Prime editing in plants and mammalian cells: Mechanism, achievements, limitations, and future prospects
Clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR‐associated protein (CRISPR/Cas) system has revolutionized genetic research in the life sciences. Four classes of CRISPR/Cas‐derived genome editing agents, such as nuclease, base editor, recombinase, and prime editor have been...
Saved in:
| Published in: | BioEssays Vol. 44; no. 9; pp. e2200032 - n/a |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cambridge
Wiley Subscription Services, Inc
01.09.2022
|
| Subjects: | |
| ISSN: | 0265-9247, 1521-1878, 1521-1878 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR‐associated protein (CRISPR/Cas) system has revolutionized genetic research in the life sciences. Four classes of CRISPR/Cas‐derived genome editing agents, such as nuclease, base editor, recombinase, and prime editor have been introduced for engineering the genomes of diverse organisms. The recently introduced prime editing system offers precise editing without many off‐target effects than traditional CRISPR‐based systems. Many researchers have successfully applied this gene‐editing toolbox in diverse systems for various genome‐editing applications. This review presents the mechanism of prime editing and summarizes the details of the prime editing system applied in plants and mammalian cells for precise genome editing. We also discuss the advantages, limitations, and potential future applications of prime editing in these systems. This review enables the researcher to gain knowledge on prime editing tools and their potential applications in plants and mammalian cells.
Prime editing is a search‐and‐replace genome editing system, which mediates all possible 12 base‐to‐base conversions without DSBs and donor templates at a targeted sequence. We describe how this prime editing system helps in improving genetic studies in plants and mammalian cells with their mechanism, achievements, limitations, and future prospects. |
|---|---|
| AbstractList | Clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated protein (CRISPR/Cas) system has revolutionized genetic research in the life sciences. Four classes of CRISPR/Cas-derived genome editing agents, such as nuclease, base editor, recombinase, and prime editor have been introduced for engineering the genomes of diverse organisms. The recently introduced prime editing system offers precise editing without many off-target effects than traditional CRISPR-based systems. Many researchers have successfully applied this gene-editing toolbox in diverse systems for various genome-editing applications. This review presents the mechanism of prime editing and summarizes the details of the prime editing system applied in plants and mammalian cells for precise genome editing. We also discuss the advantages, limitations, and potential future applications of prime editing in these systems. This review enables the researcher to gain knowledge on prime editing tools and their potential applications in plants and mammalian cells.Clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated protein (CRISPR/Cas) system has revolutionized genetic research in the life sciences. Four classes of CRISPR/Cas-derived genome editing agents, such as nuclease, base editor, recombinase, and prime editor have been introduced for engineering the genomes of diverse organisms. The recently introduced prime editing system offers precise editing without many off-target effects than traditional CRISPR-based systems. Many researchers have successfully applied this gene-editing toolbox in diverse systems for various genome-editing applications. This review presents the mechanism of prime editing and summarizes the details of the prime editing system applied in plants and mammalian cells for precise genome editing. We also discuss the advantages, limitations, and potential future applications of prime editing in these systems. This review enables the researcher to gain knowledge on prime editing tools and their potential applications in plants and mammalian cells. Clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR‐associated protein (CRISPR/Cas) system has revolutionized genetic research in the life sciences. Four classes of CRISPR/Cas‐derived genome editing agents, such as nuclease, base editor, recombinase, and prime editor have been introduced for engineering the genomes of diverse organisms. The recently introduced prime editing system offers precise editing without many off‐target effects than traditional CRISPR‐based systems. Many researchers have successfully applied this gene‐editing toolbox in diverse systems for various genome‐editing applications. This review presents the mechanism of prime editing and summarizes the details of the prime editing system applied in plants and mammalian cells for precise genome editing. We also discuss the advantages, limitations, and potential future applications of prime editing in these systems. This review enables the researcher to gain knowledge on prime editing tools and their potential applications in plants and mammalian cells. Clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR‐associated protein (CRISPR/Cas) system has revolutionized genetic research in the life sciences. Four classes of CRISPR/Cas‐derived genome editing agents, such as nuclease, base editor, recombinase, and prime editor have been introduced for engineering the genomes of diverse organisms. The recently introduced prime editing system offers precise editing without many off‐target effects than traditional CRISPR‐based systems. Many researchers have successfully applied this gene‐editing toolbox in diverse systems for various genome‐editing applications. This review presents the mechanism of prime editing and summarizes the details of the prime editing system applied in plants and mammalian cells for precise genome editing. We also discuss the advantages, limitations, and potential future applications of prime editing in these systems. This review enables the researcher to gain knowledge on prime editing tools and their potential applications in plants and mammalian cells. Clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR‐associated protein (CRISPR/Cas) system has revolutionized genetic research in the life sciences. Four classes of CRISPR/Cas‐derived genome editing agents, such as nuclease, base editor, recombinase, and prime editor have been introduced for engineering the genomes of diverse organisms. The recently introduced prime editing system offers precise editing without many off‐target effects than traditional CRISPR‐based systems. Many researchers have successfully applied this gene‐editing toolbox in diverse systems for various genome‐editing applications. This review presents the mechanism of prime editing and summarizes the details of the prime editing system applied in plants and mammalian cells for precise genome editing. We also discuss the advantages, limitations, and potential future applications of prime editing in these systems. This review enables the researcher to gain knowledge on prime editing tools and their potential applications in plants and mammalian cells. Prime editing is a search‐and‐replace genome editing system, which mediates all possible 12 base‐to‐base conversions without DSBs and donor templates at a targeted sequence. We describe how this prime editing system helps in improving genetic studies in plants and mammalian cells with their mechanism, achievements, limitations, and future prospects. |
| Author | Hillary, V. Edwin Ceasar, S. Antony |
| Author_xml | – sequence: 1 givenname: V. Edwin surname: Hillary fullname: Hillary, V. Edwin organization: Rajagiri College of Social Sciences – sequence: 2 givenname: S. Antony orcidid: 0000-0003-4106-1531 surname: Ceasar fullname: Ceasar, S. Antony email: antony_sm2003@yahoo.co.in organization: Rajagiri College of Social Sciences |
| BookMark | eNqFkU1LxDAQhoMouH5cPQe8eLBrMmmT1psu6wcoCuq5pOl0N9Kma9Mq--9NWVEQxFMYeJ55MzN7ZNu1Dgk54mzKGYOzwqKfAgNgjAnYIhOeAI94qtJtMmEgkyiDWO2SPe9fA5JJiCdk8djZBimWtrduQa2jq1q73lPtStroptG11Y4arGt_Tu_RLLWzvjml2iwtvmODAT6ltW1sr3vbulCMajX0Q4d01bV-hab3B2Sn0rXHw693n7xczZ9nN9Hdw_Xt7OIuMiIVEMkCBa9QFlJXvESFqYpVFhcKWVIZpXlRSUwSEUtTsVICB1RJLBKlspIbnYp9crLpG5LfBvR93lg__l47bAefg-KpEMAk_x-VKWexENmIHv9CX9uhc2GQ0JAlkAJkY_Z0Q5kwte-wyldhubpb55zl44ny8UT594mCEP8SzNcW-07b-m8t22gftsb1PyH55e386cf9BA4xp_E |
| CitedBy_id | crossref_primary_10_1016_j_omtn_2023_07_007 crossref_primary_10_3389_fgene_2023_1204585 crossref_primary_10_1016_j_tibtech_2023_10_007 crossref_primary_10_1016_j_omtn_2025_102635 crossref_primary_10_1007_s12033_022_00567_0 crossref_primary_10_3390_agriculture13050944 crossref_primary_10_1002_cbin_11972 crossref_primary_10_1016_j_biotechadv_2025_108686 crossref_primary_10_1002_1873_3468_70097 crossref_primary_10_1007_s10340_023_01736_z crossref_primary_10_3389_fgene_2024_1306469 crossref_primary_10_3390_plants12091911 crossref_primary_10_1007_s00299_024_03346_0 crossref_primary_10_1007_s10142_024_01435_7 crossref_primary_10_3389_fgeed_2025_1542487 crossref_primary_10_1007_s42729_022_01025_1 crossref_primary_10_1016_j_gene_2024_149075 crossref_primary_10_1016_j_hlife_2024_06_002 crossref_primary_10_1016_j_stress_2024_100578 crossref_primary_10_1007_s00425_022_04023_w crossref_primary_10_1007_s11033_023_08521_2 crossref_primary_10_1016_j_omtn_2024_102370 crossref_primary_10_1134_S0026893324010084 |
| Cites_doi | 10.1038/nrg2842 10.1016/j.pbi.2016.01.007 10.1016/j.molp.2020.03.011 10.1038/nbt.3803 10.1038/s41586‐019‐1711‐4 10.1016/j.cell.2019.11.030 10.1016/j.ymthe.2021.07.011 10.1016/j.ophtha.2017.04.008 10.1017/S0033583505004063 10.1111/pbi.13395 10.1038/nrm3486 10.1080/15427528.2019.1709596 10.1073/pnas.0900992106 10.2174/1874070701913010173 10.1016/j.ibmb.2016.06.008 10.1038/s41467‐020‐19136‐7 10.1073/pnas.1420294112 10.1038/s41434‐021‐00263‐9 10.1016/j.xplc.2020.100043 10.1016/j.bbamcr.2016.06.009 10.1016/j.chom.2017.07.004 10.1038/nbt.4194 10.1016/j.ibmb.2016.06.004 10.1126/science.aaf8729 10.1001/jamaophthalmol.2020.6418 10.1038/s41467-021-27317-1 10.1098/rstb.2018.0322 10.1016/j.stem.2010.05.016 10.1126/science.1225829 10.1016/j.semcdb.2019.04.008 10.1186/s13059-021-02304-3 10.1089/oli.2006.0065 10.1038/s41587-020-0455-x 10.1038/ncomms15790 10.1007/s00216-018-0873-5 10.1016/j.molmed.2012.09.008 10.1093/jxb/erz415 10.1007/s13205-017-0870-y 10.1016/j.ymben.2018.02.016 10.1093/nar/gku155 10.1016/j.pbi.2018.03.007 10.1111/febs.15079 10.1016/j.jconrel.2014.12.036 10.1038/nmeth.1733 10.1016/j.molp.2016.11.013 10.3389/fphys.2017.00608 10.3390/microorganisms7080269 10.1111/1462-2920.14959 10.3390/ijms20092248 10.1038/nbt.3811 10.34133/2020/9350905 10.1126/science.2660260 10.1038/s41576-018-0059-1 10.1073/pnas.1804428115 10.1038/s41467-018-07226-6 10.1038/s41580-020-00288-9 10.1038/nbt.3547 10.1126/sciadv.aao4774 10.1371/journal.pbio.0030156 10.1016/j.molp.2020.03.010 10.1093/treephys/tps032 10.1111/nph.15777 10.1007/978-3-030-20728-1_5 10.1038/nbt.4148 10.1016/j.tig.2021.10.004 10.3389/fgene.2020.00528 10.1007/978-3-030-75875-2_8 10.1038/nature17946 |
| ContentType | Journal Article |
| Copyright | 2022 Wiley Periodicals LLC. |
| Copyright_xml | – notice: 2022 Wiley Periodicals LLC. |
| DBID | AAYXX CITATION 7QL 7QO 7QP 7QR 7SS 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
| DOI | 10.1002/bies.202200032 |
| DatabaseName | CrossRef Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA CrossRef Virology and AIDS Abstracts |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1521-1878 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_bies_202200032 BIES202200032 |
| Genre | article |
| GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACKIV ACKOT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 C45 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KD1 KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWR RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UDS V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ XG1 XV2 Y6R YYQ YZZ ZGI ZUP ZXP ZY4 ZZTAW ~IA ~KM ~WT AAMMB AAYXX AEFGJ AETEA AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X 7QL 7QO 7QP 7QR 7SS 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c3832-6be31fe6b6af1de7e874794b7e05fc7a1bf6e55346cf0d6212e75435779d1ca83 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000815349300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0265-9247 1521-1878 |
| IngestDate | Fri Jul 11 18:28:34 EDT 2025 Thu Oct 02 07:13:46 EDT 2025 Mon Nov 10 02:56:18 EST 2025 Sat Nov 29 05:24:48 EST 2025 Tue Nov 18 21:23:54 EST 2025 Wed Jan 22 16:32:38 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3832-6be31fe6b6af1de7e874794b7e05fc7a1bf6e55346cf0d6212e75435779d1ca83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-4106-1531 |
| PQID | 2705282298 |
| PQPubID | 37030 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2718332061 proquest_miscellaneous_2681043391 proquest_journals_2705282298 crossref_primary_10_1002_bies_202200032 crossref_citationtrail_10_1002_bies_202200032 wiley_primary_10_1002_bies_202200032_BIES202200032 |
| PublicationCentury | 2000 |
| PublicationDate | September 2022 2022-09-00 20220901 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Cambridge |
| PublicationPlace_xml | – name: Cambridge |
| PublicationTitle | BioEssays |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2010; 11 2017; 7 2017; 8 2017; 3 2021; 22 2019; 96 2019; 13 2021; 28 2016; 76 2016; 75 2016; 30 2020; 13 2012; 18 2020; 11 2018; 45 2021; 30 2018; 47 2016; 34 2019; 286 2020; 18 2021; 38 2018; 9 2013; 14 2020; 1 2019; 20 2018; 410 2017; 35 2016; 353 2005; 38 2017; 124 2012; 337 2010; 7 2018; 36 2007; 17 2019; 7 2019; 70 2017; 22 2020; 38 2016; 1863 2019; 223 2020; 34 2015; 205 2021; 1 2012; 32 2011; 8 2014; 42 2018; 19 2020; 2020 2021; 12 1989; 244 2021 2020 2021; 139 2017; 10 2015; 112 2018; 115 2019 2019; 179 2018 2019; 576 2005; 3 2016; 533 2020; 22 2020; 21 2016; 28 2018; 14 2009; 106 2019; 374 e_1_2_17_5_1 e_1_2_17_74_1 e_1_2_17_3_1 e_1_2_17_30_1 e_1_2_17_51_1 e_1_2_17_72_1 e_1_2_17_9_1 e_1_2_17_32_1 e_1_2_17_53_1 e_1_2_17_7_1 e_1_2_17_11_1 e_1_2_17_34_1 e_1_2_17_13_1 e_1_2_17_36_1 e_1_2_17_59_1 e_1_2_17_15_1 e_1_2_17_38_1 e_1_2_17_57_1 e_1_2_17_17_1 e_1_2_17_19_1 Lema M. (e_1_2_17_23_1) 2018; 14 e_1_2_17_70_1 e_1_2_17_62_1 e_1_2_17_41_1 e_1_2_17_60_1 e_1_2_17_20_1 e_1_2_17_43_1 e_1_2_17_66_1 e_1_2_17_22_1 e_1_2_17_45_1 e_1_2_17_64_1 e_1_2_17_24_1 e_1_2_17_47_1 e_1_2_17_26_1 e_1_2_17_49_1 e_1_2_17_68_1 e_1_2_17_28_1 Ochoa‐Sanchez A. (e_1_2_17_21_1) 2021 Rousseau J. (e_1_2_17_61_1) 2020 e_1_2_17_50_1 e_1_2_17_73_1 e_1_2_17_4_1 e_1_2_17_52_1 e_1_2_17_71_1 e_1_2_17_2_1 e_1_2_17_54_1 e_1_2_17_8_1 e_1_2_17_10_1 e_1_2_17_56_1 e_1_2_17_75_1 e_1_2_17_6_1 e_1_2_17_12_1 e_1_2_17_33_1 e_1_2_17_14_1 e_1_2_17_35_1 e_1_2_17_16_1 e_1_2_17_37_1 e_1_2_17_58_1 e_1_2_17_18_1 e_1_2_17_39_1 Altpeter F. (e_1_2_17_31_1) 2016; 28 e_1_2_17_63_1 e_1_2_17_40_1 e_1_2_17_42_1 e_1_2_17_67_1 e_1_2_17_44_1 e_1_2_17_65_1 e_1_2_17_25_1 e_1_2_17_46_1 Wu K. (e_1_2_17_55_1) 2018 e_1_2_17_27_1 e_1_2_17_48_1 e_1_2_17_69_1 e_1_2_17_29_1 |
| References_xml | – volume: 223 start-page: 293 issue: 1 year: 2019 end-page: 309 article-title: Multitrait genome‐wide association analysis of Populus trichocarpa identifies key polymorphisms controlling morphological and physiological traits publication-title: New Phytologist – volume: 14 year: 2018 article-title: Marker assisted selection in comparison to conventional plant breeding publication-title: Agric. Res. Technol – volume: 75 start-page: 98 year: 2016 end-page: 106 article-title: CRISPR/Cas9 mediated knockout of the abdominal‐A homeotic gene in the global pest, diamondback moth (Plutella xylostella) publication-title: Insect Biochemistry and Molecular Biology – volume: 20 start-page: 2248 issue: 9 year: 2019 article-title: Knock‐down of gossypol‐inducing cytochrome P450 genes reduced deltamethrin sensitivity in Spodoptera exigua (Hübner) publication-title: International Journal of Molecular Sciences – volume: 18 start-page: 679 issue: 11 year: 2012 end-page: 688 article-title: Sense from nonsense: Therapies for premature stop codon diseases publication-title: Trends in Molecular Medicine – volume: 19 start-page: 770 issue: 12 year: 2018 end-page: 788 article-title: Base editing: Precision chemistry on the genome and transcriptome of living cells publication-title: Nature Reviews Genetics – volume: 35 start-page: 438 issue: 5 year: 2017 end-page: 440 article-title: Precise base editing in rice, wheat and maize with a Cas9‐cytidine deaminase fusion publication-title: Nature Biotechnology – volume: 3 issue: 8 year: 2017 article-title: Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C: G‐to‐T: A base editors with higher efficiency and product purity publication-title: Science Advances – volume: 28 start-page: 396 issue: 7 year: 2021 end-page: 401 article-title: Prime editing – an update on the field publication-title: Gene Therapy – start-page: 291 year: 2021 end-page: 317 – volume: 1 issue: 3 year: 2020 article-title: Development of plant prime‐editing systems for precise genome editing publication-title: Plant Communications – volume: 115 start-page: 11573 issue: 45 year: 2018 end-page: 11578 article-title: Association mapping, transcriptomics, and transient expression identify candidate genes mediating plant–pathogen interactions in a tree publication-title: Proceedings of the National Academy of Sciences – volume: 35 start-page: 371 issue: 4 year: 2017 end-page: 376 article-title: Increasing the genome‐targeting scope and precision of base editing with engineered Cas9‐cytidine deaminase fusions publication-title: Nature Biotechnology – volume: 8 start-page: 608 year: 2017 article-title: Progress and prospects of CRISPR/Cas systems in insects and other arthropods publication-title: Frontiers in Physiology – volume: 21 start-page: 661 issue: 11 year: 2020 end-page: 677 article-title: Applications of CRISPR–Cas in agriculture and plant biotechnology publication-title: Nature Reviews Molecular Cell Biology – volume: 38 start-page: 218 issue: 3 year: 2021 end-page: 222 article-title: Potato trait development going fast‐forward with genome editing publication-title: Trends in Genetics – volume: 96 start-page: 65 year: 2019 end-page: 76 article-title: Improving plant‐resistance to insect‐pests and pathogens: The new opportunities through targeted genome editing publication-title: Seminars in Cell & Developmental Biology – volume: 42 start-page: 5390 issue: 8 year: 2014 end-page: 5402 article-title: Comprehensive analysis of the specificity of transcription activator‐like effector nucleases publication-title: Nucleic Acids Research – volume: 11 start-page: 1 issue: 528 year: 2020 end-page: 6 article-title: Prime editing: Genome editing for rare genetic diseases without double‐strand breaks or donor DNA publication-title: Frontiers in Genetics – volume: 14 start-page: 49 issue: 1 year: 2013 end-page: 55 article-title: TALENs: A widely applicable technology for targeted genome editing publication-title: Nature Reviews Molecular Cell Biology – start-page: 13 year: 2018 article-title: CRISPR/Cas9 mediated knockout of the abdominal‐A homeotic gene in fall armyworm moth (Spodoptera frugiperda) publication-title: PLoS ONE – volume: 179 start-page: 1448 issue: 7 year: 2019 end-page: 1450 article-title: One prime for all editing publication-title: Cell – volume: 374 issue: 1767 year: 2019 article-title: Genome editing for plant disease resistance: Applications and perspectives publication-title: Philosophical Transactions of the Royal Society B – volume: 1 start-page: 75 issue: 1 year: 2021 end-page: 82 – volume: 30 start-page: 70 year: 2016 end-page: 77 article-title: Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research publication-title: Current Opinion in Plant Biology – volume: 9 start-page: 4820 issue: 1 year: 2018 article-title: CYP6AE gene cluster knockout in Helicoverpa armigera reveals role in detoxification of phytochemicals and insecticides publication-title: Nature Communications – volume: 7 start-page: 269 issue: 8 year: 2019 article-title: Exploration of plant‐microbe interactions for sustainable agriculture in CRISPR era publication-title: Microorganisms – volume: 13 start-page: 671 issue: 5 year: 2020 end-page: 674 article-title: Precise modifications of both exogenous and endogenous genes in rice by prime editing publication-title: Molecular Plant – volume: 1863 start-page: 2333 issue: 9 year: 2016 end-page: 2344 – volume: 47 start-page: 200 year: 2018 end-page: 210 article-title: MACBETH: Multiplex automated Corynebacterium glutamicum base editing method publication-title: Metabolic Engineering – volume: 12 start-page: 1 issue: 1 year: 2021 end-page: 13 article-title: Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice publication-title: Nature Communications – volume: 139 start-page: 319 issue: 3 year: 2021 end-page: 328 article-title: Analysis of pathogenic variants correctable with CRISPR base editing among patients with recessive inherited retinal degeneration publication-title: JAMA Ophthalmology – volume: 7 start-page: 186 issue: 2 year: 2010 end-page: 197 article-title: A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis‐independent role for p53 in self‐renewal publication-title: Cell Stem Cell – volume: 8 start-page: 941 issue: 11 year: 2011 end-page: 943 article-title: Surrogate reporters for enrichment of cells with nuclease‐induced mutations publication-title: Nature Methods – volume: 244 start-page: 1288 issue: 4910 year: 1989 end-page: 1292 article-title: Altering the genome by homologous recombination publication-title: Science – volume: 28 start-page: 1510 issue: 7 year: 2016 end-page: 1520 article-title: Advancing crop transformation in the era of genome editing publication-title: The Plant Cell – volume: 337 start-page: 816 issue: 6096 year: 2012 end-page: 821 article-title: A programmable dual‐RNA–guided DNA endonuclease in adaptive bacterial immunity publication-title: Science – volume: 36 start-page: 888 issue: 9 year: 2018 end-page: 893 article-title: Optimized base editors enable efficient editing in cells, organoids and mice publication-title: Nature Biotechnology – volume: 32 start-page: 626 issue: 5 year: 2012 end-page: 638 article-title: Identification of quantitative trait loci and candidate genes for cadmium tolerance in Populus publication-title: Tree Physiology – volume: 22 start-page: 1435 issue: 4 year: 2020 end-page: 1446 article-title: The small secreted effector protein MiSSP7. 6 of Laccaria bicolor is required for the establishment of ectomycorrhizal symbiosis publication-title: Environmental Microbiology – volume: 34 start-page: 335 issue: 3 year: 2020 end-page: 355 article-title: Hybridization and hybrid detection through molecular markers in finger millet [Eleusine coracana (L.) Gaertn.] publication-title: Journal of Crop Improvement – volume: 7 start-page: 1 issue: 4 year: 2017 end-page: 35 article-title: Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review publication-title: 3 Biotech – volume: 38 start-page: 582 issue: 5 year: 2020 end-page: 585 article-title: Prime genome editing in rice and wheat publication-title: Nature Biotechnology – volume: 13 start-page: 667 issue: 5 year: 2020 end-page: 670 article-title: Plant prime editors enable precise gene editing in rice cells publication-title: Molecular Plant – volume: 533 start-page: 420 issue: 7603 year: 2016 end-page: 424 article-title: Programmable editing of a target base in genomic DNA without double‐stranded DNA cleavage publication-title: Nature – volume: 576 start-page: 149 issue: 7785 year: 2019 end-page: 157 article-title: Search‐and‐replace genome editing without double‐strand breaks or donor DNA publication-title: Nature – volume: 76 start-page: 11 year: 2016 end-page: 17 article-title: Functional validation of cadherin as a receptor of Bt toxin Cry1Ac in Helicoverpa armigera utilizing the CRISPR/Cas9 system publication-title: Insect Biochemistry and Molecular Biology – start-page: 1 year: 2020 end-page: 11 article-title: Specific mutations in genes responsible for Alzheimer and for Duchenne muscular dystrophy introduced by base editing and PRIME editing publication-title: BioRxiv – volume: 106 start-page: 12273 issue: 30 year: 2009 end-page: 12278 article-title: Genomewide SNP variation reveals relationships among landraces and modern varieties of rice publication-title: Proceedings of the National Academy of Sciences – volume: 36 start-page: 536 issue: 6 year: 2018 end-page: 539 article-title: Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy publication-title: Nature Biotechnology – volume: 45 start-page: 205 year: 2018 end-page: 211 article-title: Can genomics deliver climate‐change ready crops? publication-title: Current Opinion in Plant Biology – volume: 70 start-page: 6621 issue: 22 year: 2019 end-page: 6629 article-title: CRISPR/Cas9‐mediated targeted mutagenesis for functional genomics research of crassulacean acid metabolism plants publication-title: Journal of Experimental Botany – volume: 22 start-page: 142 issue: 2 year: 2017 end-page: 155 article-title: Establishing causality: Opportunities of synthetic communities for plant microbiome research publication-title: Cell Host & Microbe – start-page: 83 year: 2019 end-page: 111 – volume: 205 start-page: 120 year: 2015 end-page: 127 article-title: Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN publication-title: Journal of Controlled Release – volume: 18 start-page: 2167 issue: 11 year: 2020 article-title: Precision genome engineering in rice using prime editing system publication-title: Plant Biotechnology Journal – volume: 410 start-page: 2889 issue: 12 year: 2018 end-page: 2900 article-title: Detection of target DNA with a novel Cas9/sgRNAs‐associated reverse PCR (CARP) technique publication-title: Analytical and Bioanalytical Chemistry – volume: 30 start-page: 283 issue: 1 year: 2021 end-page: 294 article-title: Dual‐AAV delivering split prime editor system for in vivo genome editing publication-title: Molecular Therapy – volume: 13 start-page: 173 issue: 1 year: 2019 end-page: 179 article-title: Application of CRISPR/Cas9 genome editing system in cereal crops publication-title: The Open Biotechnology Journal – volume: 112 start-page: 3570 issue: 11 year: 2015 end-page: 3575 article-title: Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA‐processing system publication-title: Proceedings of the National Academy of Sciences – volume: 286 start-page: 4657 issue: 23 year: 2019 end-page: 4660 article-title: More precise, more universal and more specific–the next generation of RNA‐guided endonucleases for genome editing publication-title: The FEBS Journal – volume: 10 start-page: 523 issue: 3 year: 2017 end-page: 525 article-title: Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system publication-title: Molecular Plant – volume: 34 start-page: 768 issue: 7 year: 2016 end-page: 73 article-title: DNA‐guided genome editing using the Natronobacterium gregoryi Argonaute publication-title: Nature Biotechnology – volume: 38 start-page: 49 issue: 1 year: 2005 end-page: 95 article-title: Homing endonuclease structure and function publication-title: Quarterly Reviews of Biophysics – volume: 22 start-page: 1 issue: 1 year: 2021 end-page: 21 article-title: Prime editing in mice reveals the essentiality of a single base in driving tissue‐specific gene expression publication-title: Genome Biology – volume: 124 start-page: 1314 issue: 9 year: 2017 end-page: 1331 article-title: Clinically focused molecular investigation of 1000 consecutive families with inherited retinal disease publication-title: Ophthalmology – volume: 11 start-page: 636 issue: 9 year: 2010 end-page: 646 article-title: Genome editing with engineered zinc finger nucleases publication-title: Nature Reviews Genetics – volume: 2020 year: 2020 article-title: Prime editing technology and its prospects for future applications in plant biology research publication-title: BioDesign Research – volume: 11 start-page: 1 issue: 1 year: 2020 end-page: 8 article-title: Prime editing for functional repair in patient‐derived disease models publication-title: Nature Communications – volume: 17 start-page: 237 issue: 2 year: 2007 end-page: 250 article-title: Insights into effective RNAi gained from large‐scale siRNA validation screening publication-title: Oligonucleotides – volume: 8 start-page: 1 issue: 1 year: 2017 end-page: 10 article-title: Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery publication-title: Nature Communications – volume: 3 issue: 5 year: 2005 article-title: Subversion of cellular autophagosomal machinery by RNA viruses publication-title: PLoS Biology – volume: 353 issue: 6305 year: 2016 article-title: Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems publication-title: Science – ident: e_1_2_17_6_1 doi: 10.1038/nrg2842 – ident: e_1_2_17_40_1 doi: 10.1016/j.pbi.2016.01.007 – ident: e_1_2_17_68_1 doi: 10.1016/j.molp.2020.03.011 – ident: e_1_2_17_15_1 doi: 10.1038/nbt.3803 – ident: e_1_2_17_17_1 doi: 10.1038/s41586‐019‐1711‐4 – ident: e_1_2_17_38_1 doi: 10.1016/j.cell.2019.11.030 – ident: e_1_2_17_58_1 doi: 10.1016/j.ymthe.2021.07.011 – ident: e_1_2_17_65_1 doi: 10.1016/j.ophtha.2017.04.008 – ident: e_1_2_17_5_1 doi: 10.1017/S0033583505004063 – ident: e_1_2_17_75_1 doi: 10.1111/pbi.13395 – ident: e_1_2_17_7_1 doi: 10.1038/nrm3486 – start-page: 75 volume-title: Re: GEN Open year: 2021 ident: e_1_2_17_21_1 – ident: e_1_2_17_22_1 doi: 10.1080/15427528.2019.1709596 – ident: e_1_2_17_46_1 doi: 10.1073/pnas.0900992106 – ident: e_1_2_17_29_1 doi: 10.2174/1874070701913010173 – ident: e_1_2_17_52_1 doi: 10.1016/j.ibmb.2016.06.008 – ident: e_1_2_17_60_1 doi: 10.1038/s41467‐020‐19136‐7 – ident: e_1_2_17_69_1 doi: 10.1073/pnas.1420294112 – ident: e_1_2_17_18_1 doi: 10.1038/s41434‐021‐00263‐9 – ident: e_1_2_17_74_1 doi: 10.1016/j.xplc.2020.100043 – ident: e_1_2_17_28_1 doi: 10.1016/j.bbamcr.2016.06.009 – ident: e_1_2_17_49_1 doi: 10.1016/j.chom.2017.07.004 – ident: e_1_2_17_70_1 doi: 10.1038/nbt.4194 – ident: e_1_2_17_56_1 doi: 10.1016/j.ibmb.2016.06.004 – ident: e_1_2_17_12_1 doi: 10.1126/science.aaf8729 – ident: e_1_2_17_64_1 doi: 10.1001/jamaophthalmol.2020.6418 – ident: e_1_2_17_59_1 doi: 10.1038/s41467-021-27317-1 – ident: e_1_2_17_47_1 doi: 10.1098/rstb.2018.0322 – ident: e_1_2_17_63_1 doi: 10.1016/j.stem.2010.05.016 – ident: e_1_2_17_9_1 doi: 10.1126/science.1225829 – ident: e_1_2_17_50_1 doi: 10.1016/j.semcdb.2019.04.008 – ident: e_1_2_17_62_1 doi: 10.1186/s13059-021-02304-3 – ident: e_1_2_17_4_1 doi: 10.1089/oli.2006.0065 – ident: e_1_2_17_35_1 doi: 10.1038/s41587-020-0455-x – ident: e_1_2_17_16_1 doi: 10.1038/ncomms15790 – ident: e_1_2_17_43_1 doi: 10.1007/s00216-018-0873-5 – ident: e_1_2_17_66_1 doi: 10.1016/j.molmed.2012.09.008 – ident: e_1_2_17_39_1 doi: 10.1093/jxb/erz415 – ident: e_1_2_17_26_1 doi: 10.1007/s13205-017-0870-y – ident: e_1_2_17_41_1 doi: 10.1016/j.ymben.2018.02.016 – ident: e_1_2_17_8_1 doi: 10.1093/nar/gku155 – ident: e_1_2_17_27_1 doi: 10.1016/j.pbi.2018.03.007 – ident: e_1_2_17_10_1 doi: 10.1111/febs.15079 – start-page: 13 year: 2018 ident: e_1_2_17_55_1 article-title: CRISPR/Cas9 mediated knockout of the abdominal‐A homeotic gene in fall armyworm moth (Spodoptera frugiperda) publication-title: PLoS ONE – ident: e_1_2_17_57_1 – ident: e_1_2_17_71_1 doi: 10.1016/j.jconrel.2014.12.036 – ident: e_1_2_17_73_1 doi: 10.1038/nmeth.1733 – ident: e_1_2_17_32_1 doi: 10.1016/j.molp.2016.11.013 – volume: 28 start-page: 1510 issue: 7 year: 2016 ident: e_1_2_17_31_1 article-title: Advancing crop transformation in the era of genome editing publication-title: The Plant Cell – ident: e_1_2_17_51_1 doi: 10.3389/fphys.2017.00608 – ident: e_1_2_17_48_1 doi: 10.3390/microorganisms7080269 – ident: e_1_2_17_34_1 doi: 10.1111/1462-2920.14959 – ident: e_1_2_17_53_1 doi: 10.3390/ijms20092248 – ident: e_1_2_17_33_1 doi: 10.1038/nbt.3811 – ident: e_1_2_17_20_1 doi: 10.34133/2020/9350905 – start-page: 1 year: 2020 ident: e_1_2_17_61_1 article-title: Specific mutations in genes responsible for Alzheimer and for Duchenne muscular dystrophy introduced by base editing and PRIME editing publication-title: BioRxiv – ident: e_1_2_17_2_1 doi: 10.1126/science.2660260 – ident: e_1_2_17_14_1 doi: 10.1038/s41576-018-0059-1 – ident: e_1_2_17_45_1 doi: 10.1073/pnas.1804428115 – ident: e_1_2_17_54_1 doi: 10.1038/s41467-018-07226-6 – ident: e_1_2_17_30_1 doi: 10.1038/s41580-020-00288-9 – ident: e_1_2_17_72_1 doi: 10.1038/nbt.3547 – ident: e_1_2_17_13_1 doi: 10.1126/sciadv.aao4774 – ident: e_1_2_17_3_1 doi: 10.1371/journal.pbio.0030156 – ident: e_1_2_17_36_1 doi: 10.1016/j.molp.2020.03.010 – volume: 14 year: 2018 ident: e_1_2_17_23_1 article-title: Marker assisted selection in comparison to conventional plant breeding publication-title: Agric. Res. Technol – ident: e_1_2_17_44_1 doi: 10.1093/treephys/tps032 – ident: e_1_2_17_42_1 doi: 10.1111/nph.15777 – ident: e_1_2_17_25_1 doi: 10.1007/978-3-030-20728-1_5 – ident: e_1_2_17_67_1 doi: 10.1038/nbt.4148 – ident: e_1_2_17_37_1 doi: 10.1016/j.tig.2021.10.004 – ident: e_1_2_17_19_1 doi: 10.3389/fgene.2020.00528 – ident: e_1_2_17_24_1 doi: 10.1007/978-3-030-75875-2_8 – ident: e_1_2_17_11_1 doi: 10.1038/nature17946 |
| SSID | ssj0009624 |
| Score | 2.506722 |
| SecondaryResourceType | review_article |
| Snippet | Clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR‐associated protein (CRISPR/Cas) system has revolutionized genetic research in the... Clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated protein (CRISPR/Cas) system has revolutionized genetic research in the... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | e2200032 |
| SubjectTerms | base editing Cas9 H840 nickase CRISPR CRISPR/Cas Editing gene editing genome Genomes Mammalian cells Mammals Nuclease pegRNA plants prime editing Recombinase recombinases researchers |
| Title | Prime editing in plants and mammalian cells: Mechanism, achievements, limitations, and future prospects |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.202200032 https://www.proquest.com/docview/2705282298 https://www.proquest.com/docview/2681043391 https://www.proquest.com/docview/2718332061 |
| Volume | 44 |
| WOSCitedRecordID | wos000815349300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-1878 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009624 issn: 0265-9247 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BFiQuvBELpTISEpe1GsfxI9x4rThAVSEq7S1yHButtJtWzbZS_z0zcTbbHgAJbok8jpyxx_PQzDcAb6xGnRB84LoRkhcmKu5EFFx6XQY02JssS80mzNGRXSzK42tV_AkfYgy4kWT09zUJuKu7wx1oaE2eZE6Fongw8RLey_HwFhPY-_R9fvJ1B7yr-8a26Goojr6G2QI3ZvnhzS_cVEw7a_O6zdornfmD_1_uQ7g_GJzsfTohj-BWaB_D3dSC8uoJ_DwmfH-GKozyn9myZWcrSo1hrm3Y2q3XfRyEUXy_e8e-BSoUXnbrGaMkzNCDjW-6GVtRnVQK_s36qQmrhOEP9rWc3VM4mX_-8fELH5ovcI9Oa851HaSIQdfaRdEEE6whMPrahExFb5yoow5KyUL7mDUaNWAwCm0vY8pGeGflM5i0p214DiwXUsVa6RhlVgRprbeZd41AT61GejMFvuV85YfFUoOMVZUwlfOKmFeNzJvC25H-LGFy_JZyf7uR1SCbOGoyRcmzpZ3C63EYpYpY6dpweoE0BNNWSFmKP9CgWpcyR4NoCnm_9X9ZTfUBLfzx7cW_THoJ9-g5Jbntw2RzfhFewR1_uVl25wdw2yzswSABvwD1sgSL |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED9K2rG9bN1Habqu1WCwl4haliXZe9tHQ8fSUEYLfTO2LJVA4pY6HfS_353lOOvDNhh7tHUy8kmn--DudwDvUo06wVnHdSUkT4xXvBBecGl15tBgr6IoNJsw02l6eZmdddmEVAsT8CH6gBtJRntfk4BTQPpojRpakisZU6Uonky8hTcTPEtqAJtfvo8vJmvkXd12tkVfQ3F0NswKuTGKjx5-4aFmWpubvxqtrdYZP_sP692Gp53JyT6GM_IcNlz9Ah6FJpT3L-HqjBD-GSoxyoBms5rdzCk5hhV1xRbFYtFGQhhF-JsP7NRRqfCsWYwYpWG6Fm582YzYnCqlQvhv1E4NaCUM_7Ct5mxewcX4-PzzCe_aL3CLbmvMdemk8E6XuvCicsalhuDoS-Mi5a0pROm1U0om2vqo0qgDnVFofRmTVcIWqdyBQX1du11gsZDKl0p7L6PEyTS1aWSLSqCvViK9GQJfsT633WKpRcY8D6jKcU7My3vmDeF9T38TUDl-S7m_2sm8k04cNZGi9NksHcLbfhjlilhZ1O76DmkIqC2RMhN_oEHFLmWMJtEQ4nbv_7Ka_BPa-P3T3r9MOoTHJ-enk3zydfrtNTyh9yHlbR8Gy9s79wa27I_lrLk96AThJ3SqB5M |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBel3cZe9l2are1UGOwlopZlSfbe1o_QsTaEsULfjC2fSiBxQ50O9t_vznKc9WErjD3aOhn5pNN9cPc7xj6kBnUCOBCmkkok1mtRSC-FciYDNNirKArNJux4nF5dZZMum5BqYQI-RB9wI8lo72sScFhU_nCNGlqSKxlTpSieTLyFtxKdGZTNrZNvo8vzNfKuaTvboq-hBTobdoXcGMWH979wXzOtzc3fjdZW64ye_4f1vmDPOpOTfw5n5CXbgPoVexyaUP58za4nhPDPUYlRBjSf1nwxo-QYXtQVnxfzeRsJ4RThbz7xC6BS4WkzH3JKw4QWbnzZDPmMKqVC-G_YTg1oJRz_sK3mbN6wy9Hp9-Mz0bVfEA7d1liYEpT0YEpTeFmBhdQSHH1pIdLe2UKW3oDWKjHOR5VBHQhWo_VlbVZJV6Rqm23WNzXsMB5LpX2pjfcqSkClqUsjV1QSfbUS6e2AiRXrc9ctllpkzPKAqhznxLy8Z96AfezpFwGV44-Uu6udzDvpxFEbaUqfzdIBO-iHUa6IlUUNN3dIQ0BtiVKZ_AsNKnalYjSJBixu9_6B1eRHaOP3T2__ZdJ79mRyMsrPv4y_vmNP6XXIeNtlm8vbO9hjj9yP5bS53e_k4BfycwcO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prime+editing+in+plants+and+mammalian+cells%3A+Mechanism%2C+achievements%2C+limitations%2C+and+future+prospects&rft.jtitle=BioEssays&rft.au=Hillary%2C+V+Edwin&rft.au=Ceasar%2C+S.+Antony&rft.date=2022-09-01&rft.issn=0265-9247&rft.volume=44&rft.issue=9+p.e2200032-&rft_id=info:doi/10.1002%2Fbies.202200032&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0265-9247&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0265-9247&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0265-9247&client=summon |