Self‐Limited Epitaxial Growth of Ultrathin Nonlayered CdS Flakes for High‐Performance Photodetectors
2D nonlayered materials that possess appealing properties are entering the researchers' vision. However, direct access to the 2D level of these materials is still a great challenge due to the instrinsic isotropic chemical bond. This work presents the initially self‐limited epitaxial growth of u...
Gespeichert in:
| Veröffentlicht in: | Advanced functional materials Jg. 28; H. 20 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken
Wiley Subscription Services, Inc
16.05.2018
|
| Schlagworte: | |
| ISSN: | 1616-301X, 1616-3028 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | 2D nonlayered materials that possess appealing properties are entering the researchers' vision. However, direct access to the 2D level of these materials is still a great challenge due to the instrinsic isotropic chemical bond. This work presents the initially self‐limited epitaxial growth of ultrathin nonlayered CdS flakes (as thin as 6 nm) on mica substrate with a large domain size (>40 µm) by employing In2S3 as the passivation agent. Besides, the thickness and sizes of the products could be tunable by the addition level of In2S3 amount. The growth mechanism is evidenced via experiments and theoretical calculations, which is attributed to the surface distortion effect of In–S motif and the preference of local environments for In on the CdS (0001) surface. The photodetector designed on CdS flake demonstrates a high photoswitching ratio (up to 103), a high detectivity (D* ≈ 2.71 × 109 Jones), and fast photoresponse speed (τR = 14 ms, τD = 8 ms). The as‐proposed self‐limited epitaxial growth method opens a new avenue to synthetize 2D nonlayered materials and will promote their further applications in novel optoelectronic devices.
This work presents the initially self‐limited epitaxial growth of ultrathin nonlayered CdS flakes (≈6 nm) on mica substrate with a large domain size (>40 µm) by employing In2S3 as the passivation agent. The growth mechanism is attributed to the surface distortion effect of In–S motif and the preference of local environments for In on the CdS (0001) surface. |
|---|---|
| AbstractList | 2D nonlayered materials that possess appealing properties are entering the researchers' vision. However, direct access to the 2D level of these materials is still a great challenge due to the instrinsic isotropic chemical bond. This work presents the initially self‐limited epitaxial growth of ultrathin nonlayered CdS flakes (as thin as 6 nm) on mica substrate with a large domain size (>40 µm) by employing In 2 S 3 as the passivation agent. Besides, the thickness and sizes of the products could be tunable by the addition level of In 2 S 3 amount. The growth mechanism is evidenced via experiments and theoretical calculations, which is attributed to the surface distortion effect of In–S motif and the preference of local environments for In on the CdS (0001) surface. The photodetector designed on CdS flake demonstrates a high photoswitching ratio (up to 10 3 ), a high detectivity ( D * ≈ 2.71 × 10 9 Jones), and fast photoresponse speed (τ R = 14 ms, τ D = 8 ms). The as‐proposed self‐limited epitaxial growth method opens a new avenue to synthetize 2D nonlayered materials and will promote their further applications in novel optoelectronic devices. 2D nonlayered materials that possess appealing properties are entering the researchers' vision. However, direct access to the 2D level of these materials is still a great challenge due to the instrinsic isotropic chemical bond. This work presents the initially self‐limited epitaxial growth of ultrathin nonlayered CdS flakes (as thin as 6 nm) on mica substrate with a large domain size (>40 µm) by employing In2S3 as the passivation agent. Besides, the thickness and sizes of the products could be tunable by the addition level of In2S3 amount. The growth mechanism is evidenced via experiments and theoretical calculations, which is attributed to the surface distortion effect of In–S motif and the preference of local environments for In on the CdS (0001) surface. The photodetector designed on CdS flake demonstrates a high photoswitching ratio (up to 103), a high detectivity (D* ≈ 2.71 × 109 Jones), and fast photoresponse speed (τR = 14 ms, τD = 8 ms). The as‐proposed self‐limited epitaxial growth method opens a new avenue to synthetize 2D nonlayered materials and will promote their further applications in novel optoelectronic devices. This work presents the initially self‐limited epitaxial growth of ultrathin nonlayered CdS flakes (≈6 nm) on mica substrate with a large domain size (>40 µm) by employing In2S3 as the passivation agent. The growth mechanism is attributed to the surface distortion effect of In–S motif and the preference of local environments for In on the CdS (0001) surface. 2D nonlayered materials that possess appealing properties are entering the researchers' vision. However, direct access to the 2D level of these materials is still a great challenge due to the instrinsic isotropic chemical bond. This work presents the initially self‐limited epitaxial growth of ultrathin nonlayered CdS flakes (as thin as 6 nm) on mica substrate with a large domain size (>40 µm) by employing In2S3 as the passivation agent. Besides, the thickness and sizes of the products could be tunable by the addition level of In2S3 amount. The growth mechanism is evidenced via experiments and theoretical calculations, which is attributed to the surface distortion effect of In–S motif and the preference of local environments for In on the CdS (0001) surface. The photodetector designed on CdS flake demonstrates a high photoswitching ratio (up to 103), a high detectivity (D* ≈ 2.71 × 109 Jones), and fast photoresponse speed (τR = 14 ms, τD = 8 ms). The as‐proposed self‐limited epitaxial growth method opens a new avenue to synthetize 2D nonlayered materials and will promote their further applications in novel optoelectronic devices. |
| Author | Li, Huiqiao Zhang, Qi Zhang, Xiuwen Li, Liang Jin, Bao Huang, Pu Su, Jianwei Zhai, Tianyou Zhou, Xing |
| Author_xml | – sequence: 1 givenname: Bao surname: Jin fullname: Jin, Bao organization: Huazhong University of Science and Technology (HUST) – sequence: 2 givenname: Pu surname: Huang fullname: Huang, Pu organization: Shenzhen University – sequence: 3 givenname: Qi surname: Zhang fullname: Zhang, Qi organization: Huazhong University of Science and Technology (HUST) – sequence: 4 givenname: Xing surname: Zhou fullname: Zhou, Xing organization: Huazhong University of Science and Technology (HUST) – sequence: 5 givenname: Xiuwen surname: Zhang fullname: Zhang, Xiuwen organization: Shenzhen University – sequence: 6 givenname: Liang surname: Li fullname: Li, Liang organization: Huazhong University of Science and Technology (HUST) – sequence: 7 givenname: Jianwei surname: Su fullname: Su, Jianwei organization: Huazhong University of Science and Technology (HUST) – sequence: 8 givenname: Huiqiao surname: Li fullname: Li, Huiqiao organization: Huazhong University of Science and Technology (HUST) – sequence: 9 givenname: Tianyou orcidid: 0000-0003-0985-4806 surname: Zhai fullname: Zhai, Tianyou email: zhaity@hust.edu.cn organization: Huazhong University of Science and Technology (HUST) |
| BookMark | eNqFkE1LAzEQhoNUsK1ePQc8tyab_cgeS-2HULVQBW9Lmkzc6HZTsym1N3-Cv9FfYqSiIIiHYWbgfWbg6aBWbWtA6JSSPiUkOhdKr_oRoZyEogeoTVOa9hiJeOt7pvdHqNM0jyGSZSxuo3IBlX5_fZuZlfGg8GhtvHgxosITZ7e-xFbju8o74UtT42tbV2IHLgSHaoHHlXiCBmvr8NQ8lOHMHFzYVqKWgOel9VaBB-mta47RoRZVAydfvYvuxqPb4bQ3u5lcDgeznmSc0V6uVCIgUZIsRcJiSLRKgKtU8FimAJppuWQR1zlhOskETxlbplxLnnOZ5VqzLjrb3107-7yBxhePduPq8LKICONRzDnJQqq_T0lnm8aBLtbOrITbFZQUnzaLT5vFt80AxL8AGUR5Y-vgxlR_Y_ke25oKdv88KQYX46sf9gMkHo_C |
| CitedBy_id | crossref_primary_10_1002_cjoc_202200676 crossref_primary_10_1007_s10853_018_2845_8 crossref_primary_10_1007_s11426_019_9525_y crossref_primary_10_1088_1361_6528_abde61 crossref_primary_10_1002_adma_201903580 crossref_primary_10_1016_j_apsusc_2021_151185 crossref_primary_10_1007_s40820_021_00692_6 crossref_primary_10_1002_adom_202301758 crossref_primary_10_1002_smll_202105383 crossref_primary_10_1016_j_solener_2024_112594 crossref_primary_10_1038_s41467_023_35983_6 crossref_primary_10_1038_s41467_023_36619_5 crossref_primary_10_1002_aelm_202101146 crossref_primary_10_1088_1361_648X_ad144f crossref_primary_10_1039_C9NR08890C crossref_primary_10_1038_s41467_019_12569_9 crossref_primary_10_1002_adma_202008422 crossref_primary_10_1088_1361_648X_acd509 crossref_primary_10_1002_aelm_202000962 crossref_primary_10_1002_adma_201804541 crossref_primary_10_1021_acsomega_4c06008 crossref_primary_10_1039_C8EE02143K crossref_primary_10_1088_1361_6463_ab1e89 crossref_primary_10_4028_www_scientific_net_MSF_1001_104 crossref_primary_10_1109_JSTQE_2024_3350431 crossref_primary_10_1002_adfm_201909849 crossref_primary_10_1016_j_apsusc_2024_161830 crossref_primary_10_1002_adfm_201805880 crossref_primary_10_1039_D0MH00599A crossref_primary_10_1002_elt2_43 crossref_primary_10_1002_adfm_202300141 crossref_primary_10_1038_s41467_024_53907_w crossref_primary_10_1002_adfm_202006166 crossref_primary_10_1002_adfm_202105051 crossref_primary_10_1016_j_scitotenv_2019_133884 crossref_primary_10_1039_C9NR09070C crossref_primary_10_1016_j_scib_2022_07_005 crossref_primary_10_1002_aelm_202001125 crossref_primary_10_1016_j_jallcom_2020_157489 crossref_primary_10_1039_D0RA08662B crossref_primary_10_1016_j_apsusc_2018_11_078 crossref_primary_10_1002_adfm_202211548 crossref_primary_10_1039_D1MH00009H crossref_primary_10_1063_5_0241377 crossref_primary_10_1007_s11664_018_06905_w crossref_primary_10_1007_s40242_020_0221_8 crossref_primary_10_1039_D3RA04992B crossref_primary_10_1021_acsaom_5c00164 crossref_primary_10_1002_adom_202000430 crossref_primary_10_1021_jacs_8b07383 crossref_primary_10_1002_adfm_202419319 crossref_primary_10_1016_j_sna_2020_111933 crossref_primary_10_1039_D3RA07065D crossref_primary_10_3390_mi13010011 crossref_primary_10_1016_j_mattod_2022_07_007 crossref_primary_10_1002_admi_201900741 crossref_primary_10_1002_smll_202410411 crossref_primary_10_1002_apxr_202400186 crossref_primary_10_1002_adom_202100449 crossref_primary_10_1016_j_tsf_2023_139861 crossref_primary_10_1039_D0RA02033H crossref_primary_10_1088_1361_6463_ad5694 crossref_primary_10_1002_adma_201908242 crossref_primary_10_1016_j_mtnano_2019_100051 crossref_primary_10_1002_smll_202201715 crossref_primary_10_1007_s11664_023_10638_w crossref_primary_10_1002_adfm_201908902 crossref_primary_10_1002_adfm_201802707 crossref_primary_10_1002_adfm_201908382 crossref_primary_10_1021_acsaom_5c00094 crossref_primary_10_1002_smll_202005520 |
| Cites_doi | 10.1038/ncomms10444 10.1002/adma.201705015 10.1016/j.scib.2017.11.011 10.1039/C6NR02779B 10.1002/adma.201702359 10.1021/cm5025662 10.1002/smll.201503044 10.1021/nn5028104 10.1021/acsnano.7b07436 10.1007/s12274-016-1254-z 10.1021/acs.chemrev.6b00164 10.1038/natrevmats.2016.52 10.1002/adfm.201701011 10.1021/ja1090589 10.1021/jp203551f 10.1038/ncomms6678 10.1021/acsnano.5b04158 10.1016/j.nanoen.2015.02.027 10.1002/adma.201000144 10.1038/ncomms4789 10.1002/adfm.201703858 10.1038/nature06964 10.1038/nnano.2012.193 10.1021/jp0612073 10.1063/1.1915514 10.1002/adfm.201603886 10.1021/acs.nanolett.7b00937 10.1038/ncomms2066 10.1103/PhysRevLett.77.3865 10.1038/nmat3145 10.1002/adfm.200901884 10.1002/adfm.201603254 10.1038/ncomms8873 10.1038/nmat4742 10.1002/adma.201503873 10.1002/adfm.201702448 10.1002/adma.201504631 10.1103/PhysRevB.65.245308 10.1021/nl504258m 10.1126/science.1188035 10.1002/adma.201703122 10.1103/PhysRevB.54.11169 10.1021/nn3024255 10.1021/ja3021395 10.1021/nl1034495 10.1021/nl201874w 10.1002/adfm.201602494 10.1038/s41467-017-00427-5 10.1002/adfm.201600318 10.1063/1.1644625 10.1016/j.matlet.2013.04.032 10.1103/PhysRevLett.22.780 10.1002/adfm.201702918 10.1038/ncomms4813 10.1002/adma.201504572 |
| ContentType | Journal Article |
| Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/adfm.201800181 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | CrossRef Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1616-3028 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_adfm_201800181 ADFM201800181 |
| Genre | article |
| GrantInformation_xml | – fundername: National Key Research and Development Program of “Strategic Advanced Electronic Materials” funderid: 2016YFB0401100 – fundername: Fundamental Research Funds for the Central Universities funderid: 2015ZDTD038; 2017KFKJXX007 – fundername: National Nature Science Foundation of China funderid: 51472097; 91622117; 51727809; 11774239 – fundername: National Basic Research Program of China funderid: 2015CB932600 |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAMMB AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF O8X 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c3831-9dd5ae5dc0ba534e5fd5e8d6a84c6eef3fcb328f903f57a8633b68fc898c79ff3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 99 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000431959500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1616-301X |
| IngestDate | Fri Jul 25 06:05:19 EDT 2025 Tue Nov 18 22:07:53 EST 2025 Sat Nov 29 07:18:00 EST 2025 Wed Jan 22 16:43:26 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3831-9dd5ae5dc0ba534e5fd5e8d6a84c6eef3fcb328f903f57a8633b68fc898c79ff3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0985-4806 |
| PQID | 2038248807 |
| PQPubID | 2045204 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_2038248807 crossref_primary_10_1002_adfm_201800181 crossref_citationtrail_10_1002_adfm_201800181 wiley_primary_10_1002_adfm_201800181_ADFM201800181 |
| PublicationCentury | 2000 |
| PublicationDate | May 16, 2018 |
| PublicationDateYYYYMMDD | 2018-05-16 |
| PublicationDate_xml | – month: 05 year: 2018 text: May 16, 2018 day: 16 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Advanced functional materials |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 62 2015; 13 2011; 115 2015; 15 2017; 8 2015; 6 2004; 84 2010; 329 2017; 27 2013; 104 2014; 26 2006; 110 2011; 11 2005; 86 2011; 10 2017; 29 2015; 9 2016; 15 1996; 54 2011; 133 2016; 12 1996; 77 2010; 22 2016; 7 2010; 20 2014; 5 2016; 1 2012; 3 2015; 27 2012; 134 2017; 17 2017; 11 2002; 65 1969; 22 2017 2016; 116 2008; 453 2012; 6 2012; 7 2014; 8 2016; 28 2016; 26 2016; 8 2016; 9 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Li H. (e_1_2_7_5_1) 2017 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
| References_xml | – volume: 453 start-page: 638 year: 2008 publication-title: Nature – volume: 27 start-page: 1702918 year: 2017 publication-title: Adv. Funct. Mater. – volume: 115 start-page: 12826 year: 2011 publication-title: J. Phys. Chem. C – volume: 26 start-page: 6371 year: 2014 publication-title: Chem. Mater. – volume: 7 start-page: 10444 year: 2016 publication-title: Nat. Commun. – volume: 26 start-page: 6371 year: 2016 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 3848 year: 2016 publication-title: Nano Res. – volume: 6 start-page: 6741 year: 2012 publication-title: ACS Nano – volume: 20 start-page: 561 year: 2010 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 131 year: 2015 publication-title: Nano Energy – volume: 15 start-page: 1166 year: 2016 publication-title: Nat. Mater. – volume: 116 start-page: 10934 year: 2016 publication-title: Chem. Rev. – volume: 12 start-page: 874 year: 2016 publication-title: Small – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 84 start-page: 795 year: 2004 publication-title: Appl. Phys. Lett. – volume: 22 start-page: 780 year: 1969 publication-title: Phys. Rev. Lett. – volume: 11 start-page: 3051 year: 2011 publication-title: Nano Lett. – volume: 65 start-page: 245308 year: 2002 publication-title: Phys. Rev. B – volume: 22 start-page: 3161 year: 2010 publication-title: Adv. Mater. – volume: 5 start-page: 3789 year: 2014 publication-title: Nat. Commun. – volume: 62 start-page: 1654 year: 2017 publication-title: Sci. Bull. – volume: 8 start-page: 394 year: 2017 publication-title: Nat. Commun. – volume: 54 start-page: 11169 year: 1996 publication-title: Phys. Rev. B – volume: 26 start-page: 4405 year: 2016 publication-title: Adv. Funct. Mater. – volume: 27 start-page: 1702448 year: 2017 publication-title: Adv. Funct. Mater. – volume: 28 start-page: 1950 year: 2016 publication-title: Adv. Mater. – volume: 27 start-page: 1703858 year: 2017 publication-title: Adv. Funct. Mater. – volume: 133 start-page: 2052 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 9276 year: 2015 publication-title: ACS Nano – volume: 5 start-page: 3813 year: 2014 publication-title: Nat. Commun. – volume: 29 start-page: 1705015 year: 2017 publication-title: Adv. Mater. – volume: 10 start-page: 936 year: 2011 publication-title: Nat. Mater. – volume: 104 start-page: 87 year: 2013 publication-title: Mater. Lett. – volume: 17 start-page: 4165 year: 2017 publication-title: Nano Lett. – volume: 29 start-page: 1703122 year: 2017 publication-title: Adv. Mater. – volume: 7 start-page: 699 year: 2012 publication-title: Nat. Nanotechnol. – volume: 8 start-page: 7497 year: 2014 publication-title: ACS Nano – volume: 6 start-page: 7873 year: 2015 publication-title: Nat. Commun. – volume: 29 start-page: 1702359 year: 2017 publication-title: Adv. Mater. – volume: 5 start-page: 5678 year: 2014 publication-title: Nat. Commun. – volume: 86 start-page: 173105 year: 2005 publication-title: Appl. Phys. Lett. – volume: 329 start-page: 550 year: 2010 publication-title: Science – volume: 28 start-page: 2399 year: 2016 publication-title: Adv. Mater. – volume: 27 start-page: 8035 year: 2015 publication-title: Adv. Mater. – volume: 8 start-page: 11375 year: 2016 publication-title: Nanoscale – volume: 27 start-page: 1603886 year: 2017 publication-title: Adv. Funct. Mater. – year: 2017 publication-title: Chem. Rev. – volume: 110 start-page: 9448 year: 2006 publication-title: J. Phys. Chem. B – volume: 1 start-page: 16052 year: 2016 publication-title: Nat. Rev. Mater. – volume: 15 start-page: 1183 year: 2015 publication-title: Nano Lett. – volume: 11 start-page: 11803 year: 2017 publication-title: ACS Nano – volume: 27 start-page: 1603254 year: 2017 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 5111 year: 2011 publication-title: Nano Lett. – volume: 134 start-page: 6132 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 1701011 year: 2017 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 1057 year: 2012 publication-title: Nat. Commun. – ident: e_1_2_7_14_1 doi: 10.1038/ncomms10444 – ident: e_1_2_7_24_1 doi: 10.1002/adma.201705015 – ident: e_1_2_7_32_1 doi: 10.1016/j.scib.2017.11.011 – ident: e_1_2_7_28_1 doi: 10.1039/C6NR02779B – ident: e_1_2_7_35_1 doi: 10.1002/adma.201702359 – ident: e_1_2_7_34_1 doi: 10.1021/cm5025662 – ident: e_1_2_7_47_1 doi: 10.1002/smll.201503044 – ident: e_1_2_7_30_1 doi: 10.1021/nn5028104 – ident: e_1_2_7_4_1 doi: 10.1021/acsnano.7b07436 – ident: e_1_2_7_53_1 doi: 10.1007/s12274-016-1254-z – ident: e_1_2_7_10_1 doi: 10.1021/acs.chemrev.6b00164 – ident: e_1_2_7_2_1 doi: 10.1038/natrevmats.2016.52 – ident: e_1_2_7_6_1 doi: 10.1002/adfm.201701011 – ident: e_1_2_7_19_1 doi: 10.1021/ja1090589 – ident: e_1_2_7_39_1 doi: 10.1021/jp203551f – ident: e_1_2_7_54_1 doi: 10.1038/ncomms6678 – ident: e_1_2_7_33_1 doi: 10.1021/acsnano.5b04158 – ident: e_1_2_7_46_1 doi: 10.1016/j.nanoen.2015.02.027 – ident: e_1_2_7_48_1 doi: 10.1002/adma.201000144 – ident: e_1_2_7_7_1 doi: 10.1038/ncomms4789 – ident: e_1_2_7_50_1 doi: 10.1002/adfm.201703858 – ident: e_1_2_7_15_1 doi: 10.1038/nature06964 – ident: e_1_2_7_1_1 doi: 10.1038/nnano.2012.193 – ident: e_1_2_7_18_1 doi: 10.1021/jp0612073 – ident: e_1_2_7_45_1 doi: 10.1063/1.1915514 – ident: e_1_2_7_3_1 doi: 10.1002/adfm.201603886 – year: 2017 ident: e_1_2_7_5_1 publication-title: Chem. Rev. – ident: e_1_2_7_17_1 doi: 10.1021/acs.nanolett.7b00937 – ident: e_1_2_7_9_1 doi: 10.1038/ncomms2066 – ident: e_1_2_7_56_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_7_42_1 doi: 10.1038/nmat3145 – ident: e_1_2_7_40_1 doi: 10.1002/adfm.200901884 – ident: e_1_2_7_11_1 doi: 10.1002/adfm.201603254 – ident: e_1_2_7_8_1 doi: 10.1038/ncomms8873 – ident: e_1_2_7_13_1 doi: 10.1038/nmat4742 – ident: e_1_2_7_52_1 doi: 10.1002/adma.201503873 – ident: e_1_2_7_31_1 doi: 10.1002/adfm.201702448 – ident: e_1_2_7_41_1 doi: 10.1002/adma.201504631 – ident: e_1_2_7_12_1 doi: 10.1103/PhysRevB.65.245308 – ident: e_1_2_7_51_1 doi: 10.1021/nl504258m – ident: e_1_2_7_16_1 doi: 10.1126/science.1188035 – ident: e_1_2_7_29_1 doi: 10.1002/adma.201703122 – ident: e_1_2_7_55_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_7_20_1 doi: 10.1021/nn3024255 – ident: e_1_2_7_27_1 doi: 10.1021/ja3021395 – ident: e_1_2_7_36_1 doi: 10.1021/nl1034495 – ident: e_1_2_7_43_1 doi: 10.1021/nl201874w – ident: e_1_2_7_26_1 doi: 10.1002/adfm.201602494 – ident: e_1_2_7_25_1 doi: 10.1038/s41467-017-00427-5 – ident: e_1_2_7_22_1 doi: 10.1002/adfm.201600318 – ident: e_1_2_7_38_1 doi: 10.1063/1.1644625 – ident: e_1_2_7_21_1 doi: 10.1016/j.matlet.2013.04.032 – ident: e_1_2_7_37_1 doi: 10.1103/PhysRevLett.22.780 – ident: e_1_2_7_49_1 doi: 10.1002/adfm.201702918 – ident: e_1_2_7_23_1 doi: 10.1038/ncomms4813 – ident: e_1_2_7_44_1 doi: 10.1002/adma.201504572 |
| SSID | ssj0017734 |
| Score | 2.5599353 |
| Snippet | 2D nonlayered materials that possess appealing properties are entering the researchers' vision. However, direct access to the 2D level of these materials is... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | 2D CdS flakes Chemical bonds Epitaxial growth Flakes Materials science Mica nonlayered materials Optoelectronic devices photodetector Photometers self‐limited epitaxial growth Substrates Surface distortion |
| Title | Self‐Limited Epitaxial Growth of Ultrathin Nonlayered CdS Flakes for High‐Performance Photodetectors |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201800181 https://www.proquest.com/docview/2038248807 |
| Volume | 28 |
| WOSCitedRecordID | wos000431959500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 issn: 1616-301X databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELZQywAD_4hCQR6QmKLWcew4Y9U2MEBVUSp1ixz_qIgqRU1AsPEIPCNPgt2kaTsgJNgSxTlZ9p3vbN99HwCX1HhlTxoD5FQTS2HmO4Hx8w7HTUFiYgFHcrIJv9djo1HQX6niz_EhygM3axnz9doaOI_TxhI0lEttK8kRs7xyZv9TdY3ykgqodu7D4W15k-D7-c0yRTbHC40WwI1Nt7EuYd0xLaPN1Zh17nTC3f93dw_sFAEnbOUasg82VHIAtldgCA_BeKAm-uvjsyh2gl3LJPJmFBNem016NoZTDYcTC2M7fkxgz_SGv1uKT9iWAxhO-JNKoYl9oc0ZMWL6y1oE2B9Ps6lU2fxuID0Cw7D70L5xCgYGR5idK3ICKQlXRIpmzAn2FNGSKCYpZ56gSmmsRYxdpoMm1sTnjGIcU6YFC5jwA63xMagk00SdAIg9Lj0pYi-gwvNiFHNfa4p4oF0kOBI14CyGPxIFPLllyZhEObCyG9kRjMoRrIGrsv1zDszxY8v6YjajwkBT8xUz1y5efg2483n7RUrU6oR35dvpX346A1v22eYeIFoHlWz2os7BpnjNHtPZRaG439e28O8 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NahsxEBYlLqQ9pG3SUqdOq0Ohp8XW6me1R-Nkk1DbmMYG3xatfnCIsYu9Lcktj5BnzJNE412v7UMIlB53VyvEaEYzkma-D6HvwntlZrwBKuE4UJhFQez9fKBoS_OMA-BIQTYR9ftyPI4HZTYh1MIU-BDVgRtYxmq9BgOHA-nmBjVUGQel5EQCsZzfANWY1yWv5LXTX8moW10lRFFxtSwIJHmR8Rq5sRU2d3vY9UybcHM7aF15neTdfxjve3RQhpy4XejIB_TKzg7R2y0gwiM0ubJT93j_UJY74TPgErn1qonP_TY9n-C5w6MpANlOrme474ej7oDkE3fMFU6m6sYusY9-MWSN-G4Gm2oEPJjM87mx-ep2YPkRjZKzYeciKDkYAu33riSIjeHKcqNbmeKUWe4Mt9IIJZkW1jrqdEZD6eIWdTxSUlCaCem0jKWOYufoJ7Q3m8_sZ4QpU4YZnbFYaMYykqnIOUFU7EKiFdF1FKzln-oSoBx4MqZpAa0cpiDBtJJgHf2o2v8uoDmebdlYT2damujSf6UyhOUrqqNwNXEv9JK2T5Ne9XT8Lz99Q_sXw1437V72f35Bb-A9ZCIQ0UB7-eKPPUGv9d_8ern4WmrxE0ZX9N8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB5VSVWVA_SFCIV2D5V6ssh6H14fEcFQlUZRaaTcrPU-FESUoMQguPET-I38ku7EjgOHqlLVo-31aLU7szO7O_N9AF9k8MrcBgPU0gukMEuiNPj5SLOuEYVAwJGKbCLp99VolA7qbEKshanwIZoDN7SM5XqNBu6urD9Yo4Zq67GUnCoklgsboDZHJpkWtHs_s-FZc5WQJNXVsqSY5EVHK-TGbnzwXMJzz7QON58GrUuvk239h_6-gc065CSHlY68hRdu-g42ngARvofxuZv4x_uHutyJHCOXyG1QTXIStunlmMw8GU4QyHZ8MSX90B19hySf5Miek2yiL92ChOiXYNZIEDNYVyOQwXhWzqwrl7cDiw8wzI5_HZ1GNQdDZMLelUaptUI7YU230IJxJ7wVTlmpFTfSOc-8KVisfNplXiRaScYKqbxRqTJJ6j3bhtZ0NnU7QBjXlltT8FQazgta6MR7SXXqY2o0NR2IVuOfmxqgHHkyJnkFrRznOIJ5M4Id-Nq0v6qgOf7Ycm81nXltoovwlakYl6-kA_Fy4v4iJT_sZT-ap91_-ekzvBr0svzsW__7R3iNrzERgco9aJXza7cPL81NebGYf6qV-Dfhh_Ra |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self%E2%80%90Limited+Epitaxial+Growth+of+Ultrathin+Nonlayered+CdS+Flakes+for+High%E2%80%90Performance+Photodetectors&rft.jtitle=Advanced+functional+materials&rft.au=Jin%2C+Bao&rft.au=Huang%2C+Pu&rft.au=Zhang%2C+Qi&rft.au=Zhou%2C+Xing&rft.date=2018-05-16&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=20&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201800181&rft.externalDBID=10.1002%252Fadfm.201800181&rft.externalDocID=ADFM201800181 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |