022 2023 publication-title: Dalton Trans. Nano Energy Prog. Mater. Sci. – volume: 120 31 15 367 138 start-page: 7399 691 1196 year: 2020 2021 2016 2020 2019 publication-title: Chem. Rev. Adv. Funct. Mater. Nat. Mater. Science Mater. Sci. Eng., R – volume: 54 start-page: 231 year: 2018 publication-title: Org. Electron. – volume: 1 35 start-page: 1457 161 year: 2017 2021 publication-title: Sustainable Energy Fuels Energy Fuels – volume: 1 start-page: 45 year: 1920 publication-title: Z. Phys. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 2 207 16 133 start-page: 9 874 460 879 year: 2016 2020 2016 2017 publication-title: Microsyst. Technol. Sol. Energy Sensors Energy – volume: 286 year: 2019 publication-title: Bioresour. Technol. – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 11 31 9 start-page: 1604 5238 3220 year: 2020 2019 2013 publication-title: Nat. Commun. Chem. Mater. Soft Matter – volume: 89 262 7 5 start-page: 1959 5 year: 2021 2020 2014 2021 publication-title: Nano Energy Appl. Energy Energy Environ. Sci. npj Flexible Electron. – volume: 125 12 320 year: 2021 2020 2019 publication-title: J. Phys. Chem. C ACS Appl. Mater. Interfaces Electrochim. Acta – volume: 116 247 start-page: 4228 32 year: 2012 2006 publication-title: J. Phys. Chem. B Fluid Phase Equilib. – volume: 52 start-page: 745 year: 2016 publication-title: Chem. Commun. – volume: 281 start-page: 357 year: 2018 publication-title: Electrochim. Acta – volume: 1 year: 2019 publication-title: Research – volume: 120 239 125 88 106 start-page: 6738 220 year: 2020 2022 2022 2019 2020 publication-title: Chem. Rev. Energy Prog. Polym. Sci. Prog. Polym. Sci. Prog. Polym. Sci. – volume: 14 9 8 start-page: 5402 1911 2057 year: 2022 2022 2021 publication-title: ACS Appl. Mater. Interfaces Mater. Horiz. Mater. Horiz. – volume: 5 start-page: 2211 year: 2021 publication-title: Joule – volume: 29 3 4 start-page: 7378 2224 1741 year: 2017 2020 2019 publication-title: Chem. Mater. ACS Appl. Energy Mater. ACS Energy Lett. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 31 7 year: 2019 2016 publication-title: Adv. Mater. Nat. Commun. – volume: 121 53 3 start-page: 6288 561 year: 2021 2017 2021 publication-title: Chem. Rev. Chem. Commun. Trends Chem. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 38 37 start-page: 2265 405 year: 1931 1931 publication-title: Phys. Rev. Phys. Rev. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 27 start-page: 425 year: 2008 publication-title: Eur. Phys. J. E – volume: 69 2 start-page: 881 year: 2002 2014 publication-title: J. Therm. Anal. Calorim. J. Mater. Chem. A – volume: 40 start-page: 907 year: 2011 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 7837 year: 2015 publication-title: Nat. Commun. – volume: 16 start-page: 8347 year: 2022 publication-title: ACS Nano – volume: 57 start-page: 473 year: 2019 publication-title: Nano Energy – volume: 156 54 274 start-page: B353 191 116 year: 2009 1990 2006 publication-title: J. Electrochem. Soc. J. Membr. Sci. J. Membr. Sci. – volume: 28 start-page: 163 year: 1999 publication-title: J. Solution Chem. – volume: 3 259 18 start-page: 501 year: 2018 2022 2021 publication-title: ACS Energy Lett. Energy Mater. Today Phys. – volume: 19 54–55 14 start-page: 770 128 3601 year: 1978 2016 2018 publication-title: Polymer Prog. Polym. Sci. Soft Matter – volume: 13 start-page: 221 year: 2022 publication-title: Nat. Commun. – volume: 31 start-page: 160 year: 2017 publication-title: Nano Energy – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 2915 year: 2020 publication-title: Energy Environ. Sci. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 32 year: 2021 publication-title: Adv. Funct. Mater. – volume: 16 start-page: 129 year: 2021 publication-title: Chem. ‐ Asian J. – volume: 101 26 start-page: 6829 year: 2022 2014 publication-title: Nano Energy Adv. Mater. – volume: 45 start-page: 3383 year: 2016 publication-title: J. Electron. Mater. – volume: 83 51 start-page: 3111 459 year: 1998 1988 publication-title: J. Appl. Phys. Rep. Prog. Phys. – volume: 177 start-page: 668 year: 1956 publication-title: Nature – volume: 27 start-page: 6855 year: 2015 publication-title: Adv. Mater. – volume: 116 year: 2016 publication-title: Phys. Rev. Lett. – volume: 13 start-page: 4621 year: 2022 publication-title: J. Phys. Chem. Lett. – volume: 93 121 97 start-page: 270 1 year: 2018 2021 2015 publication-title: Prog. Mater. Sci. Prog. Mater. Sci. Mater. Sci. Eng., R – volume: 11 18 start-page: 609 year: 2018 2021 publication-title: Energy Environ. Sci. Mater. Today Phys. – volume: 5 start-page: 94 year: 2016 publication-title: ACS Macro Lett. – volume: 9 start-page: 1450 year: 2016 publication-title: Energy Environ. Sci. – volume: 12 488 start-page: 175 294 year: 2020 2012 publication-title: Nano‐Micro Lett. Nature – volume: 141 start-page: 8608 year: 2019 publication-title: J. Am. Chem. Soc. – year: 1962 – volume: 1 47 start-page: 1393 2921 year: 2016 2018 publication-title: ACS Omega Chem. Soc. Rev. – volume: 8 start-page: 672 year: 2019 publication-title: Mater. Today Phys. – volume: 33 8 14 start-page: 3409 year: 2021 2021 2022 publication-title: Adv. Mater. Mater. Horiz. ACS Appl. Mater. Interfaces – volume: 1 start-page: 174 year: 2017 publication-title: Sustainable Energy Fuels – volume: 54 start-page: 1490 year: 2013 publication-title: Polymer – volume: 107 year: 2003 publication-title: J. Phys. Chem. B – volume: 10 start-page: 838 year: 2010 publication-title: Nano Lett. – volume: 5 2 start-page: 9090 275 year: 2022 2022 publication-title: ACS Appl. Energy Mater. ACS Polym. Au – volume: 9 start-page: 5146 year: 2018 publication-title: Nat. Commun. – volume: 55 start-page: 979 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 225 29 start-page: 482 year: 2017 2017 publication-title: Electrochim. Acta Adv. Mater. – volume: 3 start-page: 510 year: 2014 publication-title: ACS Macro Lett. – volume: 136 7 214 11 22 start-page: 6596 4826 4371 year: 2019 2015 2021 2019 2006 publication-title: J. Appl. Polym. Sci. ACS Appl. Mater. Interfaces Compos. Sci. Technol. ACS Appl. Mater. Interfaces Langmuir – volume: 1 start-page: 412 year: 2019 publication-title: Matter – volume: 11 9 12 11 start-page: 444 859 58 year: 2020 2010 2020 2020 publication-title: Nat. Commun. Nat. Mater. ACS Appl. Mater. Interfaces Nat. Commun. – volume: 19 year: 2021 publication-title: Mater. Today Phys. – volume: 8 start-page: 2396 year: 2015 publication-title: Energy Environ. Sci. – volume: 4 12 start-page: 2491 year: 2022 2022 publication-title: ACS Mater. Lett. Adv. Energy Mater. – volume: 7 start-page: 7233 year: 2021 publication-title: Sci. Adv. – volume: 198 year: 2019 publication-title: Energy Convers. Manage. – volume: 12 start-page: 169 year: 2020 publication-title: Nanomicro Lett. – volume: 2 13 9 50 start-page: 7490 9022 year: 2019 2021 2017 2021 publication-title: ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Mater. Interfaces Chem. Soc. Rev. – volume: 13 start-page: 859 year: 2020 publication-title: Energy Environ. Sci. – volume: 3 299 start-page: 4347 465 year: 2021 2021 publication-title: ACS Appl. Polym. Mater. Colloid Polym. Sci. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 2 year: 2016 publication-title: Adv. Electron. Mater. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 7 start-page: 870 year: 2022 publication-title: Nat. Rev. Mater. – volume: 10 5 start-page: 433 year: 2022 2018 publication-title: J. Mater. Chem. C Mater. Today Phys. – volume: 3 year: 2022 publication-title: Cell Rep. Phys. Sci. – volume: 368 start-page: 1091 year: 2020 publication-title: Science – volume: 8 397 7 year: 2017 2020 2017 publication-title: Nat. Commun. Chem. Eng. J. Adv. Energy Mater. – volume: 59 455 start-page: 599 year: 2020 2018 publication-title: Ind. Eng. Chem. Res. Appl. Surf. Sci. – volume: 44 11 15 start-page: 4389 8302 year: 2003 2019 2019 publication-title: Polymer ACS Appl. Mater. Interfaces Soft Matter – volume: 255 start-page: 307 year: 1960 publication-title: Proc. R. Soc. A – volume: 62 10 11 start-page: 5163 3740 year: 2014 2022 2021 publication-title: J. Agric. Food Chem. J. Mater. Chem. A RSC Adv. – volume: 37 14 9 start-page: 2490 2831 6986 year: 2004 2012 2013 publication-title: Macromolecules Green Chem. Soft Matter – volume: 10 start-page: 1093 year: 2019 publication-title: Nat. Commun. – volume: 4 start-page: 3454 year: 2016 publication-title: J. Mater. Chem. C – volume: 106 start-page: 616 year: 1959 publication-title: J. Electrochem. Soc. – volume: 48 start-page: 2577 year: 1926 publication-title: J. Am. Chem. Soc. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 42 30 start-page: 5184 year: 2013 2018 publication-title: Chem. Soc. Rev. Adv. Mater. – volume: 4 8 year: 2018 2018 publication-title: Adv. Electron. Mater. Adv. Electron. Mater. – volume: 23 year: 2021 publication-title: Phys. Chem. Chem. Phys. – volume: 126 year: 2021 publication-title: Phys. Rev. Lett. – volume: 132 start-page: 1 year: 2018 publication-title: Mater. Sci. Eng., R – volume: 7 start-page: 443 year: 2014 publication-title: Nano Res. – volume: 5 start-page: 7946 year: 2020 publication-title: Sci. Rob. – volume: 49 start-page: 7210 year: 2020 publication-title: Chem. Soc. Rev. – volume: 31 14 19 17 start-page: 307 321 year: 2021 2022 1994 2014 publication-title: Adv. Funct. Mater. ACS Appl. Mater. Interfaces J. Biosci. Mater. Today – volume: 7 start-page: 3204 year: 2022 publication-title: ACS Energy Lett. – volume: 119 62 start-page: 899 year: 2003 2009 publication-title: J. Chem. Phys. Pure Appl. Chem. – volume: 35 144 start-page: 1373 2804 year: 2002 2022 publication-title: Macromolecules J. Am. Chem. Soc. – volume: 10 12 year: 2018 2020 publication-title: ACS Appl. Mater. Interfaces ACS Appl. Mater. Interfaces – volume: 26 16 start-page: 423 1134 year: 2014 2015 publication-title: Chem. Mater. ChemPhysChem – volume: 122 start-page: 194 year: 2018 publication-title: J. Phys. Chem. C – volume: 11 17 start-page: 422 226 year: 2012 2018 publication-title: Nat. Mater. Nat. Mater. – volume: 48 start-page: 198 year: 2021 publication-title: Mater. Today – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 134 50 start-page: 283 year: 2011 1928 publication-title: J. Chem. Phys. J. Am. Chem. Soc. – volume: 358 start-page: 430 year: 2017 publication-title: Science – volume: 14 18 start-page: 9209 7469 year: 2022 2018 publication-title: Nanoscale Nano Lett. – volume: 40 start-page: 1024 year: 2011 publication-title: J. Electron. Mater. – volume: 1 start-page: 426 year: 2014 publication-title: ChemElectroChem – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 73 start-page: 1349 year: 1948 publication-title: Phys. Rev. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 5 98 start-page: 3019 year: 2020 2021 publication-title: ACS Omega J. Chem. Educ. – volume: 44 53 start-page: 8484 5085 year: 2015 2020 publication-title: Chem. Soc. Rev. Macromolecules – volume: 48 start-page: 1482 year: 1926 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 696 year: 2021 publication-title: ACS Appl. Electron. Mater. – volume: 268 year: 2020 publication-title: Appl. Energy – volume: 3 8 start-page: 705 year: 2018 2021 publication-title: ACS Energy Lett. Appl. Phys. Rev. – volume: 3 year: 2017 publication-title: Adv. Electron Mater. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 21 year: 2011 publication-title: J. Mater. Chem. – volume: 138 5 8 year: 2016 2022 2021 publication-title: J. Am. Chem. Soc. ACS Appl. Energy Mater. Adv. Sci. – volume: 12 316 32 35 276 33 117 105 start-page: 214 995 6636 213 year: 2010 2020 2022 2022 2019 2004 2017 2005 publication-title: Phys. Chem. Chem. Phys. J. Mol. Liq. Adv. Funct. Mater. Curr. Opin. Electrochem. J. Mol. Liq. J. Solution Chem. Chem. Rev. Chem. Rev. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 6 47 55 22 63 123 start-page: 3376 6260 477 566 154 year: 2018 2011 2016 2012 1959 1976 publication-title: J. Mater. Chem. A Chem. Comm. Angew. Chem., Int. Ed. Adv. Funct. Mater. Biochim. Biophys. Acta J. Electrochem. Soc. – volume: 10 start-page: 4222 year: 2022 publication-title: J. Mater. Chem. A – volume: 40 start-page: 1638 year: 2007 publication-title: Macromolecules – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – volume: 2 18 start-page: 8236 7538 year: 2019 2018 publication-title: ACS Appl. Energy Mater. Nano Lett. |
| SSID | ssj0000491033 |
| Score | 2.6734123 |
| SecondaryResourceType | review_article |
| Snippet | As an extended member of the thermoelectric family, ionic thermoelectrics (i‐TEs) exhibit exceptional Seebeck coefficients and applicable power factors, and as... |
| SourceID | wiley |
| SourceType | Publisher |
| SubjectTerms | devices ionic thermoelectrics materials thermo‐electrochemical |
| Title | Advances in Ionic Thermoelectrics: From Materials to Devices |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202203692 |
| Volume | 13 |
| WOSCitedRecordID | wos000918599000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQMMDAG_GWB1ar9cWpY8RSQSsYWnUAqVtkO7bUoQlKAr8fP0poV9jswZZ1Pp_vzr7vQ-jeQpJYEJYkhRCEpYUmKvUfXV0T3P0EKchANsGn02w-F7O1Kv6ID9El3PzJCPbaH3Cpmt4vaKg0pa8kB_-SJpwR3qE0yTx5A7BZl2Vx_i_tBz5559kwMnD6-4Pc2Ife5hSb7mm4X8aH_1_ZETpY-ZZ4GJXhGG2Z8gTtryEOnqLHYXzzb_CixK8eFhc7RamXVaTDWejmAY_raoknso26idsKP5tgT87Q-3j09vRCVgQKRLvAE4hmDPjAcmU5VTozLM1kppXkXEtBhdVUgbJebLpQjHFtuGUp032RWeNC4-QcbZdVaS4QthS4tTxhQnsIQyWpLFJRGAm0GFgGlwiCSPKPCJKRRzhkyL0w8k4Y-XA0nXS9q78MukZ7nvI9_gO7Qdtt_Wlu0a7-ahdNfRe2_xug9q9J |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQQQIGvhHfeGCNWl-cOkYsFbRqRRt1KFK3yHZsqUMTlAZ-P3ZcAl0RWzzEsk7Pd-fz-T2EHgyEoQFugjDjPKBRpgIZuUZX-wk2PkEEohabYEkSz-d8uu4mdG9hPD9EU3BzO6P2126Du4J0-4c1VOjcPSUHd5XGrRfepjbUOKgDnTZlFpsAk04tKG9TGxp0LYC_qRs70N6cYjM_rQPM4PAflnaEDtbZJe55OByjLZ2foP1fnIOn6Knnb_1XeJHjkSPGxRYq5bLwgjgLtXrEg7JY4omoPDpxVeAXXXuUM_Q26M-eh8FaQiFQ9ugJgaIUWNcwaRiRKtY0ikWspGBMCU64UUSCNCSMOyqTlDKlmaERVR0eG20Px-E5auVFri8QNgSYMSykXDkSQymIyCKeaQEk6xoKlwhqm6TvniYj9YTIkDpjpI0x0l4_mTSjq7_8dI92h7PJOB2PktdrtOcE4H1X2A1qVeWHvkU76rNarMq7GgtfOPSzNA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8MgFCZGjdGDv42_5eC1WXmloxgvi1vjomt20GS3BigkO6xbuurfL5RZ3dV4gwOEvHw8HvDe9yF0byCKDHATRAXnAY0LFcjYJbraJtjzCWIQjdgEy7JkMuHjVTahq4Xx_BDtg5vbGY2_dhtcLwrT-WENFbp0peTgvtK49cJbNGbEARvouH1msQEwCRtBeRva0KBrAfxN3RhCZ32K9fi0OWDSg39Y2iHaX0WXuOfhcIQ2dHmM9n5xDp6gx57_9V_iaYmHjhgXW6hUs7kXxJmq5QNOq_kMj0Tt0YnrOe7rxqOcovd08Pb0HKwkFAJlr54QKEqBdQ2ThhGpEk3jRCRKCsaU4IQbRSRIQ6IkVIWklCnNDI2pCnlitL0cR2dos5yX-hxhQ4AZwyLKlSMxlIKIIuaFFkCKrqFwgaCxSb7wNBm5J0SG3Bkjb42R9wbZqO1d_mXQHdoZ99P8dZi9XKFdp__uk8Ku0WZdfegbtK0-6-myum2g8AVE2rK4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Ionic+Thermoelectrics%3A+From+Materials+to+Devices&rft.jtitle=Advanced+energy+materials&rft.au=Sun%2C+Shuai&rft.au=Li%2C+Meng&rft.au=Shi%2C+Xiao%E2%80%90Lei&rft.au=Chen%2C+Zhi%E2%80%90Gang&rft.date=2023-03-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=13&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202203692&rft.externalDBID=10.1002%252Faenm.202203692&rft.externalDocID=AENM202203692 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |